Chemical Composition of the Cinnamomum malabatrum Leaf Essential Oil and Analysis of Its Antioxidant, Enzyme Inhibitory and Antibacterial Activities
Abstract
:1. Introduction
2. Results
2.1. C. malabatrum Essential Oil Yield and Chemical Contents
2.2. Antioxidant Effects of C. malabatrum Essential Oil
2.3. Enzyme-Inhibitory Activities of C. malabatrum Leaf Essential Oil
2.4. Antibacterial Effects of C. malabatrum Essential Oil
3. Discussion
4. Materials and Methods
4.1. Collection of C. malabatrum Leaves and Extraction of Essential Oil
4.2. Chemical Component Analysis by GC-MS Analysis
4.3. Antioxidant Activities of C. malabatrum Leaf Essential Oil
4.4. Enzyme-Inhibitory Properties of C. malabatrum Leaf Essential Oil
4.5. Antibacterial Activity Analysis
4.5.1. Bacterial Strains Used
4.5.2. Disc Diffusion Method
4.5.3. Minimum Inhibitory Concentration (MIC)
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, K.M.; Asish, G.R.; Sabu, M.; Balachandran, I. Significance of gingers (Zingiberaceae) in Indian System of Medicine—Ayurveda: An overview. Anc. Sci. Life 2013, 32, 253–261. [Google Scholar] [CrossRef]
- Amiri, M.S.; Joharchi, M.R. Ethnobotanical investigation of traditional medicinal plants commercialized in the markets of Mashhad, Iran. Avicenna J. Phytomed. 2013, 3, 254–271. [Google Scholar]
- Chen, S.L.; Yu, H.; Luo, H.M.; Wu, Q.; Li, C.F.; Steinmetz, A. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin. Med. 2016, 11, 016–0108. [Google Scholar] [CrossRef]
- Saldanha, L.G.; Dwyer, J.T.; Betz, J.M. Culinary Spice Plants in Dietary Supplement Products and Tested in Clinical Trials. Adv. Nutr. 2016, 7, 343–348. [Google Scholar] [CrossRef]
- Dini, I.; Laneri, S. Spices, Condiments, Extra Virgin Olive Oil and Aromas as Not Only Flavorings, but Precious Allies for Our Wellbeing. Antioxidants 2021, 10, 868. [Google Scholar] [CrossRef]
- Patwardhan, B.; Warude, D.; Pushpangadan, P.; Bhatt, N. Ayurveda and traditional Chinese medicine: A comparative overview. Evid. Based Complement. Altern. Med. Ecam 2005, 2, 465–473. [Google Scholar] [CrossRef]
- Wu, L.; Chen, W.; Wang, Z. Traditional Indian medicine in China: The status quo of recognition, development and research. J. Ethnopharmacol. 2021, 279, 114317. [Google Scholar] [CrossRef]
- Khalil, M.; Hayek, S.; Khalil, N.; Serale, N.; Vergani, L.; Calasso, M.; De Angelis, M.; Portincasa, P. Role of Sumac (Rhus coriaria L.) in the management of metabolic syndrome and related disorders: Focus on NAFLD-atherosclerosis interplay. J. Funct. Foods 2021, 87, 104811. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Sailo, B.L.; Banik, K.; Harsha, C.; Prasad, S.; Gupta, S.C.; Bharti, A.C.; Aggarwal, B.B. Chronic diseases, inflammation, and spices: How are they linked? J. Transl. Med. 2018, 16, 14. [Google Scholar] [CrossRef]
- de Oliveira, D.P.; Braga, F.C.; Teixeira, M.M. Medicinal plants and their potential use in the treatment of rheumatic diseases. In Inflammation and Natural Products; Gopi, S., Amalraj, A., Kunnumakkara, A., Thomas, S., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 205–234. [Google Scholar] [CrossRef]
- Kuete, V. Chapter 13—Other Health Benefits of African Medicinal Spices and Vegetables. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 329–349. [Google Scholar] [CrossRef]
