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Abstract: Welfare conditions in shelters, where dogs might be housed for a long period of time,
may have a possible correlation with the occurrence of bacterial pathogens and their antimicro-
bial resistance (AMR). In this study, we assessed the occurrence of AMR in 54 strains of Escherichia
coli isolated from dogs housed in 15 Italian shelters and we correlated the resistance patterns to
animal welfare. We also aimed to evaluate the presence of specific pathogens with zoonotic poten-
tial in sheltered dogs. Thus, nasopharyngeal, rectal, and oral swabs were collected from a group
of 20 dogs in each shelter and totaled 758 swabs. We identified 9 Staphylococcus pseudointermedius,
1 Pasteurella multocida, 9 Staphylococcus aureus, 12 Campylobacter spp., 54 Escherichia coli,
2 Salmonella enterica, and 246 Capnocytophaga spp. The antimicrobial susceptibility was assessed
for the E. coli isolates using a panel of 14 antibiotics. The highest level of relative AMR was
recorded for ampicillin and sulfamethoxazole. The association found between AMR and the
levels of animal welfare scores in shelters was evident although not statistically significant.
These results support the hypothesis that the good management of shelters can increase the
level of animal welfare, thus reducing the use of antibiotics and, as a consequence, the AMR
occurrence found in dogs that share their domestic environment with humans.

Keywords: shelters in Italy; animal welfare; zoonotic pathogens; AMR; SQP

1. Introduction

Antimicrobial resistance (AMR) is one of the major public health threats that modern
society is currently facing and it is one of the biggest recognized priorities facing the World
Health Organization [1]. The exposure of microbes to antimicrobial drugs can lead to the
development of new AMR mechanisms or to the selection of strains harboring antimicrobial
resistance genes and mutations, thus reducing the efficacy of the subsequent therapies [2].
Novel and more effective drug compounds are constantly required to treat infections caused
by multi-drug resistant (MDR) strains and prophylactic and therapeutic options that remain
available are decreasing at an alarming rate, leading to frequent treatment failures [3,4]. As a
consequence of the extensive or inappropriate use of antibiotics, AMR has become a serious
threat to both public and animal health worldwide [1,5,6]. National and international public
health authorities have launched a response to reduce and mitigate the impact of AMR on a
local and on a global scale. Adequate AMR preventive protocols currently in place are based
on the systematic surveillance of the prevalence of AMR in bacteria in the food production
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chain and in humans [7]. In recent years, industrialized countries have implemented their
AMR surveillance systems in livestock animals, but little information is actively collected
on companion animals [6]. MDR pathogens have been isolated from dogs, demonstrating
that companion animals can play a role as a potential reservoir of anti-microbial resistant
bacteria that can then be transmitted to humans or other animals. Worryingly, these
pathogens can have zoonotic potential [8–12]. Most of the previous research in companion
animal reservoirs of AMR has been based on passive surveillance and data collected
from hospitalized animals [12–19]. Data on the pathogens isolated from healthy dogs,
especially the shelter dog population, is very limited even though these animals have
a high potential risk of carrying and spreading a variety of AMR pathogens to both
animals and humans [9,14,20]. Moreover, some of the pathogens frequently isolated from
both symptomatic and asymptomatic dogs, such as Pasteurella spp, Staphylococcus aureus
(S. aureus), Campylobacter jejuni (C. jejuni), Salmonella enterica, and Escherichia coli (E. coli),
due to their zoonotic potential, can pose an important threat for public health [21,22]. A few
studies have reported that living with diarrheic pets is a risk factor for campylobacteriosis,
salmonellosis, and colibacillosis in humans but the threat to human health in these cases
can be recognized and mitigated [22–24]. Moreover, dogs that are frequently asymptomatic
carriers of Salmonella enterica [25] and Campylobacter spp. [26] can shed these pathogens
in their feces and thus pollute the environment for several weeks, and indeed up to
two years [27], for Campylobacter spp. and for more than six weeks for Salmonella enterica,
thus increasing the probability of pathogen transmission [28]. Both pathogens represent
a risk factor for humans and in particular, for children, immunosuppressed, and elderly
people [29,30]. Direct evidence of C. jejuni transmission from a dog to a child living in
the same household has been shown [29,31]. Commonly, the most important risk factors
for the development of salmonellosis in dogs are related to the consumption of raw meat
or poorly cooked meals. Moreover, both probiotics and antibiotics were found to favor
carriers of Salmonella enterica in dogs [32]. The prevalent species of these pathogens in
dogs are Campylobacter upsaliensis [27], S. enterica serovar Typhimurium, and S. enterica
serovar Anatum [25]. Several studies have described the isolation of E. coli strains resistant
to β-lactam antibiotics and MDR [33] including enteropathogenic strains and carriers of
ast-A from dogs [34]. Dog housing conditions and shelter infrastructures were identified
as risk factors for colibacillosis. Indeed, E. coli antibiotic resistance strains have rarely
been found in home dogs; instead, in free-roaming dogs and shelter dogs the occurrence
of antibiotic resistance strains has been found to be higher [35,36]. Specific factors that
contribute to the introduction, persistence, and spread of pathogens in sheltered dogs
include high animal population densities, lack of proper veterinary care, stressful and
unsanitary housing conditions, limited funding, and high animal turnover [37]. Cultural
and socio-economic factors further complicate these problems and put these animals at
risk of getting infected, becoming carriers, and transmitting diseases to both animals and
humans [38]. Shelter environments in particular can increase the risk of illness because
of high animal density, as well as many other factors such as hygiene, food, management,
and veterinary interventions which may all play a predisposing role in respiratory and
gastrointestinal disease in sheltered dogs. Thus, monitoring for zoonotic pathogens and
their AMR in shelter dogs is important for understanding the sanitary risks they pose to
the human population and the environment. Therefore, in our study, we aimed to provide
data on the occurrence of respiratory and enteric zoonotic pathogens found in a group of
20 dogs housed in each of the 15 shelters located across Italy. We evaluated the antibiotic
resistance of E. coli strains isolated from the fecal samples with the aim to understand
whether environmental conditions and shelter management correlated with the AMR. To
reach this objective, the occurrence of AMR in E. coli was correlated to sheltered dogs’
welfare scores that were evaluated with the Shelter Quality Protocol (SQP) [39].
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2. Results

