Phenotypic and Genotypic Antimicrobial Susceptibility Testing of Chlamydia trachomatis Isolates from Patients with Persistent or Clinical Treatment Failure in Spain
Abstract
:1. Introduction
2. Results
2.1. Isolate Retrieval
2.1.1. MIC Determination
2.1.2. SNP Genotyping
2.1.3. tet(C) Gene Detection
2.2. Genetic Characterization
3. Methods
3.1. Patient Recruitment
3.2. Culture Methods
3.2.1. Stock Inoculum Culture
3.2.2. Susceptibility Assays
3.3. Genotypic Methods
3.3.1. DNA Extraction
3.3.2. Analysis of Macrolide and Quinolone Resistance-Associated Mutations by PCR-Based Genotyping of Single Nucleotide Polymorphisms
3.3.3. Analysis of Macrolide Resistance-Associated Mutations by Sequencing
3.3.4. Analysis of Tetracycline Resistance by Detecting the Presence of the tet(C) Gene
3.3.5. Genetic Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beagley, K.W.; Timms, P. Chlamydia trachomatis infection: Incidence, health costs and prospects for vaccine development. J. Reprod. Immunol. 2000, 48, 47–68. [Google Scholar] [CrossRef]
- Owusu-Edusei, K.; Chesson, H.W.; Gift, T.L.; Tao, G.; Mahajan, R.; Ocfemia, M.C.B.; Kent, C.K. The Estimated Direct Medical Cost of Selected Sexually Transmitted Infections in the United States, 2008. Sex. Transm. Dis. 2013, 40, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Van De Laar, M.J.W.; Morré, S.A. Chlamydia: A major challenge for public health. Eurosurveillance 2007, 12, 735. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.F.; Munoz, G.; Sanchez, R.; Henkel, R.; Gallegos-Avila, G.; Diaz-Gutierrez, O.; Vigil, P.; Vasquez, F.; Kortebani, G.; Mazzolli, A.; et al. Update on the impact of Chlamydia trachomatis infection on male fertility. Andrologia 2004, 36, 1–23. [Google Scholar] [CrossRef]
- Chandra, N.L.; Soldan, K.; Dangerfield, C.; Sile, B.; Duffell, S.; Talebi, A.; Choi, Y.H.; Hughes, G.; Woodhall, S.C. Filling in the gaps: Estimating numbers of chlamydia tests and diagnoses by age group and sex before and during the implementation of the English National Screening Programme, 2000 to 2012. Eurosurveillance 2017, 22, 30453. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, S.; Frati, E.; Canuti, M.; Colzani, D.; Fasoli, E.; Amendola, A.; Tanzi, E. Molecular epidemiology and genotyping of Chlamydia trachomatis infection in a cohort of young asymptomatic sexually active women (18–25 years) in Milan, Italy. J. Prev. Med. Hyg. 2016, 57, E128–E134. [Google Scholar] [PubMed]
- Senn, L.; Hammerschlag, M.R.; Greub, G. Therapeutic approaches to Chlamydia infections. Expert Opin. Pharmacother. 2005, 6, 2281–2290. [Google Scholar] [CrossRef]
- Dessus-Babus, S.; Bébéar, C.M.; Charron, A.; Bébéar, C.; de Barbeyrac, B. Sequencing of Gyrase and Topoisomerase IV Quinolone-Resistance-Determining Regions of Chlamydia trachomatis and Characterization of Quinolone-Resistant Mutants Obtained In Vitro. Antimicrob. Agents Chemother. 1998, 42, 2474–2481. [Google Scholar] [CrossRef]
- Horner, P. The case for further treatment studies of uncomplicated genital Chlamydia trachomatis infection. Sex. Transm. Infect. 2006, 82, 340–343. [Google Scholar] [CrossRef]
