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Abstract: Introduction: The antimicrobial resistance (AMR) of bacteria is increasing rapidly against
all classes of antibiotics, with the increasing detection of carbapenem-resistant isolates. However,
while growing prevalence has been reported around the world, data on the prevalence of carbapenem
resistance in developing countries are fairly limited. In this study, we investigated and determined
the resistance rate to carbapenems among multidrug-resistant Gram-negative bacteria (MDR-GNB)
isolated in Djibouti and characterized their resistance mechanisms. Results: Of the 256 isolates,
235 (91.8%) were identified as Gram-negative bacteria (GNB). Of these GNBs, 225 (95.7%) isolates
exhibited a multidrug resistance phenotype, and 20 (8.5%) isolates were resistant to carbapenems,
including 13 Escherichia coli, 4 Acinetobacter baumannii, 2 Klebsiella pneumoniae and 1 Proteus mirabilis.
The most predominant GNB in this hospital setting were E. coli and K. pneumoniae species. Car-
bapenemase genes such as blaOXA-48 and blaNDM-5 were identified, respectively, in six and four E.
coli isolates, whereas the carbapenemase blaNDM-1 was identified in three E. coli, two K. pneumoniae,
one P. mirabilis and one A. baumannii. Moreover, three A. baumannii isolates co-hosted blaOXA-23

and blaNDM-1. Materials and Methods: A total of 256 clinical strains collected between 2019 and
2020 were identified using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF).
Antibiotic susceptibility testing was performed using disk diffusion and E-test methods. Real-time
polymerase chain reaction (RT-PCR), standard PCR and sequencing were used to investigate genes
encoding for extended-spectrum-β-lactamases, carbapenemases and colistin resistance genes. Con-
clusions: We report, for the first time, the presence of MDR-GNB clinical isolates and the emergence
of carbapenem-resistant isolates in Djibouti. In addition to performing antimicrobial susceptibility
testing, we recommend phenotypic and molecular screening to track the spread of carbapenemase
genes among clinical GNB isolates.

Keywords: Gram-negative bacilli; carbapenem resistance; Djibouti

1. Introduction

The emergence and rapid evolution of antimicrobial resistance (AMR) represents
a global challenge for the control of infectious diseases [1]. The rise of multidrug resis-
tance has been observed in all bacteria, including clinically important Gram-negative
bacilli (GNB), and is now a serious challenge encountered by healthcare professionals [2].
These GNB are responsible for a variety of community- and healthcare-acquired infec-
tions, and their resistance is mainly mediated by extended spectrum-β-lactamases (ESBLs)
and carbapenemases [3]. The increasing prevalence worldwide of carbapenem-resistant
Enterobacteriaceae (CRE) has compromised carbapenem-based treatments which are con-
sidered to be antibiotics of last resort or “last-line agents” in hospitals and long-term care
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facilities [4,5]. Since the first description of carbapenemase-producing Enterobacteriaceae
(NmcA) in 1993, a large variety of carbapenemases have been identified, belonging to three
molecular β-lactamase classes, including the Ambler class A (KPC, IMI and GES), class
B (NDM, IMP and VIM) and class D (OXA-48, OXA-23, OXA-24 and OXA-58) [6]. They
have emerged in and spread to different parts of the world, including Mediterranean coun-
tries, in recent years [7,8]. Among the newly emerging β-lactamases, the dramatic global
spread of NDM remains one of the most worrying antibiotic resistance events caused by
metallo-β-lactamase (MBL). It was first reported from carbapenem-resistant K. pneumoniae
recovered from a Swedish patient previously hospitalized in India [9].

Given their ability to hydrolyze most β-lactams (with the exception of monobactams),
including the carbapenems, NDM-producing isolates responsible for infections are very
difficult to treat [10]. These NDM producers include mainly Enterobacteriaceae, Acinetobacter
spp. and, more rarely, Pseudomonas aeruginosa isolates, usually responsible for severe noso-
comial infections, including urinary tract infections, peritonitis, septicemia and pulmonary
infections. As reported in the literature, the Indian subcontinent, the Balkans region and
the Middle East are considered to be the main reservoirs of NDM producers [11]. First iden-
tified from K. pneumoniae in Turkey in 2001, blaOXA-48 has also been extensively reported as
a source of nosocomial infection outbreaks in many parts of the world, notably in countries
in the Mediterranean region [12].