In this study, we evaluated the welfare of 294 dogs housed in 15 shelters located in
10 Italian regions using a Shelter Quality Protocol (SQP). The average animal welfare score
within the shelters was 83 points and ranged from a minimum of 77 points for shelter I to a
maximum of 90 points for the municipal shelter M (Figure 1).
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Figure 1. Welfare score of shelters. Graphical representation of shelters welfare scores calculated
with the Shelter Quality Protocol. Shelters are identified by capital letters following the same order as
Table 1. Shelter welfare score values ranged from 77 to 90 with an average of 83 points.

In each shelter, nasopharyngeal, rectal, and oral swabs were collected from 20 dogs for
a total of 758 swabs to assess the occurrence of the most common zoonotic respiratory and
gastroenteric bacteria (Table 1).

A total of 333 samples (43%) were positive in at least 1 of the tests performed, and
7 different bacterial species were detected: Staphylococcus pseudointermedius (S. pseudointermedius),
Pasteurella multocida (P. multocida), S. aureus, Campylobacter ssp., E. coli, Salmonella enterica, and
Capnocytophaga spp. The bacteria detected in the nasopharyngeal swabs were S. pseudointermedius
9/283 (3.1%), P. multocida 1/283 (0.35%), and S. aureus 9/283 (3.1%). In the rectal swabs, we
found Campylobacter spp. 12/203 (5.9%), E. coli 54/203 (26.6%), and Salmonella enterica 1/203
(0.49%). Only shelter H and shelter M tested positive for the E. coli O:157 through the detection of
presumptive colonies in culture and the subsequent confirmation using PCR identification. In the
oral swabs tested by PCR, we detected 246/272 (90.4%) samples positive for Capnocytophaga spp.
All Capnocytophaga spp. isolation attempts from the PCR-positive oral swabs samples failed
using our specific agar plates.

We assessed AMR in E. coli strains isolated from dogs housed in 14 shelters using a
panel of 14 antimicrobial agents. We found that the AMR profiles of E. coli isolates differed
for each sampled shelter when considering all the compounds tested but, overall, resistance
to ampicillin was detected most frequently (Figure 2). The highest number of strains
resistant to at least one class of antibiotics was found in shelter L where 66% of strains were
resistant to sulfamethoxazole. Moreover, resistance to one or more antibiotics was detected
in at least 50% of E. coli isolated in 6 shelters (A, D, F, H, L, and N). Resistance to the third-
generation cephalosporins was observed in strains isolated in four shelters only, including
shelter N, where we detected 50% of strains resistant to these antimicrobials. All tested
isolates were susceptible to gentamicin, tigecycline, chloramphenicol, and colistin. Shelter
A was the only one where E. coli isolates showed resistance to azithromycin. Interestingly,
isolates from three shelters, C, J, and M, were fully susceptible to all the tested antimicrobials
(Figure 2).
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Table 1. Zoonotic bacteria detected in Italian shelters. The main agents of zoonotic interest detected
in dogs are grouped by shelter site and swab type. Capital letters identify shelters and pathogens
detected on the nasopharyngeal, rectal, and oral swabs, are listed. The row at the bottom of the table
shows the total number of swabs performed and the total number of detected pathogens.
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A 20 0 0 2 17 1 2 0 20 14