- Wang, J.; Su, B.; Jiang, H.; Cui, N.; Yu, Z.; Yang, Y.; Sun, Y. Traditional uses, phytochemistry and pharmacological activities of the genus Cinnamomum (Lauraceae): A review. Fitoterapia 2020, 146, 17. [Google Scholar] [CrossRef]
- Cardoso-Ugarte, G.A.; López-Malo, A.; Sosa-Morales, M.E. Chapter 38—Cinnamon (Cinnamomum zeylanicum) Essential Oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 339–347. [Google Scholar] [CrossRef]
- de Lima, L.B.; Viturino da Silva, W.A.; Silva, S.L.; Felipe Dos Santos, E.C.; Barbosa Machado, J.C.; Procopio, T.F.; de Moura, M.C.; Napoleao, T.H.; Assuncao Ferreira, M.R.; Soares, L.A.L. Chemical and antibacterial analysis of Cinnamomum verum leaves extract and fractions against multidrug resistant bacteria. Nat. Prod. Res. 2022, 36, 2559–2564. [Google Scholar] [CrossRef] [PubMed]
- Assaran, A.H.; Beheshti, F.; Marefati, N.; Rashidi, R.; Hosseini, M.; Bibak, B.; Shakeri, F. Effect of hydro-alcoholic extract of Cinnamomum zeylanicum on nitric oxide metabolites in brain tissues following seizures induced by pentylenetetrazole in mice. Avicenna J. Phytomed. 2022, 12, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Sandamali, J.A.N.; Hewawasam, R.P.; Jayatilaka, K.; Mudduwa, L.K.B. Cinnamomum zeylanicum Blume (Ceylon cinnamon) bark extract attenuates doxorubicin induced cardiotoxicity in Wistar rats. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2021, 29, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Atsamo, A.D.; Lontsie Songmene, A.; Metchi Donfack, M.F.; Ngouateu, O.B.; Nguelefack, T.B.; Dimo, T. Aqueous Extract from Cinnamomum zeylanicum (Lauraceae) Stem Bark Ameliorates Gentamicin-Induced Nephrotoxicity in Rats by Modulating Oxidative Stress and Inflammatory Markers. Evid.-Based Complement. Altern. Med. Ecam 2021, 2021, 5543889. [Google Scholar] [CrossRef] [PubMed]
- Sayad-Fathi, S.; Zaminy, A.; Babaei, P.; Yousefbeyk, F.; Azizi, N.; Nasiri, E. The methanolic extract of Cinnamomum zeylanicum bark improves formaldehyde-induced neurotoxicity through reduction of phospho-tau (Thr231), inflammation, and apoptosis. EXCLI J. 2020, 19, 671–686. [Google Scholar] [PubMed]
- Aryanezhad, M.; Abdi, M.; Amini, S.; Hassanzadeh, K.; Valadbeigi, E.; Rahimi, K.; Izadpanah, E.; Moloudi, M.R. Cinnamomum zeylanicum extract has antidepressant-like effects by increasing brain-derived neurotrophic factor (BDNF) and its receptor in prefrontal cortex of rats. Avicenna J. Phytomed. 2021, 11, 302–313. [Google Scholar]
- Aggarwal, S.; Bhadana, K.; Singh, B.; Rawat, M.; Mohammad, T.; Al-Keridis, L.A.; Alshammari, N.; Hassan, M.I.; Das, S.N. Cinnamomum zeylanicum Extract and its Bioactive Component Cinnamaldehyde Show Anti-Tumor Effects via Inhibition of Multiple Cellular Pathways. Front. Pharmacol. 2022, 13, 918479. [Google Scholar] [CrossRef]
- Alanazi, A.D.; Almohammed, H.I. Therapeutic Potential and Safety of the Cinnamomum zeylanicum Methanolic Extract against Chronic Toxoplasma gondii Infection in Mice. Front. Cell. Infect. Microbiol. 2022, 12, 900046. [Google Scholar] [CrossRef]
- Lee, J.H.; Kwak, H.J.; Shin, D.; Seo, H.J.; Park, S.J.; Hong, B.H.; Shin, M.S.; Kim, S.H.; Kang, K.S. Mitigation of Gastric Damage Using Cinnamomum cassia Extract: Network Pharmacological Analysis of Active Compounds and Protection Effects in Rats. Plants 2022, 11, 716. [Google Scholar] [CrossRef]