In Africa, data on the distribution and prevalence of carbapenem resistance among
MDR-GNB isolates are still limited. In Djibouti, to the best of our knowledge, no study
on the resistance rate or molecular epidemiology of carbapenem-resistant GNBs has been
described so far. Here, we investigate the occurrence of carbapenem-resistant GNB isolates
from hospitalized patients and outpatients in Djibouti and then characterize their molecular
resistance mechanisms.

2. Results
2.1. Sample Culture

The 235 isolates collected between 2019 and 2020 at the Mer-Rouge laboratory in
Djibouti were from clinical samples of hospitalized patients including urine (n = 158;
67.3%), pus (n = 28; 11.9%), stool (n = 21; 8.9%), Bronchoalveolar lavage (BAL) (n = 20; 8.5%)
and blood (n = 8; 3.4%) (Figure 1A).

Among the GNB, Enterobacteriaceae represented 92.8% (n = 218), and non-fermenting
GNB were 7.2% (n = 17). Of the 218 Enterobacteriaceae, 60.1% (n = 131) were Escherichia
coli, which represents the most predominant species, followed by K. pneumoniae (22.9%,
n = 50) and Enterobacter cloacae (10.6%; n = 23). A total of 2.3% (n = 5) of the isolates were
Proteus mirabilis and 0.9% (n = 2) were Proteus stuartii. In addition, a single isolate of each
of Citrobacter freundii, Citrobacter koseri, Enterobacter aerogenes, Klebsiella oxytoca, Morganella
morganii, Raoultella ornithinolytica and Serratia marcescens was identified. Among the 17
non-fermenting GNB, 52.9% (n = 9) were P. aeruginosa, 41.2% (n = 7) were Acinetobacter
baumannii and 5.9% (n = 1) was S. maltophilia (Figure 1B).

2.2. Antibiotic Susceptibility Test (AST)

As shown in Figure 2, the AST revealed the phenotypic resistance among the 235 GNB
isolates. Indeed, 95.7% (n = 225) exhibited a multidrug-resistant profile (MDR), and 135
(57.4%) isolates were resistant to third-generation cephalosporins (3GCs), specifically to cef-
triaxone (CRO). Resistance to ceftriaxone was observed mostly in E. coli and K. pneumoniae,
showing significant rates of resistance of 36.2% (n = 85) and 11.1% (n = 26), respectively.
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Figure 1. Distribution of clinical GNB isolates by collected samples. (A): number and percentage
of bacterial isolates per type of sample; (B): distribution of bacterial species isolated from urine;
(C): from pus; (D): from stool; (E): from bronchoalveolar lavage; (F): from blood; (G): distribution of
all bacterial isolates analyzed in this study.
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Figure 2. Antimicrobial susceptibility profile of Enterobacteriaceae and non-fermenting GNB:
(A) E. coli; (B) K. pneumoniae and K. oxytoca; (C) E. cloacae and E. aerogenes; (D) P. stuartii, P. mirabilis, C.
koseri, C. freundii, M. morganii, S. marcescens and R. ornithinolytica; (E) A. baumannii; and (F) P. aeruginosa
and S. maltophilia. AMX = Amoxicilline, AMC = Amoxicilline/clavulanic acid, FEP = Cefepime,
TPZ = Piperacillin + Tazobactam, KF = Cephalothin, TIC = Ticarcillin, TCC = Ticarcillin/Clavulanic
acid, CRO = Ceftriaxone, CAZ = Ceftazidime, ETP = ertapenem, MER = Meropenem, IPM = imipenem,
ATM = Aztreoname, FF = Fosfomycin, F = Nitrofurantoïne, SXT = Trimethoprim/sulfamethoxazol,
AK = Amikacin, CIP = Ciprofloxacine, DO = Doxycycline, CT = colistin and CN = Gentamicin,
RA = Rifampicin. Green color refers to susceptibility to the antibiotic and red color refers to resistant
ones.