B 18 0 0 0 10 1 3 0 19 14

C 17 0 0 1 14 0 1 0 18 14

D 16 0 0 0 16 0 4 0 15 14

E 20 5 1 1 20 2 6 0 20 20

F 20 1 0 0 11 0 4 1 20 20

G 18 0 0 0 16 0 6 0 20 20

H 20 0 0 0 9 0 5 0 20 18

I 18 0 0 2 15 3 ND 1 0 20 20

J 20 0 0 1 16 0 2 0 20 17

K 20 0 0 0 8 0 3 0 20 18

L 19 0 0 0 12 2 3 0 20 17

M 20 1 0 1 13 3 5 0 ND 1 ND 1

N 19 2 0 1 11 0 4 0 20 20

O 18 0 0 1 15 0 6 0 20 20

Total 283 9 1 9 203 12 54 2 272 246
1 ND = not determined A. Forlivese district shelter (Forli-Cesena); B. Tre Ponti municipal shelter of Fano (Pesaro-
Urbino); C. Municipal shelter of Ravenna (Ravenna); D. LIDA Ortona municipal shelter (Chieti); E. Varca group
shelter Cassano allo Ionio (Cosenza); F. Montesilvano Dog Village (Pescara); G. Shelter refuge ENPA Novara
(Novara); H. Shelter refuge Recchia (Frosinone); I. Ottaviano Dog Park (Napoli); J. Cynophilist center of Taburno
(Benevento); K. National dog league Ruvo di Puglia (Bari); L. Lucania dog s.r.l (Potenza).; M. Intermunicipal
shelter–cattery Park (Monza e Brianza); N. Municipal refuge of Molfetta (Bari); O. Raffo shelter refuge (Varese).

The overall occurrence of resistance to each antimicrobial was ampicillin 25.3%, sul-
famethoxazole 23.21% tetracycline 20.61%, trimethoprim 17.45%, ciprofloxacin 17.36%, nalidixic
acid 14.98%, cefotaxime and ceftazidime 7.98%, meropenem 4.71%, and azithromycin 3.57%
(Figure 3).

E. coli samples were tested for multidrug resistance (MDR), which was found in a total
of 14 strains and showed a complex multidrug resistance pattern (Table 2).

MDR isolates showed 13 different phenotypes and were detected in 10 shelters: one
strain in shelters A, B, D, F, K, L, and O; two strains in shelters G and N; and three strains
in shelter H. Interestingly, we found the same pattern of antibiotic resistance in shelter D,
G, and H. In shelter H, we found a total of three MDR strains of which one was resistant to
four antibiotics, one to five antibiotics, and the last strain was resistant to six compounds
(Table 2).

The shelters were divided into two groups based on the values of welfare score
recorded with the SQP. Each shelter was classified into a high- or low-level category if
its SQP score value was greater or lower than the median welfare scores value of 83.42
calculated, respectively. Thus, shelters H, L, J, K, N, O, and E were included in the low
category while shelters D, B, C, A, F, M, and G were in the high category. The differences
between the high- and low-level categories were statistically significant (p value < 0.001).
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Figure 2. Antibiotic resistance distribution of E. coli isolates in sheltered dogs. The histogram represents
the relative percentage of antibiotic resistance detected in 14 Italian shelters against 14 compounds that
were tested. The relative percentage of antibiotic resistance is shown on the ordinate axis and shelters
are listed in capital letters following the same nomenclature indicated in Table 1. In shelter I, no data
were collected.
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Figure 3. Distribution of antibiotic resistance of the total E. coli isolates in the 14 shelters. The histogram
represents the relative percentage of antibiotic resistance detected on the total number of E. coli isolates
against the 14 compounds that were tested. The relative percentage of antibiotic resistance is shown on
the ordinate axis and antibiotics on the abscissa axis.
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Table 2. List of MDR E. coli strains detected in the 14 shelters differentiated by shelter and group
of drugs. The E. coli strains that showed resistance to at least three antibiotic compounds were
considered MDR. Each MDR E. coli isolate is expressed as a percentage of the total number of strains.

Shelters MDR Total Percentage Number of MDR Strains

A TMP-AZY-SUL 1 1 1.85

B AMP-MEM-SUL-TET 1 1.85

D AMP-CIP-TMP-NAL-SUL-TET 1 1.85

F AMP-CTX-CAZ-CIP-NAL 1 1.85

G AMP-CIP-TMP-NAL-SUL-TET 2 3.7

H AMP-CIP-NAL-SUL 1 1.85

H AMP-CIP-TMP-NAL-SUL-TET 1 1.85

H AMP-CIP-NAL-SUL-TET 1 1.85

K AMP-TMP-SUL-TET 1 1.85

L AMP-CIP-TMP-SUL-TET 1 1.85

N AMP-CTX-CAZ-CIP-TMP-NAL-SUL-TET 1 1.85

N AMP-CTX-CAZ-CIP-NAL 1 1.85

O AMP-CTX-CAZ-CIP-NAL-TET 1 1.85

NO MDR 40 74.1
1 AMP. ampicillin; AZY. azithromycin; CAZ. ceftazidime; CHL. chloramphenicol; CIP. ciprofloxacin; CTX. cefo-
taxime; MEM. Meropenem; NAL. acid nalidixic; SUL. sulfamethoxazole; TET. tetracycline; TMP. Trimethoprim.