- Pitt, R.; Alexander, S.; Ison, C.; Horner, P.; Hathorn, E.; Goold, P.; Woodford, N.; Cole, M. Phenotypic antimicrobial susceptibility testing of Chlamydia trachomatis isolates from patients with persistent or successfully treated infections. J. Antimicrob. Chemother. 2018, 73, 680–686. [Google Scholar] [CrossRef]
- Lanjouw, E.; Ouburg, S.; de Vries, H.J.; Stary, A.; Radcliffe, K.; Unemo, M. European guideline on the management of Chlamydia trachomatis infections. Int. J. STD AIDS 2015, 27, 333–348. [Google Scholar] [CrossRef] [PubMed]
- Horner, P.J. Azithromycin antimicrobial resistance and genital Chlamydia trachomatis infection: Duration of therapy may be the key to improving efficacy. Sex. Transm. Infect. 2012, 88, 154–156. [Google Scholar] [CrossRef]
- Jones, R.B.; Van Der Pol, B.; Martin, D.H.; Shepard, M.K. Partial Characterization of Chlamydia trachomatis Isolates Resistant to Multiple Antibiotics. J. Infect. Dis. 1990, 162, 1309–1315. [Google Scholar] [CrossRef]
- Lefevre, J.C.; Lepargneur, J.P.; Guion, D.; Bei, S. Tetracycline-resistant Chlamydia trachomatis in Toulouse, France. Pathol. Biol. 1997, 45, 376–378. [Google Scholar]
- Somani, J.; Bhullar, V.B.; Workowski, K.A.; Farshy, C.E.; Black, C.M. Multiple Drug–Resistant Chlamydia trachomatis Associated with Clinical Treatment Failure. J. Infect. Dis. 2000, 181, 1421–1427. [Google Scholar] [CrossRef]
- Misiurina, O.I.; Shipitsina, E.V.; Finashutina, I.P.; Lazarev, V.N.; Akopian, T.A.; Savicheva, A.M.; Govorun, V.M. Analysis of point mutations in the ygeD, gyrA and parC genes in fluoroquinolones resistant clinical isolates of Chlamydia trachomatis. Mol. Genet. Mikrobiol. Virol. 2004, 3, 3–7. [Google Scholar]
- Bhengraj, A.R.; Vardhan, H.; Srivastava, P.; Salhan, S.; Mittal, A. Decreased Susceptibility to Azithromycin and Doxycycline in Clinical Isolates of Chlamydia trachomatis Obtained from Recurrently Infected Female Patients in India. Chemotherapy 2010, 56, 371–377. [Google Scholar] [CrossRef]
- Ridgway, G.L.; Owen, J.M.; Oriel, J.D. A method for testing the antibiotic susceptibility of Chlamydia trachomatis in a cell culture system. J. Antimicrob. Chemother. 1976, 2, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Sandoz, K.M.; Rockey, D.D. Antibiotic resistance in Chlamydiae. Futur. Microbiol. 2010, 5, 1427–1442. [Google Scholar] [CrossRef] [PubMed]
- Suchland, R.J.; Geisler, W.M.; Stamm, W.E. Methodologies and Cell Lines Used for Antimicrobial Susceptibility Testing of Chlamydia spp. Antimicrob. Agents Chemother. 2003, 47, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Dugan, J.; Rockey, D.D.; Jones, L.; Andersen, A.A. Tetracycline Resistance in Chlamydia suis Mediated by Genomic Islands Inserted into the Chlamydial inv -Like Gene. Antimicrob. Agents Chemother. 2004, 48, 3989–3995. [Google Scholar] [CrossRef] [PubMed]
- Misyurina, O.Y.; Chipitsyna, E.V.; Finashutina, Y.P.; Lazarev, V.N.; Akopian, T.A.; Savicheva, A.M.; Govorun, V.M. Mutations in a 23S rRNA Gene of Chlamydia trachomatis Associated with Resistance to Macrolides. Antimicrob. Agents Chemother. 2004, 48, 1347–1349. [Google Scholar] [CrossRef]
- Suchland, R.J.; Sandoz, K.M.; Jeffrey, B.M.; Stamm, W.E.; Rockey, D.D. Horizontal Transfer of Tetracycline Resistance among Chlamydia spp. In Vitro. Antimicrob. Agents Chemother. 2009, 53, 4604–4611. [Google Scholar] [CrossRef] [PubMed]
