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Abstract: Acinetobacter baumannii forms air–liquid interface pellicles that boost its ability to with‑
stand desiccation and increase survival under antibiotic pressure. This study aims to delve into
the transcriptomic profiles of pellicle cells from clinical strains of carbapenem‑resistant A. baumannii
(CRAB). The total RNA was extracted from pellicle cells from three pellicle‑forming CRAB strains
and planktonic cells from three non‑pellicle‑forming CRAB strains, subject to RNA sequencing using
Illumina HiSeq 2500 system. A transcriptomic analysis between pellicle and planktonic cells, along
with differential expression genes (DEGs) analysis and enrichment analysis of annotatedCOGs, GOs,
and KEGGs, was performed. Our analysis identified 366 DEGs in pellicle cells: 162 upregulated
genes and 204 downregulated genes. The upregulated ABUW_1624 (yiaY) gene and downregulated
ABUW_1550 gene indicated potential involvement in fatty acid degradation during pellicle forma‑
tion. Another upregulated ABUW_2820 (metQ) gene, encoding the D‑methionine transporter sys‑
tem, hinted at its contribution to pellicle formation. The upregulation of two‑component systems,
CusSR and KdpDE, which implies the regulation of copper and potassium ions in a CRAB pellicle
formation was also observed. These findings provide valuable insights into the regulation of gene
expression during the formation of pellicles in CRAB, and these are potential targets that may aid in
the eradication of CRAB infections.

Keywords: carbapenem‑resistant Acinetobacter baumannii; differential expressed genes; pellicle;
planktonic; RNA‑sequencing

1. Introduction
Acinetobacter baumannii is a clinically significantGram‑negative coccobacillus pathogen

that poses a serious threat to immunocompromised patients in healthcare settings world‑
wide [1]. This pathogen accounts for a substantial proportion of hospital‑acquired infec‑
tions, causing severe diseases such as ventilator‑associatedpneumonia andbacteraemia [2].
The treatment of A. baumannii infections is challenging due to its propensity to acquire an‑
timicrobial resistance determinants. This ability is due to the high genome plasticity of
A. baumannii, which allows for the incorporation of exogenous DNA from the environ‑
ment, primarily via horizontal gene transfer such as plasmid mediated conjugation and
natural transformation [3]. Disturbingly, over 50% of carbapenem resistance in A. bau‑
mannii has been reported across Southeast Asian institutions [4]. In Malaysia, the Na‑
tional Surveillance of Antibiotic Resistance 2021 revealed alarming rates of A. baumannii
resistance to carbapenems, with imipenem andmeropenem resistance reaching 67.7% and
68.8%, respectively [5]. Recognising the urgency of the situation, the World Health Organ‑
isation has included carbapenem‑resistant A. baumannii (CRAB) in their “Global priority
list of antibiotic‑resistant bacteria” in 2017 [6]. Adding to its clinical impact, A. baumannii
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demonstrates prolonged survival in hospital environments, attributed in part to its persis‑
tent tolerance to desiccation and increased survival under drug pressure. One key mech‑
anism contributing to this trait is the formation of biofilms on various biotic and abiotic
surfaces [7]. Bacterial biofilms are aggregations of bacterial cells attached onto a surface
or to each other, forming complex structures and surrounded by a protective self‑secreted
matrix of extracellular polymeric substances [8,9]. Whilemuch attention is given to biofilm
formation on solid surfaces, it is worth noting that A. baumannii is also capable of forming
another type of biofilm at the air–liquid interface, known as pellicles [10–12]. Pellicles cre‑
ate a favourable niche for obligate aerobicA. baumannii, enabling direct access to abundant
oxygen from the air and simultaneous nutrient acquisition from the surrounding media in
a stagnant environment [12].