To evaluate the possible correlation between the two shelter categories (Low and High)
and the antibiotic resistance or sensitivity level recorded (Res. and Sen.), two statistical tests
were performed. First, the chi-square test was used to identify the possible differences be-
tween the two (Low and High) shelters welfare score groups and the resistance/sensitivity
to antibiotics found in the 14 shelters sampled (Figure 4). The shelters classified in the
category of a low-level welfare score showed an AMR frequency of 35%, while the shelters
belonging to the category of a high-level welfare score showed an AMR frequency of 26%.
On the other hand, the shelters with a high level welfare score showed a high number of
antibiotic-sensitive strains (frequency of 74%) while shelters belonging to the low level
welfare score category showed a lower level of antibiotic-sensitive strains (frequency of
65%) (Figure 4).

However, the observed differences between the dog welfare scores and the frequencies
of resistance/sensitivity of E. coli strains were not significant (p = 0.465). For the second
statistical test, we adopted a Bayesian approach and the Low and High welfare score
categories overlapped with the Beta distribution curve of the AMR values found in the
samples. Therefore, no statistically significant differences were identified between the
animal well-being score and the AMR frequencies recorded.
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Figure 4. Graphical representation of the correlation between the animal welfare score and the relative
percentage of AMR in E. coli isolates. The graph is divided into two parts based on the grouping of the
shelters in high and low welfare scores, each including two columns: one green and the other red. The
green columns represent the frequencies of antibiotic-sensitive strains while the red columns represent
the frequencies of antibiotic resistance. Error bars represent the levels of confidence of the percentage
values observed. These ranges were calculated with a Bayesian approach using the Beta distribution.

3. Discussion

In this study, we aimed to collect data on the occurrence of respiratory and enteric
zoonotic pathogens found in sheltered dogs across Italy. We additionally evaluated the
antimicrobial resistance of E. coli strains isolated from the dogs to understand whether the
AMR levels correlated with shelter management and the dogs’ welfare [40]. To reach our
final goal, we measured the welfare score of sheltered dogs according to the Shelter Quality
Protocol which allowed us to have an overall assessment of the management, environment,
and animal welfare. Using a scale from 1 to 100 points, the SQP score achieved in the
15 shelters sampled ranged from 77.4 to 90 points. Thus, SQP scores indicated the overall
good management of the tested shelters. Interestingly, the highest number of respiratory
pathogens was isolated in shelter E which was classified as having a low SQP score;
moreover, it was the only place where we isolated P. multocida. Additionally, L, H, and
N shelters, belonging to the low SQP score shelters group, showed the highest relative
percentages of AMR for sulfamethoxazole, ciprofloxacin, and cephalosporins. Overall, the
AMR levels observed for these antimicrobials in sheltered dogs were low when compared
with reported data in livestock in Italy [41]. It is well known that the use of broad-spectrum
antibiotics without proper veterinary assessment can lead to the development of AMR
through mechanisms and the selection for AMR strains [42]. In small animal clinical
practice, fluroquinolones and cephalosporins are the most used antibiotics [33] together
with other β-lactams [10] such as amoxicillin and ampicillin [43]. Indeed, in our samples,
ampicillin showed the highest AMR average value among all compounds tested. Moreover,
the relative percentage values of AMR against cephalosporins we detected in E. coli isolates
were higher than those found in livestock that ranging from 0.2% up to 1.1% [41–44]. In
addition, our data showed the presence of several MDR strains with combined resistance
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to fluoroquinolones and cephalosporins while this combination is usually rare to be found
in food production animals that ranged from 0% up to 0.5% [41].

The samples collected from the dogs housed in the monitored shelters allowed us to
detect the main respiratory and gastroenteric zoonotic pathogens. The data we obtained
showed a lower occurrence of main zoonotic pathogens including Campylobacter spp.,
Salmonella spp., and P multocida when compared to the bacteria occurrence found in the
literature for domestic dogs, thus indirectly suggesting the good management of the struc-
tures examined [45–47]. Among bacterial agents detected, we found frequent colonization
of the oral cavity by Capnocytophaga spp. and in particular C. canimorsus and C. cynodegmi
that are commensal microbes thriving in the oral cavities of dogs. C. canimorsus can cause
a fatal systemic infection in immunocompromised humans [48]. The isolation and iden-
tification of bacteria from the samples was difficult because of the long incubation times
required for the bacterium to grow [49]. The high percentage of positive oral swabs we
recorded was probably a consequence of the high PCR test sensitivity when compared
to the isolation procedure. Indeed, the molecular techniques are the gold standard for
bacterial identification of Capnocytophaga spp. [50].