As presented in Tables 1 and 2, resistance to carbapenems (i.e., ertapenem and/or
imipenem) was confirmed using the E-test method and was observed in 20 (8.2%) of the
MDR isolates, including 13 E. coli (65%), 4 A. baumannii (20%), 2 K. pneumoniae (10%) and 1
P. mirabilis (5%). No colistin resistance was observed in our collection, except in those that
are naturally colistin-resistant, like P. mirabilis.

Table 1. Antimicrobial susceptibility profile of carbapenem-resistant Enterobacteriaceae isolates and
carbapenemase-producing genes.

Strains Years AMX AMC FEP TPZ CRO ETP IPM FF F SXT AK CIP DO CT CN Carbapenemase
Genes

E. coli 2019 R R R R R R R S R R S R R S R blaNDM-1
E. coli 2019 R R R R R R R S S R S R S S S blaNDM-1
E. coli 2020 R R R R R R R S S R S R S S S blaNDM-5
E. coli 2020 R R R R R R R S R R S R R S S blaNDM-5
E. coli 2020 R R R R R R R S R R S R R S R blaNDM-5
E. coli 2020 R R R R R R S S S S S R R S S blaNDM-5
E. coli 2020 R R R R R R R S S S S R S S S blaNDM-1
E. coli 2020 R R R R R R S S S R S R R S R blaOXA-181
E. coli 2020 R R R R R R R R S R S R R S S blaOXA-181
E. coli 2020 R R R R R R R S S R S R R S S blaOXA-181
E. coli 2020 R R R R R R S S S R S R R S R blaOXA-181
E. coli 2020 R R R R R R R S S R S R R S S blaOXA-181
E. coli 2020 R R R R R R R S S R S R R S S blaOXA-181

K. pneumoniae 2020 R R R R R R R R R S R R S S S blaNDM-1
K. pneumoniae 2020 R R R R R R R R R S R R S S S blaNDM-1

P. mirabilis 2020 R R R R R R R R S R S R R R S blaNDM-1
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Table 2. Antimicrobial susceptibility profile of non-fermenting bacteria harboring OXA-23 and/or
NDM-1 carbapenemase enzymes.

Scheme Years TIC TCC TPZ ATM CAZ FEP MER IMP FF RA SXT AK CIP DO CT CN Carbapenemase
Genes

A. baumannii 2020 R R R R R R R R R R S S S S S S blaOXA-23
A. baumannii 2020 R R R R R R R R S R R R R S S R blaOXA-23, blaNDM-1
A. baumannii 2020 R R R R R R R R S R R R R S S R blaOXA-23, blaNDM-1
A. baumannii 2020 R R R R R R R R S R R R R S S R blaOXA-23, blaNDM-1

R = resistance, S = Sensitive. AMX = Amoxicilline, AMC = Amoxicilline/clavulanic acid, FEP = Ce-
fepime, TPZ = Piperacillin + Tazobactam, KF = Cephalothin, TIC = Ticarcillin, TCC = Ticarcillin/Clavulanic
acid, CRO = Ceftriaxone, CAZ = Ceftazidime, ETP = ertapenem, MER = Meropenem, IPM = imipenem,
ATM = Aztreoname, FF = Fosfomycin, F = Nitrofurantoïne, SXT = Trimethoprim/sulfamethoxazol,
AK = Amikacin, CIP = Ciprofloxacine, DO = Doxycycline, CT = colistin and CN = Gentamicin, RA = Rifampicin,
IMP = imipenem.

2.3. Prevalence of ESBL and Carbapenemase Genes

In total, 204 of the 235 (86.8%) MDR-GNB isolates were positive for at least one of the
investigated ESBL genes. Of the ESBL genes commonly reported in human medicine, the
blaCTX-M gene was harbored by the majority of the isolates (n = 168/204; 82.3%), followed
by blaTEM (n = 115/204; 56.3%) and blaSHV (n = 81/204; 39.7%). The presence of the blaCTX-M
gene was predominant in E. coli (n = 99/168; 58.9%), K. pneumoniae (n = 62/168; 36.9%) and E.
cloacae (n = 7/168; 4.1%). However, as presented in Table 3, several of the isolates contained
at least two or more ESBL genes (n = 126/204; 61.7%). Regarding carbapenemase genes,
the RT-PCR results showed that the blaNDM variants were the most predominant genes
detected in 13 isolates (65%), followed by the blaOXA-48 variant (blaOXA-181 here, identified
after standard PCR and sequencing) in 6 isolates (30%) and blaOXA-23 in 4 isolates (20%).
Interestingly, as presented in Table 2, the pandemic class D carbapenemase OXA-23 enzyme
was detected in four out of the seven isolated A. baumannii strains from broncho-alveolar
lavage samples, and three of them also harbored the metallo-β-lactamase NMD-1 enzyme.