- Samra, Z.; Rosenberg, S.; Soffer, Y.; Dan, M. In vitro susceptibility of recent clinical isolates of Chlamydia trachomatis to macrolides and tetracyclines. Diagn. Microbiol. Infect. Dis. 2001, 39, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Vester, B.; Douthwaite, S. Macrolide Resistance Conferred by Base Substitutions in 23S rRNA. Antimicrob. Agents Chemother. 2001, 45, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lenart, J.; Andersen, A.A.; Rockey, D.D. Growth and Development of Tetracycline-Resistant Chlamydia suis. Antimicrob. Agents Chemother. 2001, 45, 2198–2203. [Google Scholar] [CrossRef]
- Workowski, K.A.; Bachmann, L.H.; Chan, P.A.; Johnston, C.M.; Muzny, C.A.; Park, I.; Reno, H.; Zenilman, J.M.; Bolan, G.A. Sexually Transmitted Infections Treatment Guidelines, 2021. MMWR. Recomm. Rep. 2021, 70, 1–187. Available online: https://www.cdc.gov/std/treatment-guidelines/STI-Guidelines-2021.pdf (accessed on 15 October 2022). [CrossRef]
- Morrissey, I.; Salman, H.; Bakker, S.; Farrell, D.; Bébéar, C.M.; Ridgway, G. Serial passage of Chlamydia spp. in sub-inhibitory fluoroquinolone concentrations. J. Antimicrob. Chemother. 2002, 49, 757–761. [Google Scholar] [CrossRef]
- Cullen, M.E.; Wyke, A.W.; Kuroda, R.; Fisher, L.M. Cloning and characterization of a DNA gyrase A gene from Escherichia coli that confers clinical resistance to 4-quinolones. Antimicrob. Agents Chemother. 1989, 33, 886–894. [Google Scholar] [CrossRef]
- Heisig, P.; Schedletzky, H.; Falkenstein-Paul, H. Mutations in the gyrA gene of a highly fluoroquinolone-resistant clinical isolate of Escherichia coli. Antimicrob. Agents Chemother. 1993, 37, 696–701. [Google Scholar] [CrossRef]
- Oram, M.; Fisher, L.M. 4-Quinolone resistance mutations in the DNA gyrase of Escherichia coli clinical isolates identified by using the polymerase chain reaction. Antimicrob. Agents Chemother. 1991, 35, 387–389. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Bogaki, M.; Nakamura, M.; Nakamura, S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 1990, 34, 1271–1272. [Google Scholar] [CrossRef] [PubMed]
- Belland, R.J.; Morrison, S.G.; Ison, C.; Huang, W.M. Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol. Microbiol. 1994, 14, 371–380. [Google Scholar] [CrossRef]
- Kumagai, Y.; Kato, J.I.; Hoshino, K.; Akasaka, T.; Sato, K.; Ikeda, H. Quinolone-resistant mutants of Escherichia coli DNA topoisomerase IV parC gene. Antimicrob. Agents Chemother. 1996, 40, 710–714. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.Y.; Trucksis, M.; Hooper, D.C. Quinolone resistance mutations in topoisomerase IV: Relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus. Antimicrob. Agents Chemother. 1996, 40, 1881–1888. [Google Scholar] [CrossRef] [PubMed]
- DeMars, R.; Weinfurter, J. Interstrain Gene Transfer in Chlamydia trachomatis In Vitro: Mechanism and Significance. J. Bacteriol. 2008, 190, 1605–1614. [Google Scholar] [CrossRef]
- Storm, M.; Gustafsson, I.; Herrmann, B.; Engstrand, L. Real-time PCR for pharmacodynamic studies of Chlamydia trachomatis. J. Microbiol. Methods 2005, 61, 361–367. [Google Scholar] [CrossRef]