- Susilowati, R.; Setiawan, A.M.; Zahroh, A.F.; Ashari, Z.N.; Iffiyana, A.; Hertanto, R.; Basyarudin, M.; Hartiningsih, I.; Ismail, M. Hepatoprotection of Cinnamomum burmannii ethanolic extract against high-fat and cholesterol diet in Sprague-Dawley rats (Rattus norvegicus). Vet. World 2022, 15, 930–936. [Google Scholar] [CrossRef]
- Panjaitan, C.C.; Widyarman, A.S.; Amtha, R.; Astoeti, T.E. Antimicrobial and Antibiofilm Activity of Cinnamon (Cinnamomum burmanii) Extract on Periodontal Pathogens-An in vitro study. Eur. J. Dent. 2022, 16, 938–946. [Google Scholar] [CrossRef]
- Yu, H.; Ren, X.; Yang, F.; Xie, Y.; Guo, Y.; Cheng, Y.; Yao, W. Antimicrobial and anti-dust mite efficacy of Cinnamomum camphora chvar. Borneol essential oil using pilot-plant neutral cellulase-assisted steam distillation. Lett. Appl. Microbiol. 2022, 74, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Mujawah, A.A.H.; Abdallah, E.M.; Alshoumar, S.A.; Alfarraj, M.I.; Alajel, S.M.I.; Alharbi, A.L.; Alsalman, S.A.; Alhumaydhi, F.A. GC-MS and in vitro antibacterial potential of Cinnamomum camphora essential oil against some clinical antibiotic-resistant bacterial isolates. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5372–5379. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Qin, J.; Wang, P.; Li, Q.; Yu, S.; Zhang, Y.; Wang, Y. Chemical composition and larvicidal activities of essential oil of Cinnamomum camphora (L.) leaf against Anopheles stephensi. Rev. Soc. Bras. Med. Trop. 2020, 53, e20190211. [Google Scholar] [CrossRef]
- Xiao, S.; Yu, H.; Xie, Y.; Guo, Y.; Fan, J.; Yao, W. The anti-inflammatory potential of Cinnamomum camphora (L.) J.Presl essential oil in vitro and in vivo. J. Ethnopharmacol. 2021, 267, 113516. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tang, C.; Zhou, Y.; Zhang, R.; Ye, S.; Zhao, Z.; Lin, L.; Yang, D. Anti-Inflammatory Property of the Essential Oil from Cinnamomum camphora (Linn.) Presl Leaves and the Evaluation of Its Underlying Mechanism by Using Metabolomics Analysis. Molecules 2020, 25, 4796. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Yu, H.; Xie, Y.; Guo, Y.; Fan, J.; Yao, W. Evaluation of the analgesic potential and safety of Cinnamomum camphora chvar. Borneol essential oil. Bioengineered 2021, 12, 9860–9871. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Lv, X.; Liu, Y.; Cui, D.; Wu, Y. Metabonomics Study in Mice with Learning and Memory Impairment on the Intervention of Essential Oil Extracted from Cinnamomum camphora chvar. Borneol. Front. Pharmacol. 2022, 13, 770411. [Google Scholar] [CrossRef]
- Kallel, I.; Hadrich, B.; Gargouri, B.; Chaabane, A.; Lassoued, S.; Gdoura, R.; Bayoudh, A.; Ben Messaoud, E. Optimization of Cinnamon (Cinnamomum zeylanicum Blume) Essential Oil Extraction: Evaluation of Antioxidant and Antiproliferative Effects. Evid. Based Complement. Altern. Med. Ecam 2019, 2019, 6498347. [Google Scholar] [CrossRef]
- Alizadeh Behbahani, B.; Falah, F.; Lavi Arab, F.; Vasiee, M.; Tabatabaee Yazdi, F. Chemical Composition and Antioxidant, Antimicrobial, and Antiproliferative Activities of Cinnamomum zeylanicum Bark Essential Oil. Evid. Based Complement. Altern. Med. Ecam 2020, 2020, 5190603. [Google Scholar] [CrossRef]