Table 3. Distribution of ESBL and carbapenemase-producing isolates.

E. coli K. pneumoniae E. cloacae A. baumannii P. mirabilis Total (n = 228)

Single ESBL genes
blaCTX-M 38 1 3 0 0 42 (18.7%)
blaTEM 23 0 2 0 0 25 (11.6%)
blaSHV 0 14 1 0 0 15 (6.7%)

Total 61 15 6 0 0 82 (36.6%)

ESBL gene combinations
blaCTX-M + blaTEM 36 20 4 0 0 60 (26.7%)
blaCTX-M + blaSHV 13 23 0 0 0 36 (16.1%)
blaCTX-M + blaTEM + blaSHV 12 18 0 0 0 30 (13.4%)

Total 61 61 4 0 0 126 (56.2%)

Carbapenemase genes
blaNDM-1 3 2 0 0 1 6 (2.7%)
blaNDM-5 4 0 0 0 0 4 (1.8%)
blaOXA-181 6 0 0 0 0 6 (2.7%)
blaOXA-23 0 0 0 1 0 1 (0.4%)
blaOXA-23 +blaNDM-1 0 0 0 3 0 3 (1.4%)

Total 13 2 0 4 1 20 (8.9%)

3. Discussion

Several studies have shown that AMR is a problem in sub-Saharan Africa, and the avail-
able data show that multidrug resistance is widespread in Gram-negative bacteria [13–15].
Our study of clinical samples in Djibouti revealed rather alarming rates of drug resistance
among Gram-negative organisms (95.7%). We found that almost 92% of infections were
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due to Gram-negative isolates and that approximately 58% of them were resistant to third-
generation cephalosporins (3GCs). Our results revealed that E. coli had a higher prevalence
of resistance to 3GCs: 36.2% presented resistance to ceftriaxone and therefore had a high
phenotypic resistance profile to cephalosporins. Other studies in East Africa have shown
similar rates, as is the case in Tanzania, where 30% of E. coli were resistant to ceftriaxone [16],
or lower rates, as is the case in Kenya and Uganda at 12.8% and 2.9%, respectively [17,18].
This remains a concerning finding among the poor populations in the Horn of Africa.
Similar results in different regions of the world have been observed, as previously re-
ported [19]. Our findings indicate that the majority of ESBL-producer isolates harbored the
blaCTX-M gene, followed by blaTEM and blaSHV. Studies in Saudi Arabia and Palestine have
also reported high prevalence rates (93.5% and 100%, respectively) of blaCTX-M genes in
ESBL-producing Enterobacteriaceae isolates [20,21]. These results remain in agreement with
several other studies because these CTX-M enzymes have become predominant ESBLs in
many African countries [22]. Our findings suggest a significant spread of blaCTX-M-positive
Enterobacteriaceae circulating in our environment, which continues to cause community
and nosocomial infections. For the first time, in this study, we describe 20 (8.5%) species
of multidrug-resistant Gram-negative bacteria carrying carbapenemases in Djibouti, es-
pecially blaNDM-1, blaNDM-5, blaOXA-23 and blaOXA-181.This prevalence is lower compared to
that found in studies carried out in Tanzania, Sudan and Morocco, which found 35.24%,
45% and 85.5% prevalence rates, respectively [12,23,24]. The most frequently identified
carbapenemase genes in Djibouti were blaNDM followed by blaOXA-48. This result is in
agreement with the conclusions of studies carried out in Qatar [25] and in many countries
in the Arabian Peninsula which confirmed that currently, the NDM and OXA-48 enzymes
are the two main carbapenemases [26–28]. All positive RT-PCRs targeting the blaOXA-48
gene were identified as blaOXA-181 via standard PCR and sequencing. The OXA-181 protein
differs from OXA-48 by four amino acids and, like the NDM-1 enzyme, its origin is epidemi-
ologically linked to southern Asia, most often the Indian subcontinent [29,30]. Given the
strong presence of people originating from the Asian continent and the Indian subcontinent,
the existence of strains carrying blaNDM and blaOXA-48 genes and circulating in Djibouti is
not surprising. We also detected three isolates of A. baumannii co-hosting the blaOXA-23 gene
and the blaNDM-1 gene. This finding is concerning since the spread of such MDR pathogens
in hospital settings may compromise β-lactam-based treatments. Although β-lactams are
the most commonly used antibiotics in community and hospital settings in Djibouti, and
often inappropriately so, carbapenems are beginning to be prescribed as a treatment of last
resort for life-threatening infections caused by multidrug-resistant bacteria. Other studies
first carried out in East Africa reported the presence of the blaNDM gene in Gram-negative
bacteria, including one strain of A. baumannii in Kenya in 2013 [31,32], three blaNDM genes
in Ethiopia in 2017 [31], and in surrounding countries like Yemen in which the blaNDM
gene has also been reported in 2014 [33]. The emergence of these species exhibiting an
MDR phenotype can be explained by the importation of resistant isolates from countries
bordering Djibouti during travel or migratory flows.