- Lysén, M.; Österlund, A.; Rubin, C.-J.; Persson, T.; Persson, I.; Herrmann, B. Characterization of ompA Genotypes by Sequence Analysis of DNA from All Detected Cases of Chlamydia trachomatis Infections during 1 Year of Contact Tracing in a Swedish County. J. Clin. Microbiol. 2004, 42, 1641–1647. [Google Scholar] [CrossRef]
- Bom, R.J.M.; Christerson, L.; van der Loeff, M.F.S.; Coutinho, R.A.; Herrmann, B.; Bruisten, S.M. Evaluation of High-Resolution Typing Methods for Chlamydia trachomatis in Samples from Heterosexual Couples. J. Clin. Microbiol. 2011, 49, 2844–2853. [Google Scholar] [CrossRef]
- Mourad, A.; Sweet, R.L.; Sugg, N.; Schachter, J. Relative resistance to erythromycin in Chlamydia trachomatis. Antimicrob. Agents Chemother. 1980, 18, 696–698. [Google Scholar] [CrossRef]
- Bragina, E.; Gomberg, M.; Dmitriev, G.A. Electron microscopic evidence of persistent chlamydial infection following treatment. J. Eur. Acad. Dermatol. Venereol. 2001, 15, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhu, H.; Yang, L.-N.; Liu, Y.-J.; Hou, S.-P.; Qi, M.-L.; Liu, Q.-Z. Differences in 23S ribosomal RNA mutations between wild-type and mutant macrolide-resistant Chlamydia trachomatis isolates. Exp. Ther. Med. 2015, 10, 1189–1193. [Google Scholar] [CrossRef] [PubMed]
- Dreses-Werringloer, U.; Padubrin, I.; Zeidler, H.; Köhler, L. Effects of Azithromycin and Rifampin on Chlamydia trachomatis Infection In Vitro. Antimicrob. Agents Chemother. 2001, 45, 3001–3008. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, A.; Wieland, U. Azithromycin versus Doxycycline for Chlamydia. N. Engl. J. Med. 2016, 374, 1786–1787. [Google Scholar]
- Fohner, A.E.; Sparreboom, A.; Altman, R.B.; Klein, T.E. PharmGKB summary. Pharmacogenetics Genom. 2017, 27, 164–167. [Google Scholar] [CrossRef]
- Binet, R.; Maurelli, A.T. Frequency of development and associated physiological cost of azithromycin resistance in Chlamydia psittaci 6BC and C. trachomatis L2. Antimicrob. Agents Chemother. 2007, 51, 4267–4275. [Google Scholar] [CrossRef] [PubMed]
- Hadfield, J.; Harris, S.R.; Seth-Smith, H.M.; Parmar, S.; Andersson, P.; Giffard, P.M.; Schachter, J.; Moncada, J.; Ellison, L.; Vaulet, M.L.G.; et al. Comprehensive global genome dynamics of Chlamydia trachomatis show ancient diversification followed by contemporary mixing and recent lineage expansion. Genome Res. 2017, 27, 1220–1229. [Google Scholar] [CrossRef]
- Kong, F.; Tabrizi, S.N.; Law, M.; Vodstrcil, L.; Chen, M.; Fairley, C.K.; Guy, R.; Bradshaw, C.; Hocking, J. Azithromycin Versus Doxycycline for the Treatment of Genital Chlamydia Infection: A Meta-analysis of Randomized Controlled Trials. Clin. Infect. Dis. 2014, 59, 193–205. [Google Scholar] [CrossRef]
- Páez-Canro, C.; Alzate, J.P.; González, L.M.; Rubio-Romero, J.A.; Lethaby, A.; Gaitán, H.G. Antibiotics for treating urogenital Chlamydia trachomatis infection in men and non-pregnant women. Cochrane Database Syst. Rev. 2019, 2019, CD010871. [Google Scholar] [CrossRef]
- Dukers-Muijrers, N.H.T.M.; Wolffs, P.F.G.; De Vries, H.; Götz, H.M.; Heijman, T.; Bruisten, S.; Eppings, L.; Hogewoning, A.; Steenbakkers, M.; Lucchesi, M.; et al. Treatment Effectiveness of Azithromycin and Doxycycline in Uncomplicated Rectal and Vaginal Chlamydia trachomatis Infections in Women: A Multicenter Observational Study (FemCure). Clin. Infect. Dis. 2019, 69, 1946–1954. [Google Scholar] [CrossRef]