- Bellassoued, K.; Ghrab, F.; Hamed, H.; Kallel, R.; van Pelt, J.; Lahyani, A.; Ayadi, F.M.; El Feki, A. Protective effect of essential oil of Cinnamomum verum bark on hepatic and renal toxicity induced by carbon tetrachloride in rats. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2019, 44, 606–618. [Google Scholar] [CrossRef]
- Sriramavaratharajan, V.; Murugan, R. Evaluation of chemical composition, antioxidant and anti-hyperglycemic activities of the essential oil based nanoemulsions of Cinnamomum litseifolium. Nat. Prod. Res. 2019, 33, 2430–2433. [Google Scholar] [CrossRef]
- Azab, S.S.; Abdel Jaleel, G.A.; Eldahshan, O.A. Anti-inflammatory and gastroprotective potential of leaf essential oil of Cinnamomum glanduliferum in ethanol-induced rat experimental gastritis. Pharm. Biol. 2017, 55, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.H.; Sheen, L.Y.; Chang, S.T. Hypolipidemic effects of S-(+)-linalool and essential oil from Cinnamomum osmophloeum ct. linalool leaves in mice. J. Tradit. Complement. Med. 2018, 8, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Xu, W.X.; Lin, L.Y.; Yang, J.J.; Liu, C.T. Chemical composition and hypoglycemic and pancreas-protective effect of leaf essential oil from indigenous cinnamon (Cinnamomum osmophloeum Kanehira). J. Agric. Food Chem. 2013, 61, 4905–4913. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Hsu, J.S.; Li, C.C.; Chen, K.M.; Liu, C.T. Protective effect of leaf essential oil from Cinnamomum osmophloeum Kanehira on endotoxin-induced intestinal injury in mice associated with suppressed local expression of molecules in the signaling pathways of TLR4 and NLRP3. PloS ONE 2015, 10, e0120700. [Google Scholar] [CrossRef] [PubMed]
- Leela, N.K.; Vipin, T.M.; Shafeekh, K.M.; Priyanka, V.; Rema, J. Chemical composition of essential oils from aerial parts of Cinnamomum malabatrum (Burman f.) Bercht & Presl. Flavour Fragr. J. 2009, 24, 13–16. [Google Scholar] [CrossRef]
- Sriramavaratharajan, V.; Murugan, R. Chemical Profiling of the Leaf Essential Oils of Cinnamomum Species Used as a Spice in Southern India. J. Biol. Act. Prod. Nat. 2020, 10, 317–324. [Google Scholar] [CrossRef]
- Kaur, N.; Kumar, V.; Nayak, S.K.; Wadhwa, P.; Kaur, P.; Sahu, S.K. Alpha-amylase as molecular target for treatment of diabetes mellitus: A comprehensive review. Chem. Biol. Drug Des. 2021, 98, 539–560. [Google Scholar] [CrossRef]
- Alqahtani, A.S.; Hidayathulla, S.; Rehman, M.T.; ElGamal, A.A.; Al-Massarani, S.; Razmovski-Naumovski, V.; Alqahtani, M.S.; El Dib, R.A.; AlAjmi, M.F. Alpha-Amylase and Alpha-Glucosidase Enzyme Inhibition and Antioxidant Potential of 3-Oxolupenal and Katononic Acid Isolated from Nuxia oppositifolia. Biomolecules 2019, 10, 13–16. [Google Scholar]
- Santoso, M.; Ong, L.L.; Aijijiyah, N.P.; Wati, F.A.; Azminah, A.; Annuur, R.M.; Fadlan, A.; Judeh, Z.M.A. Synthesis, α-glucosidase inhibition, α-amylase inhibition, and molecular docking studies of 3,3-di(indolyl)indolin-2-ones. Heliyon 2022, 8, e09045. [Google Scholar] [CrossRef] [PubMed]
- Dirir, A.M.; Daou, M.; Yousef, A.F.; Yousef, L.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev. 2022, 21, 1049–1079. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Yamagishi, S.; Mizukami, H.; Yabe-Nishimura, C.; Lim, S.W.; Kwon, H.M.; Yagihashi, S. Polyol pathway and diabetic nephropathy revisited: Early tubular cell changes and glomerulopathy in diabetic mice overexpressing human aldose reductase. J. Diabetes Investig. 2011, 2, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic Cardiomyopathy. Circ. Res. 2018, 122, 624–638. [Google Scholar] [CrossRef] [PubMed]