4. Materials and Methods

This was a cross-sectional study conducted at the Mer-Rouge laboratory in Djibouti,
involving clinical isolates collected between January 2019 and July 2020. These strains
were isolated from urine, pus, blood and respiratory samples. They were then returned to
Tryptic Soy Agar (TSA), Columbia Blood Agar (COS) and MacConkey agar and incubated
for 24 h at 37 ◦C. After overnight incubation at 37 ◦C, colonies showing different morpholo-
gies were picked up from each selective plate and tested separately via MALDI-TOF MS
for identification, using the Microflex LT spectrometer (Bruker Daltonics, Bremen, Ger-
many) [34,35]. Antibiotic susceptibility testing was performed using the Mueller–Hinton
agar disc diffusion method (Fluka, St. Louis, MO, USA) and interpreted according to
the recommendations of the European Committee for Antimicrobial Susceptibility Stud-
ies (EUCAST: www.eucast.org, accessed on 15 June 2022) [36]. Two different panels of

www.eucast.org
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16 antibiotic disks (Bio-Rad, Gémenos, France) were used for fermenting GNB and non-
fermenting GNB, respectively. The ESBL profile was detected by observing a champagne
cork between third- or fourth-generation cephalosporin and clavulanic acid. The minimum
inhibitory concentrations (MICs) of ertapenem and imipenem were determined using the
E-test method (bioMérieux, La Balmes-les-Grottes, France). Carbapenemase activity was
screened for using the ß-CARBA NP test (Bio-Rad, Hercules, CA, USA) [37]. The automatic
robot EZ1 (Qiagen BioRobot EZ1, Hilden, Germany) was used to extract bacterial DNA
with the extraction kit EZ1 DNA (Qiagen, Hilden, Germany) according to the manufac-
turer’s guidelines. The presence of carbapenemase genes, including blaKPC, blaVIM, blaNDM,
blaOXA-23, blaOXA-24, blaOXA-48 and blaOXA-58, was checked via real-time PCR (C1000 Ther-
mal Cycler, Bio-Rad, USA) using primers and probes previously described [38,39], while
ESBL-encoding genes (blaCTX-M, blaTEM and blaSHV) were investigated via standard PCR
using previously reported primers [40], and positive PCR products were sequenced using
BigDye Terminator chemistry. The sequences were then identified via BLAST against the
ARG-ANNOT [41] and NCBI databases.

5. Conclusions

For the first time, here, we reported the prevalence of genes conferring resistance to
carbapenems in several Gram-negative bacteria circulating in Djibouti. In addition, these
results could serve as a basis for future studies and for the assessment of trends in infections
caused by MDR-GNB. The highlighted emergence of carbapenem-resistant isolates, such
as A. baumannii co-hosting two carbapenemases, is of concern. There is, therefore, an
urgent need to establish routine surveillance systems for carbapenem resistance among
MDR-GNBs to prevent the spread of such pathogens in the country.
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