Several studies have provided evidence of the potential molecular mechanisms in‑
volved in the formation of pellicles by A. baumannii. For instance, the csuA/BABCDE pilus
chaperone–usher assembly system responsible for pili productionwas identified in all clin‑
ical biofilm‑ and pellicle‑forming A. baumannii strains using polymerase chain reaction
screening assays [13]. The proteomic analyses conducted by Marti et al. [14] and Nait
Chabane et al. [10] showed an alteration in the expression of the membrane proteins, in‑
cluding those involved in iron uptake systems, lipid and carbohydrate transport, cellular
metabolism, starvation, porins, and pili, in A. baumannii pellicles compared to planktonic
cells. Kentache et al. [15] reported the overexpression of proteins related to two‑component
systems (TCSs) and typeVI secretion systems (T6SS) in 4‑day‑old pellicleA. baumannii cells,
suggesting their involvement in regulating pellicle formation. Therefore, understanding
the molecular mechanisms underlying A. baumannii pellicle formation is crucial for iden‑
tifying potential therapeutic targets. In recent years, RNA‑sequencing (RNA‑seq) has be‑
come a powerful tool for transcriptomic analysis, enabling researchers to gain insights into
the functional elements of the genome and the differential gene expression that drives cel‑
lular phenotypes [16]. Numerous studies have employed RNA‑seq to identify the genes
involved inA. baumannii biofilmandpellicle formation. Independent research groups from
Canada, South Korea, andChina have reported the regulatory roles of a response regulator
(AvnR), a LysR‑type transcriptional regulator (LeuO), and the abaI/abaR quorum sensing
system in the biofilm and pellicle formation of A. baumannii [17–19].

Building upon our previous study, which identified the rare phenotypic trait of pel‑
licle formation in clinical CRAB isolates collected from the intensive care units of the Uni‑
versity Malaya Medical Centre. These isolates could be more virulent as they produced
robust biomass in Mueller–Hinton broth with OD570 ranging from 1.689 ± 0.180 to
3.203 ± 0.569 [20]. Therefore, we aim to delve into the molecular mechanisms underly‑
ing the pathogenesis of these pellicle‑forming isolates. More specifically, this study aims
to investigate gene expression profiles through comparative transcriptomic analysis of pel‑
licle and planktonic cells of CRAB using RNA‑seq. By employing this approach, we seek
to uncover novel insights into the genetic basis of pellicle formation, paving the way for
potential therapeutic targets to combat CRAB infections.

2. Results
2.1. Differential Expression Genes Profiling

A total of six samples (three pellicle cells from pellicle‑forming CRAB strains and
three planktonic cells fromnon‑pellicle‑formingCRAB strains) were subjected to RNA‑seq.
On average, 31,410,013 raw paired‑reads with 4.712 Giga bases yield, Phred score Q30 of
83.58% and a length of 150 bps were obtained (Supplementary Table S1). After trimming
the low‑quality reads, adapter sequences, and bases below the quality threshold, an aver‑
age of 31,392,514 reads were obtained with an average length of 116 bps. The established
type strainAcinetobacter baumanniiAB5075‑UW (Gene accession no: CP008706.1) was used
as the reference genome in this study as (i) it is a hypervirulent strain that was widely used
in various studies [21], and (ii) it is a multidrug‑resistant strain of clinical origin that was
used for the evaluation of pathogenesis and antimicrobial treatments [22]. After the as‑
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sembly of trimmed reads to the reference genome Acinetobacter baumanniiAB5075‑UW, an
average of 14,930,220 paired reads were mapped. A total of 3,868 differential expression
genes (DEGs) were detected after the CPM reads mapped analysis (Supplementary Table
S2), while 366 DEGs (log2 fold change > 2 and <−2, p‑value < 0.05, FDR p‑value < 0.01),
including 162 upregulated and 204 downregulated DEGs, were identified in the pellicle
cells (Figure 1, Supplementary Table S3).
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Figure 1. Differential expressed genes (DEGs) identified in the pellicle cells (AB21, AB34, and AB69)
compared to planktonic cells (AB11, AB20, andAB31). (A) Expression heatmap of 366DEGswith red
representing a relatively higher level of expression and blue representing the relatively lower level of
expression. (B) Volcano plot of DEGs with 162 upregulated genes (red dot) and 204 downregulated
genes (blue dot). The grey dot signifies background genes with no significant expression changes.

2.2. Cluster of Orthologous Groups Functional Classification of Proteins
Among the 366 DEGs examined, 8.7% (32/366) were classified into transcription (K),

6.3% (23/366) were clustered under amino acid metabolism and transport I and inorganic ion
transport and metabolism (P), 5.5% (20/366) were identified as being associated with energy
production and conversion (C), 4.4% (16/366) were linked to cell wall/membrane/envelope bio‑
genesis (M), 3.8% (14/366) were recognised to be associated with carbohydrate metabolism
and transport (G) and lipid metabolism (I), and 2.7% (10/366) were involved in replication
and repair (L). In addition, 30.9% (113/366) of proteins remained uncharacterised, (−) and
22.7% (83/366) had unknown functions (S) (Figure 2, Supplementary Table S4).
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Figure 2. Classification of the differential expressed genes identified in pellicle cells of clinical
carbapenems‑resistant Acinetobacter baumannii strains into functional categories based on the Clus‑
ters of Orthologous Groups enrichment analysis.