- Mara, L.; Oates, P.J. The Polyol Pathway and Diabetic Retinopathy. In Diabetic Retinopathy; Duh, E.J., Ed.; Humana Press: Totowa, NJ, USA, 2008; pp. 159–186. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017, 8416763, 27. [Google Scholar] [CrossRef] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Seol, G.H.; Kang, P.; Lee, H.S. Antioxidant activity of linalool in patients with carpal tunnel syndrome. BMC Neurol. 2016, 16, 016–0541. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Subash-Babu, P.; Alshatwi, A.A.; Ignacimuthu, S. Beneficial Antioxidative and Antiperoxidative Effect of Cinnamaldehyde Protect Streptozotocin-Induced Pancreatic β-Cells Damage in Wistar Rats. Biomol. Ther. 2014, 22, 47–54. [Google Scholar] [CrossRef]
- Suryanti, V.; Wibowo, F.R.; Khotijah, S.; Andalucki, N. Antioxidant Activities of Cinnamaldehyde Derivatives. IOP Conf. Ser. Mater. Sci. Eng. 2018, 333, 012077. [Google Scholar] [CrossRef]
- Cade, W.T. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys. Ther. 2008, 88, 1322–1335. [Google Scholar] [CrossRef] [PubMed]
- Chawla, A.; Chawla, R.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab. 2016, 20, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Shahin, D.H.H.; Sultana, R.; Farooq, J.; Taj, T.; Khaiser, U.F.; Alanazi, N.S.A.; Alshammari, M.K.; Alshammari, M.N.; Alsubaie, F.H.; Asdaq, S.M.B.; et al. Insights into the Uses of Traditional Plants for Diabetes Nephropathy: A Review. Curr. Issues Mol. Biol. 2022, 44, 2887–2902. [Google Scholar] [CrossRef]
- Lorenzi, M. The polyol pathway as a mechanism for diabetic retinopathy: Attractive, elusive, and resilient. Exp. Diabetes Res. 2007, 61038, 61038. [Google Scholar] [CrossRef]
- Braz, V.S.; Melchior, K.; Moreira, C.G. Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. Front. Cell. Infect. Microbiol. 2020, 10, 548492. [Google Scholar] [CrossRef]
- Gellatly, S.L.; Hancock, R.E.W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 2013, 67, 159–173. [Google Scholar] [CrossRef]
- Ibrahim, J.; Eisen, J.A.; Jospin, G.; Coil, D.A.; Khazen, G.; Tokajian, S. Genome Analysis of Streptococcus pyogenes Associated with Pharyngitis and Skin Infections. PloS ONE 2016, 11, e0168177. [Google Scholar] [CrossRef]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- Messelhäußer, U.; Ehling-Schulz, M. Bacillus cereus—A Multifaceted Opportunistic Pathogen. Curr. Clin. Microbiol. Rep. 2018, 5, 120–125. [Google Scholar] [CrossRef]
- Bottone, E.J. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 2010, 23, 382–398. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed]
- Berthold-Pluta, A.; Stasiak-Różańska, L.; Pluta, A.; Garbowska, M. Antibacterial activities of plant-derived compounds and essential oils against Cronobacter strains. Eur. Food Res. Technol. 2019, 245, 1137–1147. [Google Scholar] [CrossRef]
- Sawicki, R.; Golus, J.; Przekora, A.; Ludwiczuk, A.; Sieniawska, E.; Ginalska, G. Antimycobacterial Activity of Cinnamaldehyde in a Mycobacterium tuberculosis (H37Ra) Model. Molecules 2018, 23, 2381. [Google Scholar] [CrossRef]