Within all the bacteria isolated from our samples, we choose to assess AMR in E. coli as it is
considered a representative indicator of antimicrobial resistance and the most common Gram-
negative bacterium present in animal feces [36]. Moreover, E. coli readily acquires conjugative
plasmids carrying AMR genes that can then be transferred to other Enterobacteriaceae in
the gut microbiome of animals and humans; thus, it is potentially able to transfer the AMR
phenotype [36]. We detected a total of 54 E. coli strains showing resistance to 1 or more of
the 14 antimicrobials tested and we found that the most common resistances were against
ampicillin, confirming the data obtained in other studies for the latter compound [36,42]. In
our work, 14 E. coli strains showed the MDR phenotype which represented 26% of the total
strains isolated. This percentage was comparable to the MDR data found in dogs from the
USA where the detected MDR percentage in dogs reached 28.9% [51] while it was lower than
the MDR described in dogs in Japan (43%) [52] and the 66.8% detected in Poland [33]. Two
MDR strains were resistant to meropenem that belongs to the carbapenem class. Several
epidemiological studies have recently revealed the emergence of MDR bacterial pathogens
worldwide, thus posing a new public health threat [53,54].

Interestingly, we show a tendency that suggests an association between the shelter’s
welfare score and the presence of E. coli AMR strains. Furthermore, the highest number of
MDR strains was found in N and H shelters which were also the shelters classified in the
lower welfare score group. In order to correlate the AMR frequencies found in E. coli strains
with the SQP score, shelters were divided into two groups. Each shelter was classified
into a high- or low-level category when its welfare score value was, respectively, greater
or lower than the shelter’s welfare scores median value. Shelters with high SQP scores, in
general, showed the tendency to correlate with a lower percentage of AMR, and vice versa,
lower SQP displayed the tendency to correlate with higher AMR values. Although this
association did not prove to be statistically significant, we believe that the measurement
of antibiotic resistance frequencies can be an indirect way to evaluate animal welfare in
shelters, as it might be indicative of the selective pressure exerted by the antibiotic therapies
that the animals received.

The total number of samples collected over in 10 out of 20 Italian regions makes this
study representative of a large sheltered dog population. Moreover, to our knowledge this
is the first time a correlation between sheltered dogs’ well-being and AMR was studied.
We found an association between animal welfare score and AMR, but we did not prove
a statistical significance for the data shown, possibly due to two significant limitations
that affected our results. Firstly, the shelters were recruited on a voluntary basis which
constitutes a bias as likely, only shelters with good management participated in the study.
This hypothesis was confirmed by the high SPQ score registered by all shelters; as a
consequence, we were missing samples from shelters with a very low management score.
Secondly, given the low differences in the SPQ scores registered between the two categories



Antibiotics 2023, 12, 863 9 of 16

of shelters (high and low), the number of samples collected was not representative enough.
Despite these two limitations, and considering that these were the first available data on the
presence of AMR profiles in shelters where animal welfare has been assessed, for the first
time we identified a tendency that could link AMR percentage and sheltered dogs’ welfare
scores. Although, further studies are needed to confirm our data, the work presented here
could help to better understand the dynamics of antimicrobial resistance in animals that
closely share the domestic environment with humans.

4. Materials and Methods
4.1. Animal Welfare

The welfare assessment of dogs was performed by applying the Shelter Quality
Protocol (SQP) that was been published by De Massis et al. [55]. Briefly, the SQP was
developed following the criteria of reliability, validity, and feasibility [39,40] in order to
assess the overall welfare level of shelter dogs using a mobile device application “Shelter
version 1.2.4-SNAPSHOT” produced by Istituto Zooprofilattico Sperimentale Abruzzo e
Molise “G. Caporale” (IZSAM, Teramo, Italy) [38,56–70].

Since welfare is the outcome of multifactorial effects influencing animals’ life, several
variables were considered when applying the SQP. The protocol was conducted via direct
observation of the animals in response to environmental stimuli and identified important
aspects of the shelter management by identifying the presence of welfare hazards [39,56].
The criteria selected to evaluate animal welfare at the shelter level included management
procedures (management-based measures), the housing environment (resource-based
measures), and direct welfare outcomes (animal-based measures). The evaluation of animal
welfare according to the SQP was carried out using the data collected at three different
levels: measures taken at the shelter level; measures taken at the pen level, which were
selected randomly within the shelter; and measures taken at the animal level. These
three measures were based on criteria that include different principles. We used a Delphi
procedure based on the assumption that the final result of the analysis can be considered
reliable only when the group of expert examinators has established an agreement on each
criterion adopted in order to obtain a final “welfare score”. Furthermore, the operator
assigning a score to a specific categorical variable had to answer a set of different questions
that were associated with each different welfare criteria using a specific scale of values
(for example the body condition score measure can be assessed as “adequate, too thin or
too fat”). The animal welfare experts established the relative weights for each criterion
using a scale from 0 to 100. The answers to all the questions contained in the protocol were
then weighted to obtain the shelter score value expressed as a percentage of the “ideal
shelter index value” which was set to 100. A well-being score was assigned to each shelter
based on the values obtained in the randomly selected dogs housed in the facility. The
scoring system allows us to measure how much the overall level of animal welfare in a
given shelter differs from the “ideal animal shelter welfare”. For example, a shelter that
reaches an 80 points index differs 20 points from the “ideal shelter” score [55].