- Dombrowski, J.C.; Wierzbicki, M.R.; Newman, L.M.; Powell, J.A.; Miller, A.; Dithmer, D.; Soge, O.O.; Mayer, K.H. Doxycycline Versus Azithromycin for the Treatment of Rectal Chlamydia in Men Who Have Sex with Men: A Randomized Controlled Trial. Clin. Infect. Dis. 2021, 73, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Dukers-Muijrers, N.H.T.M.; Schachter, J.; van Liere, G.A.F.S.; Wolffs, P.F.G.; Hoebe, C.J.P.A. What is needed to guide testing for anorectal and pharyngeal Chlamydia trachomatis and Neisseria gonorrhoeae in women and men? Evidence and opinion. BMC Infect. Dis. 2015, 15, 533. [Google Scholar] [CrossRef]
- Bolan, R.K.; Beymer, M.R.; Weiss, R.E.; Flynn, R.P.; Leibowitz, A.A.; Klausner, J.D. Doxycycline Prophylaxis to Reduce Incident Syphilis among HIV-Infected Men Who Have Sex with Men Who Continue to Engage in High-Risk Sex: A Randomized, Controlled Pilot Study. Sex. Transm. Dis. 2015, 42, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, S.; Yasuda, M.; Ito, S.-I.; Takahashi, Y.; Ishihara, S.; Deguchi, T.; Maeda, S.-I.; Kubota, Y.; Tamaki, M.; Fukushi, H. Uncommon occurrence of fluoroquinolone resistance-associated alterations in GyrA and ParC in clinical strains of Chlamydia trachomatis. J. Infect. Chemother. 2004, 10, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Borel, N.; Leonard, C.; Slade, J.; Schoborg, R.V. Chlamydial Antibiotic Resistance and Treatment Failure in Veterinary and Human Medicine. Curr. Clin. Microbiol. Rep. 2016, 3, 10–18. [Google Scholar] [CrossRef]
- Hogan, R.J.; Mathews, S.A.; Mukhopadhyay, S.; Summersgill, J.T.; Timms, P. Chlamydial Persistence: Beyond the Biphasic Paradigm. Infect. Immun. 2004, 72, 1843–1855. [Google Scholar] [CrossRef]
- Michel, C.-E.C.; Sonnex, C.; Carne, C.A.; White, J.A.; Magbanua, J.P.V.; Nadala, E.C.B.; Lee, H.H. Chlamydia trachomatis Load at Matched Anatomic Sites: Implications for Screening Strategies. J. Clin. Microbiol. 2007, 45, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.A.; Papp, J.R.; Stamm, W.E.; Peeling, R.W.; Martin, D.H.; Holmes, K.K. Evaluation of Antimicrobial Resistance and Treatment Failures for Chlamydiatrachomatis: A Meeting Report. J. Infect. Dis. 2005, 191, 917–923. [Google Scholar] [CrossRef]
- Piñeiro, L.; Villa, L.; Salmerón, P.; Maciá, M.D.; Otero, L.; Vall-Mayans, M.; Milagro, A.; Bernal, S.; Manzanal, A.; Ansa, I.; et al. Genetic Characterization of Non-Lymphogranuloma venereum Chlamydia trachomatis Indicates Distinct Infection Transmission Networks in Spain. Int. J. Mol. Sci. 2023, 24, 6941. [Google Scholar] [CrossRef]
- Somboonna, N.; Ziklo, N.; Ferrin, T.E.; Hyuk Suh, J.; Dean, D. Clinical Persistence of Chlamydia trachomatis Sexually Transmitted Strains Involves Novel Mutations in the Functional αββα Tetramer of the Tryptophan Synthase Operon. mBio 2019, 10, e01464-19. [Google Scholar] [CrossRef]
- Pitt, R.; Doyle, R.; Theilgaard Christiansen, M.; Horner, P.; Hathorn, E.; Alexander, S.; Woodford, N.; Cole, M.; Breuer, J. Whole-genome sequencing of Chlamydia trachomatis isolates from persistently infected patients. Int. J. STD AIDS 2022, 33, 442–446. [Google Scholar] [CrossRef] [PubMed]
Antibiotic Susceptibility | |||||||
---|---|---|---|---|---|---|---|