- Visakh, N.U.; Pathrose, B.; Narayanankutty, A.; Alfarhan, A.; Ramesh, V. Utilization of Pomelo (Citrus maxima) Peel Waste into Bioactive Essential Oils: Chemical Composition and Insecticidal Properties. Insects 2022, 13, 480. [Google Scholar] [CrossRef]
- Kamal, F.Z.; Stanciu, G.D.; Lefter, R.; Cotea, V.V.; Niculaua, M.; Ababei, D.C.; Ciobica, A.; Ech-Chahad, A. Chemical Composition and Antioxidant Activity of Ammi visnaga L. Essential Oil. Antioxidants 2022, 11, 347. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Zhao, C.; Zhang, Z.; Nie, D.; Tang, W. The Chemical Composition and Antibacterial and Antioxidant Activities of Five Citrus Essential Oils. Molecules 2022, 27, 7044. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- He, T.; Li, X.; Wang, X.; Xu, X.; Yan, X.; Li, X.; Sun, S.; Dong, Y.; Ren, X.; Liu, X.; et al. Chemical composition and anti-oxidant potential on essential oils of Thymus quinquecostatus Celak. from Loess Plateau in China, regulating Nrf2/Keap1 signaling pathway in zebrafish. Sci. Rep. 2020, 10, 11280. [Google Scholar] [CrossRef]
- Okoh, S.O.; Asekun, O.T.; Familoni, O.B.; Afolayan, A.J. Antioxidant and Free Radical Scavenging Capacity of Seed and Shell Essential Oils Extracted from Abrus precatorius (L). Antioxidants 2014, 3, 278–287. [Google Scholar] [CrossRef]
- Quan, N.V.; Xuan, T.D.; Tran, H.-D.; Thuy, N.T.D.; Trang, L.T.; Huong, C.T.; Andriana, Y.; Tuyen, P.T. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Canarium tramdenum Bark. Molecules 2019, 24, 605. [Google Scholar] [CrossRef] [PubMed]
- Assefa, S.T.; Yang, E.-Y.; Chae, S.-Y.; Song, M.; Lee, J.; Cho, M.-C.; Jang, S. Alpha Glucosidase Inhibitory Activities of Plants with Focus on Common Vegetables. Plants 2020, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Y.; Zaib, S.; Jannat, S.; Khan, I.; Rahman, M.M.; Park, S.K.; Chang, M.S. Inhibition of Aldose Reductase by Ginsenoside Derivatives via a Specific Structure Activity Relationship with Kinetics Mechanism and Molecular Docking Study. Molecules 2022, 27, 2134. [Google Scholar] [CrossRef] [PubMed]
- Kazeem, M.I.; Adeyemi, A.A.; Adenowo, A.F.; Akinsanya, M.A. Carica papaya Linn. fruit extract inhibited the activities of aldose reductase and sorbitol dehydrogenase: Possible mechanism for amelioration of diabetic complications. Future J. Pharm. Sci. 2020, 6, 96. [Google Scholar] [CrossRef]
- Bonnet, M.; Lagier, J.C.; Raoult, D.; Khelaifia, S. Bacterial culture through selective and non-selective conditions: The evolution of culture media in clinical microbiology. New Microbes New Infect 2019, 34, 100622. [Google Scholar] [CrossRef] [PubMed]
- Walia, S.; Mukhia, S.; Bhatt, V.; Kumar, R.; Kumar, R. Variability in chemical composition and antimicrobial activity of Tagetes minuta L. essential oil collected from different locations of Himalaya. Ind. Crops Prod. 2020, 150, 112449. [Google Scholar] [CrossRef]
- Campana, R.; Tiboni, M.; Maggi, F.; Cappellacci, L.; Cianfaglione, K.; Morshedloo, M.R.; Frangipani, E.; Casettari, L. Comparative Analysis of the Antimicrobial Activity of Essential Oils and Their Formulated Microemulsions against Foodborne Pathogens and Spoilage Bacteria. Antibiotics 2022, 11, 447. [Google Scholar] [CrossRef]
Retention Time | Component | Percentage Composition |
---|---|---|
13.02 | Linalool | 38.26 ± 0.41 |