The scoring system is based on a binary evaluation system that derives from the
relationship between positive and negative indicators. The Delphi procedure was used to
measure each criterion and obtain the “welfare score” for each animal. The sum of all the
measures taken by assessing the animals was summarized to obtain the shelter total score
and the final score of all shelters was subsequently compared by the app with the ideal
shelter value that was arbitrarily fixed at 100 [39–55].

4.2. Animals and Samples

The participation of shelters in this study was on a voluntary basis. The study in-
cluded dogs housed in 15 shelters covering 10 Italian regions (Lombardy, Piedmont, Emilia
Romagna, Marche, Abruzzo, Lazio, Campania, Puglia, Basilicata, and Calabria). SQP was
applied to a maximum number of 20 boxes randomly selected in each shelter. Only animals
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with more than six months of age and housed for at least two months in a given shelter
were considered. Dogs sampling was performed as previously described [55].

The sample size was calculated on the basis of the work of Dell et al. (2002) for
dichotomous variables. In order to highlight a minimum (statistically significant) difference
of 80% between the proportions of each pair of groups compared, a confidence level of
95% and a test power of 80% were chosen which determined a minimum sample size
of 20 animals [57]. This sample size was chosen based on the prediction of having 1%
pathogen prevalence with a 95% confidence level. The study enrolled 294 dogs and each
dog was sampled with nasopharyngeal, rectal, and oral swabs. Rectal swabs were not
sampled in shelter I for an unforeseen logistic problem. Samples were transported to
the laboratory in refrigerated conditions (4 ◦C) in Amies agar medium (Liofilchem S.r.l.,
Teramo, Italy) and processed within 48 h after collection.

4.3. Bacterial Isolation and Identification

Bacteria were isolated by plating the swabs onto three different media: 5% blood
agar, Gassner agar (Liofilchem S.r.l., Teramo, Italy) and mannitol salt agar (Liofilchem S.r.l.,
Teramo, Italy). Plates were incubated at 37 ◦C in aerobic conditions for 72 h. The colonies
were screened by morphology and β-hemolysis ability on blood agar. Biochemical identifi-
cation was performed using an automated microbial detection system (Vitek 2 Compact,
BioMèrieux, Marcy-l’Étoile, France) according to the manufacturer’s recommendation.

Starting from an aliquot of each rectal swab, the isolation of Campylobacter spp. was
performed according to EN ISO 10272 1:2017 [58]. Briefly, Campylobacter spp. isolated
strains were subcultured on Columbia blood agar plates in microaerophilic conditions at
42 ◦C for 48 h. The DNA was extracted from the colonies by Maxwell®, an automated
DNA extraction system (Promega, Milano, Italy), and quantified using a spectrophotometer
(Nanodrop Products, ThermoScientific, Wilmington, DE, USA). Colonies were confirmed
as thermotolerant Campylobacter spp. using molecular identification PCR, as previously
described [59,60].

The isolation of Salmonella enterica was carried out with an internal procedure accred-
ited in accordance with international standard methods (ISO 6579-1:2017) [61]. Briefly,
rectal swabs were pre-enriched in buffered peptone water by incubating at 37 ◦C for 24 h.
The pre-enriched suspension was tested on Rappaport-Vassiliadis semi-solid modified
medium (IZSAM, Teramo, Italy) and Muller-Kauffmann tetrathionate novobiocin medium
(IZSAM, Teramo, Italy) and incubated at 37 ◦C for 24 h. After visual selection, colonies were
placed on two selective agar media: Rambach agar and Xylose-Lysine-Deoxycholate agar
(Microbiol Diagnostics, Cagliari, Italy). Finally, the colonies were collected and inoculated
on triple sugar iron agar and incubated at 37 ◦C for 24 h. Colonies were confirmed as
Salmonella enterica based on their ability to ferment glucose and produce H2S. Colonies
referable to Salmonella enterica were confirmed by an automated microbial detection system
(Vitek 2 Compact, bioMérieux, Marcy-l’Étoile, France) and subsequently identified by
agglutination with specific antisera (Statens Serum Institut, Copenhagen, Denmark).