2.3. Gene Ontology Enrichment Analysis
The Gene Ontology (GO) enrichment analysis yielded a total of 388 GO terms,

which were further classified into three physiological function categories: biological pro‑
cesses (n = 264), molecular functions (n = 79), and cellular components (n = 45)
(Supplementary Table S5a). In the biological process, the mainly enriched functional cate‑
gories consisted of [GO:0009987] cellular processes and [GO:0008152] metabolic processes
that further classified into [GO:0044281] small molecule (GO:0055086: nucleobase‑containing),
[GO:0044237] cellular, [GO:0071704] organic substance (GO:1901135: carbohydrate derivative),
[GO:0006807] nitrogen compound (GO:1901564: organonitrogen) and [GO:0044238] pri‑
mary metabolic processes. In cellular components, the mainly enriched category included the
function of [GO:0110165] cellular anatomical entity that further classified into [GO:0005622] in‑
tracellular anatomical structure (GO: 0005829: cytosol; GO:0005737: cytoplasm), [GO:0016020]
membrane (GO:0005886: plasma membrane; GO:0031975: envelope), [GO:0071944] cell
periphery, and [GO:0016020] organelle (GO:0043229: intracellular organelle). In molecu‑
lar functions, the mainly enriched functional category is [GO:0003824] catalytic activity
(GO:0016740: transferase; GO:0140640: nucleic acid catalytic; GO:0140096: protein cat‑
alytic; GO:0016787: hydrolase; GO:0016874 ligase) and [GO:0003723] RNA binding
(Figure 3A, Supplementary Table S5b).

2.4. Kyoto Encyclopaedia Genes and Genomes Enrichment Analysis
The Kyoto Encyclopaedia Genes and Genomes (KEGG) enrichment analysis revealed

55 KEGG Orthology (KO) terms (Supplementary Table S6a). Among these terms, the
top 30 enrichedKO terms can be further classified into five groups based on the BRITE hier‑
archy of KO terms (Figure 3B, Supplementary Table S6b): [K09100] metabolism, [K09130]
environmental information processing, [K09140] cellular processes, [K09150] organismal
systems, and [K09160] human diseases. Principally, the DEGs are involved in themetabolism
pathway of amino acids; carbohydrates, lipids, and xenobiotics; ATP‑binding cassette (ABC)
transporters; secretion systems; two‑component systems; and biofilm formation (Table 1).
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Table 1. Top 30 enrichedKEGGpathwayof differential expression genes in the pellicle cells of clinical
pellicle‑forming carbapenem‑resistant Acinetobacter baumannii strains.

KEGG Orthology KEGG Pathway Enrichment
Score P‑Value DEGs

Number
Background
Number

List of DEG

Upregulated Downregulated
K09100 Metabolism

K09105 Amino
acid metabolism

ko00280 Valine,
leucine, and
isoleucine
degradation

1.9510 0.0112 6 21

ABUW_2506, hcaD,
ABUW_2453,
ABUW_2456,
ABUW_2455

ABUW_1150

ko00310 Lysine
degradation 1.1016 0.0791 3 11 ABUW_1519 gabD2,

ABUW_1150
ko00330 Arginine
and proline
metabolism

0.7820 0.1652 3 15 astA2,
ABUW_2807 ABUW_1150

ko00260 Glycine,
serine, and threonine
metabolism

0.2754 0.5303 3 29 ydcW, ABUW_1519 ABUW_1149

ko00350 Tyrosine
metabolism 0.4501 0.3547 2 13 ABUW_1624 gabD2

ko00380 Tryptophan
metabolism 0.4087 0.3902 2 14 ‑ ABUW_1150,

ABUW_1948

K09101
Carbohydrate
metabolism

ko00053 Ascorbate
and aldarate
metabolism

3.1606 0.0007 5 9
gudD,
ABUW_2787, kdgD,
garD

ABUW_1150

ko00620 Pyruvate
metabolism 0.3450 0.4518 4 36 ABUW_1624, ald1,

ABUW_0255 ABUW_1150

ko00650 Butanoate
metabolism 0.7713 0.1693 4 23

ABUW_0255,
ABUW_2506,
ABUW_2456

gabD2

ko00010 Glycolysis /
Gluconeogenesis 0.4244 0.3764 3 23 ABUW_1624, ald1 ABUW_1150