11.24 | Cinnamaldehyde | 12.01 ± 0.54 |
14.34 | Caryophyllene | 11.43 ± 0.52 |
21.59 | Benzyl Benzoate | 9.60 ± 0.05 |
16.43 | Eugenol | 8.75 ± 0.23 |
15.06 | Humulene | 5.32 ± 0.12 |
CMEO | Linalool | Ascorbic Acid | |
---|---|---|---|
DPPH radical scavenging | 21.50 ± 0.17 | 35.22 ± 0.11 | 8.13 ± 0.09 |
ABTS radical scavenging | 36.91 ± 0.41 | 40.01 ± 1.33 | 12.82 ± 0.40 |
H2O2 radical scavenging | 42.77 ± 0.34 | 38.09 ± 2.45 | 19.11 ± 0.26 |
Ferric-reducing potential | 12.38 ± 0.11 | 35.93 ± 0.24 | 15.38 ± 0.66 |
Lipid peroxidation inhibition | 85.83 ± 0.47 | 78.49 ± 3.07 | 63.02 ± 0.33 |
Enzyme Inhibition | CMEO | Linalool | Ascorbic Acid |
---|---|---|---|
α-Amylase | 74.19 ± 1.55 | 62.34 ± 2.91 | 45.17 ± 2.36 |
α-Glucosidase | 47.07 ± 3.14 | 30.93 ± 3.41 | 36.03 ± 1.98 |
Aldose reductase | 82.90 ± 0.67 | 59.04 ± 2.26 | 28.70 ± 2.14 |
Sorbitol dehydrogenase | 98.61 ± 3.18 | 88.37 ± 3.75 | 60.09 ± 1.32 |
Bacteria | Zone of Inhibition (mm) | ||
---|---|---|---|
CMEO | Linalool | GM | |
Staphylococcus aureus | 16.2 ± 0.3 | 18.1 ± 0.2 | 18.5 ± 0.5 |
Bacillus cereus | 14.8 ± 0.4 | 17.6 ± 0.3 | 21.3 ± 0.5 |
Streptococcus pyogenes | 16.7 ± 0.3 | 17.9 ± 0.1 | 19.2 ± 0.7 |
Escherichia coli | 18.1 ± 0.2 | 17.8 ± 0.1 | 21.3 ± 0.3 |
Pseudomonas aeruginosa | 20.8 ± 0.5 | 19.3 ± 0.2 | 21.6 ± 0.4 |
Salmonella enterica | 17.4 ± 0.2 | 16.8 ± 0.3 | 19.9 ± 0.3 |
Bacteria | MIC Value | ||
---|---|---|---|
CMEO | Linalool | GM | |
Staphylococcus aureus | 1.25 ± 0.05 | 0.325 ± 0.00 | 0.325 ± 0.00 |
Bacillus cereus | 0.75 ± 0.05 | 0.625 ± 0.10 | 0.325 ± 0.00 |
Streptococcus pyogenes | 0.625 ± 0.10 | 0.325 ± 0.00 | 0.167 ± 0.00 |
Escherichia coli | 1.00 ± 0.10 | 0.625 ± 0.05 | 0.325 ± 0.00 |
Pseudomonas aeruginosa | 0.625 ± 0.15 | 0.325 ± 0.10 | 0.167 ± 0.00 |
Salmonella enterica | 0.625 ± 0.05 | 0.325 ± 0.00 | 0.167 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuttithodi, A.M.; Narayanankutty, A.; Visakh, N.U.; Job, J.T.; Pathrose, B.; Olatunji, O.J.; Alfarhan, A.; Ramesh, V. Chemical Composition of the Cinnamomum malabatrum Leaf Essential Oil and Analysis of Its Antioxidant, Enzyme Inhibitory and Antibacterial Activities. Antibiotics 2023, 12, 940. https://doi.org/10.3390/antibiotics12050940
Kuttithodi AM, Narayanankutty A, Visakh NU, Job JT, Pathrose B, Olatunji OJ, Alfarhan A, Ramesh V. Chemical Composition of the Cinnamomum malabatrum Leaf Essential Oil and Analysis of Its Antioxidant, Enzyme Inhibitory and Antibacterial Activities. Antibiotics. 2023; 12(5):940. https://doi.org/10.3390/antibiotics12050940
Chicago/Turabian StyleKuttithodi, Aswathi Moothakoottil, Arunaksharan Narayanankutty, Naduvilthara U. Visakh, Joice Tom Job, Berin Pathrose, Opeyemi Joshua Olatunji, Ahmed Alfarhan, and Varsha Ramesh. 2023. "Chemical Composition of the Cinnamomum malabatrum Leaf Essential Oil and Analysis of Its Antioxidant, Enzyme Inhibitory and Antibacterial Activities" Antibiotics 12, no. 5: 940. https://doi.org/10.3390/antibiotics12050940
APA StyleKuttithodi, A. M., Narayanankutty, A., Visakh, N. U., Job, J. T., Pathrose, B., Olatunji, O. J., Alfarhan, A., & Ramesh, V. (2023). Chemical Composition of the Cinnamomum malabatrum Leaf Essential Oil and Analysis of Its Antioxidant, Enzyme Inhibitory and Antibacterial Activities. Antibiotics, 12(5), 940. https://doi.org/10.3390/antibiotics12050940