Two agar media were homemade for the detection of Capnocytophaga spp. in culture
plates starting from the oral swabs. The first medium was VCAT [62] and consisted of
a Columbia 10% Cooked Horse Blood Agar supplemented with Vancomycin/Colistin-
sulphate/Amphotericin/Trimethoprim (VCAT supplement, Oxoid, Rodano, Italy) and
a multivitamin supplement complex (Vitox, Oxoid). The second medium was the mod-
ified Thayer–Martin and was produced according to Bargery’s protocol [63] and con-
sisted of a GC agar (GC agar medium, Oxoid) supplemented with Colistin methasul-
fonate/Nystatin/Vancomycin (VCN selective supplement, Oxoid) and a multivitamin
complex (Vitox, Oxoid, Rodano, Italy). Samples were seeded on both culture media and
incubated at 37 ◦C for 48 h in controlled atmosphere jars with 5% CO2 (AnaeroGen™,
Thermo Scientific, Monza, Italy). Any colonies with a morphology of short, rod shaped, or
long stranded Gram-negative cells were isolated and reinoculated on blood agar plated
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under the same conditions, as previously described. Colonies with a “gliding movement”
aspect on the agar surface were selected for being identified with a biomolecular method.

4.4. Detection of Capnocytophaga Canimorsus/Cynodegmi

From each oral swab, Capnocytophaga canimorsus and C. cynodegmi were detected by
PCR as described by Suzuki et al. [50]. C. canimorsus NCTC 11,921 and C. cynodegmi NCTC
12,243 strains were used as positive controls. DNA was extracted from swabs and control
strains using the Maxwell 16 Cells and Tissue DNA purification Kit (Promega, Milano,
Italy). Partial 16S rRNA gene fragment amplification products were identified through
QIAxcel equipment using the recommended standard protocol (Qiagen, Hilden, Germany).

4.5. Detection of E. coli O:157 in Rectal Swabs Samples

The detection of E. coli O:157 was carried out with an internal procedure according
to the WOAH Manual of Diagnostic Tests and Vaccines for Terrestrial animals [64]. The
fecal material collected by swabs was inoculated on two selective media: Tellurite cefixime
sorbitol Mac Conkey Agar (CT-SMAC, IZSAM, Teramo, Italy) and Mac Conkey Sorbitol
Agar (SMAC, IZSAM, Teramo, Italy). The same swabs were then inoculated in 10 mL
broth enriched with Novobiocin, Modified Tryptone Soya Broth (mTB, IZSAM, Teramo,
Italy). The selective agar media and the broth were incubated at a temperature of 37 ◦C for
18–24 h and the suspect colonies were detected on selective mediums and re-isolated on
Nutrient Agar (IZSAM, Teramo, Italy). After 18–24 h, each broth culture was subsequently
tested with immunomagnetic particles binding anti-O157 antibodies (Dynabeads anti E. coli
O157, Thermofisher Scientific Baltics, UAB, Vilnius, Lithuania) through a magnetic shaker
(Dynabeads MX Mixer, Invitrogen, Waltham, MA, USA). In brief, after the magnet was
activated, the supernatant was eliminated and the cells immunocaptured by the magnet
were resuspended in a pH-neutral physiological solution. Finally, the suspension was
seeded with the same procedure applied to the initial material. The typical colonies
detected were identified through the agglutination test using a specific antiserum against
E. coli O:157 (Wellcolex E. coli O:157, Remel Europe Ltd., Lenexa, KS, USA) and with
biochemical (Vitek) and/or biomolecular identification [64].

4.6. Characterization of E. coli Isolates

E. coli strains isolated from rectal swabs were biochemically identified using stan-
dard biochemical methods and subsequently tested by PCR to detect the eae gene which
encodes intimin (an adesin) and the typical of Verotoxigenic E. coli (VTEC) genes of
virulence (vtx1, vtxe, vtx2f2), using an E. coli O:157 strain positive for eae, vtx1, and
vtx2 and a strain of E. coli O28 strain positive for vtx2f -positive as positive controls
with both being supplied by EU-RL-ISS. Deoxyribonucleic acid (DNA) extraction from
the samples was carried out using the Maxwell instrument through the Maxwell 16
Cells and Tissue DNA Purification Kit (Promega, Milano, Italia) as well as the PCR
test which was performed using Master Mix (Qiagen, Milano, Italia) following the stan-
dard protocol. The sets of primers (Eurofins Genomics, Milano, Italia) used for each
E. coli gene were as follows eaeAFw 5′-GACCCGGCACAAGCATAAGC-3′, eaeARw
5′-CCACCTGCAGCAACAAGAGG-3′, stx1Fw 5′-ATAAATCGCCATTCGTTGACTAC-3′,
stx1Rw 5′-AGAACGCCCACTGAGATCATC-3′, stx2Fw 5′-GGCACTGTCTGAAACTGCTC
C-3′, stx2Rw 5′-TCGCCAGTTATCTGACATTCTG-3′, 128-1Fw 5′-AGATTGGGCGTCATTC
ACTGGTTG-3′, and 128-2Rw 5′-TACTTTAATGGCCGCCCTGTCTCC-3′. The samples
were amplified using the thermocycler ProFlex PCR System (Applied Biosystems, Monza,
Italia) with an initial denaturation at 95 ◦C for 5 min, followed by 35 cycles of amplification
with a denaturation phase at 95 ◦C for 1 min, an annealing at 65 ◦C for 1 min, and a final
extension at 72 ◦C for 1.5 min. The PCR test results were visualized using the QIAxcel
instrument and analyzed with the QIAxcel Screen gel Software (Qiagen, Milano, Italia).
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4.7. Antimicrobial Susceptibility