Macrolides | Tetracyclines | Quinolones | |||||
Phenotypic (MIC) | Genotypic (n = 66) | Phenotypic (MIC) | Genotypic | Genotypic | |||
Azithromycin (mg/L) (n = 10) | T2611C | A2057G | A2058C | A2059G | Doxycycline (mg/L) (n = 10) | tet(C) gene (n = 73) | G248T |
≤0.125 | ND | ND | ND | ND | ≤0.064 | ND | ND |
Antibiotic Resistance | Technique | Target | Function | Name | Sequence (5′-3′) 1 |
---|---|---|---|---|---|
Macrolides | SNP | 23S rRNA | Forward primer | ClaMacro-F | GTTCATATCGACGTGGCGGT |
(T2611C) | Reverse primer | ClaMacro-R | GTATCCTGCGCCCACGAA | ||
Probe Wild Type | CT-2611-S-VIC | CAGTTTGGTCTCTATC | |||
Probe Mutant | CT-2611-R-FAM | CAGTTTGGTCCCTATC | |||
Control Mutant | CCC-Cla-Macro | GAGTTCATATCGACGTGGCGGTTTGGCACCTCGATGTCGGCTCATCGCATCCTGGGGCTGGAGAAGGTCCCAAGGGTTTGGCTGTTCGCCAATTAAAGCGGTACGCGAGCTGGGTTCAAAACGTCGTGAGACAGTTTGGTCCCTATCCTTCGTGGGCGCAGGATACTT | |||
Quinolones | SNP | gyrA | Forward primer | Quino-CT-F | TTTGCGGTGATACTTCCGG |
(G248T) | Reverse primer | Quino-CT-R | CCCAATCCTGTGCCATCC | ||
(S83I) | Probe Wild Type | Qui-WT-VIC | ATGGAGAAAGTGTCATTT | ||
Probe Mutant | Qui-MUT-FAM | GGAGAAAATGTCATTTAT | |||
Control Mutant | AAT-Qui-Ctrl | TTTGCGGTGATACTTCCGGAGATTATCACCCCCATGGAGAAAATGTCATTTATCCTACTTTAGTAAGGATGGCACAGGATTGGG | |||
Macrolides | Sequencing | 23S rRNA | Forward primer | rr-f | AAGTTCCGACCTGCACGAATGG |
Reverse primer | rr-r | TCCATTCCGGTCCTCTCGTAC | |||
Forward primer | rrg-f | AATTCCTTGTCGGGTAAGTTC | |||
Reverse primer | al1-r | CGTTATGATCCCAGGATCCCT | |||
Reverse primer | al2-r | CCCAATATAGAACCGAAAATTCGA | |||
Tetracyclines | RT-PCR | tet(C) | Forward primer | CT-tetS | AGCACTGTCCGACCGCTT |
Reverse primer | CT-tetA | TCCGGCGTAGAGGATCCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa, L.; Boga, J.A.; Otero, L.; Vazquez, F.; Milagro, A.; Salmerón, P.; Vall-Mayans, M.; Maciá, M.D.; Bernal, S.; Piñeiro, L. Phenotypic and Genotypic Antimicrobial Susceptibility Testing of Chlamydia trachomatis Isolates from Patients with Persistent or Clinical Treatment Failure in Spain. Antibiotics 2023, 12, 975. https://doi.org/10.3390/antibiotics12060975
Villa L, Boga JA, Otero L, Vazquez F, Milagro A, Salmerón P, Vall-Mayans M, Maciá MD, Bernal S, Piñeiro L. Phenotypic and Genotypic Antimicrobial Susceptibility Testing of Chlamydia trachomatis Isolates from Patients with Persistent or Clinical Treatment Failure in Spain. Antibiotics. 2023; 12(6):975. https://doi.org/10.3390/antibiotics12060975
Chicago/Turabian StyleVilla, Laura, José Antonio Boga, Luis Otero, Fernando Vazquez, Ana Milagro, Paula Salmerón, Martí Vall-Mayans, María Dolores Maciá, Samuel Bernal, and Luis Piñeiro. 2023. "Phenotypic and Genotypic Antimicrobial Susceptibility Testing of Chlamydia trachomatis Isolates from Patients with Persistent or Clinical Treatment Failure in Spain" Antibiotics 12, no. 6: 975. https://doi.org/10.3390/antibiotics12060975
APA StyleVilla, L., Boga, J. A., Otero, L., Vazquez, F., Milagro, A., Salmerón, P., Vall-Mayans, M., Maciá, M. D., Bernal, S., & Piñeiro, L. (2023). Phenotypic and Genotypic Antimicrobial Susceptibility Testing of Chlamydia trachomatis Isolates from Patients with Persistent or Clinical Treatment Failure in Spain. Antibiotics, 12(6), 975. https://doi.org/10.3390/antibiotics12060975