E. coli isolated strains were characterized phenotypically by broth microdilution using
Sensititre® EUVSEC® plates (Thermofisher Scientific, Paisley, UK). The antibiotics on the
EUVSEC® plate were ampicillin (1–64 µg/mL) (AMP), azithromycin (2–64 µg/mL) (AZY),
gentamicin (0.5–32 µg/mL), tigecycline (0.25–8 µg/mL) (TGC), ceftazidime (0.5–8 µg/mL)
(CAZ), cefotaxime (0.25–4 µg/mL) (CTX), colistin (1–16 µg/mL) (CST), nalidixic acid
(4–128 µg/mL) (NAL), tetracycline (2–64 µg/mL) (TET), trimethoprim (0.25–32 µg/mL)
(TMP), sulfamethoxazole (8–1024 µg/mL) (SUL), chloramphenicol (8–128 µg/mL) (CHL),
meropenem (0.03–16 µg/mL) (MEM), and ciprofloxacin (0.015–8 µg/mL) (CIP). The quality
control of the batch was performed with E. coli ATCC® n. 25922. The antimicrobial test
was carried out on colonies grown on non-selective agar medium (Tryptic Soy Agar, VWR,
Milan, Italy) incubated at 37 ◦C overnight, subsequently touched with a sterile swab,
and transferred into sterile vials with sensitive demineralized water using a sterile swab
(Thermofisher Scientific, Paisley, UK) until samples reached 0.5 McFarland turbidity. Then,
0.1 mL of each suspension was inoculated into cation-adjusted Mueller Hinton Broth
(Thermofisher Scientific, Paisley, UK) and 50 µL of this suspension was added into the
wells of the EUVSEC® plates. The plates were incubated aerobically at 37 ◦C for 18 h before
the reading. The definition of sensitivity or resistance was based on the Epidemiological
Cut Off value (ECOFF) for all antibiotics except azithromycin, for which CLSI M100
was used [65,66]. The strains were referred to as multi-drug resistant (MDR) when they
simultaneously showed resistance to at least three different classes of antimicrobial drugs.

4.8. Statistics Analysis

Each shelter was evaluated considering all 14 antibiotics tested. If antimicrobial
resistance to at least one of the 14 antibiotics was found, the shelter was included in the
antibiotic-resistant group. The 14 shelters were divided into two categories (low score and
high score) depending on whether the well-being SQP score value recorded was lower or
higher than their median value, respectively. To test the differences in the animal welfare
scores of the two shelter groups, a Mann–Whitney test was applied.

A chi-square test was then applied to check for differences between the well-being
category (low–high) and the presence or absence of antibiotic resistance in the samples
tested [67]. The statistical analysis was carried out using the XlStat Premium 2022.2.1
Addinsoft software (XLStat, Paris, France) [68]. Moreover, using a Bayesian approach a
95% confidence interval (95% CI) of the antibiotic resistance percentage in the two shelter
groups (high and low welfare) was calculated by applying a Beta distribution and the
categories were compared [69].

5. Conclusions

The data collected in our study highlights how sheltered dogs can be a potential reservoir
of zoonotic pathogens and of AMR in E. coli strains. These data suggest that there is a health
risk factor that needs to be taken into consideration when designing protocols of public health
measures on AMR because humans share the same environment with dogs. Although not
statistically significant, we show a tendency that suggests an association between animal
welfare and the presence of AMR in bacterial strains, thus good management of shelters
can increase animal welfare, reduce the use of antibiotics, prevent AMR, and reduce human
exposure in a “one health” perspective. Moreover, our data suggest that SQP is a useful tool to
measure animal welfare in sheltered dogs and the protocol could be adopted by the Veterinary
Services as an official assessment tool in shelters.

Future research on the animal–human interface will help formulate and implement
preventive measures against the increase in antimicrobial resistance and, in this context, dogs
could be instrumental in helping to monitor the health conditions in the domestic environment.
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