ko00020 Citrate cycle
(TCA cycle) 0.2165 0.6075 2 21 ABUW_0255 uca

K09111
Xenobiotics
biodegradation
and metabolism

ko00627
Aminobenzoate
degradation

2.3840 0.0041 4 8 hcaB, vanA, vanB ABUW_1978

ko00625
Chloroalkane and
chloroalkene
degradation

1.3229 0.0475 2 4 ABUW_1624 ABUW_1150

ko00984 Steroid
degradation 1.0218 0.0951 1 1 ABUW_2770 ‑

K09109
Metabolism of
terpenoids and
polyketides

ko00981 Insect
hormone
biosynthesis

1.0218 0.0951 1 1 ‑ ABUW_1150

ko00903 Limonene
degradation 1.0218 0.0951 1 1 ‑ ABUW_1150

K09102 Energy
metabolism

ko00920 Sulfur
metabolism 0.3177 0.4811 3 27 msuE ABUW_1570,

ABUW_1569
K09103 Lipid
metabolism

ko00071 Fatty acid
degradation 1.2338 0.0584 4 16 hcaD, ABUW_1624 ABUW_1150,

ABUW_1151
K09104 Nucleotide
metabolism

ko00230 Purine
metabolism 1.4204 0.0380 1 51 ‑ guaD1

K09106
Metabolism of
other amino acids

ko00470 D‑Amino
acid metabolism 0.3091 0.4908 2 17 ABUW_1519,

ABUW_2787 ‑

K09108
Metabolism of
cofactors and
vitamins

ko00740 Riboflavin
metabolism 0.6109 0.2449 2 10 msuE ABUW_2498

K09110
Biosynthesis of
other secondary
metabolites

ko00996 Biosynthesis
of various alkaloids 1.0218 0.0951 1 1 hcaA ‑
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Table 1. Cont.

KEGG Orthology KEGG Pathway Enrichment
Score P‑Value DEGs

Number
Background
Number

List of DEG

Upregulated Downregulated
K09130 Environmental Information Processing

K09131 Membrane
transport

ko02010 ABC
transporters 0.4935 0.3210 6 49 ABUW_2820

ABUW_1570,
ABUW_1569,
hisJ, hisM, hisQ

ko03070 Bacterial
secretion system 0.8226 0.1505 5 30 ‑

ABUW_2618,
ABUW_2578,
icmF,
ABUW_2566,
clpV

K09132 Signal
transduction

ko02020
Two‑component
system

0.3124 0.4871 5 60 ABUW_1507, irlR,
kdpB pfeA, wza

K09140 Cellular Processes

K09145 Cellular
community—
prokaryotes

ko02025 Biofilm
formation—
Pseudomonas
aeruginosa

3.5291 0.0003 9 25 ‑

ABUW_2572,
icmF,
ABUW_2567,
ABUW_2568,
ABUW_2580,
ABUW_2579,
ABUW_2578,
ABUW_2575,
clpV

ko02026 Biofilm
formation—
Escherichia
coli

0.4087 0.3902 2 14 ‑ wza,
ABUW_1145

K09150 Organismal Systems
K09152 Endocrine
system

ko03320 PPAR
signaling pathway 1.1288 0.0743 2 5 desC, hcaD ‑

K09160 Human Diseases
K09167 Endocrine
and metabolic
disease

ko04936 Alcoholic
liver disease 2.4985 0.0032 3 4 desC, hcaD ABUW_1150

K09171 Infectious
disease: bacterial ko05131 Shigellosis 1.0218 0.0951 1 1 ‑ ABUW_2052

2.4.1. Metabolism Pathways
Among the amino acid metabolism pathways, the degradation of the branched‑chain

amino acids (valine, leucine, and isoleucine) pathway, designated as [ko00280], exhibited
the highest number of DEGs, with a count of six. Within this pathway, five DEGs were
found to be upregulated: ABUW_2506 (hmgL1), hcaD, ABUW_2453, ABUW_2456 (hmgL2),
andABUW_2455. Additionally, oneDEG, namely, ABUW_1150, was downregulated. Fur‑
thermore, the metabolism pathways of other amino acids including lysine, arginine, pro‑
line, glycine, serine, threonine, tyrosine, and tryptophan were also found to be involved in
the differential expressed gene set.

In additional to amino acid metabolism, the DEGs in this study were found to be in‑
volved in the pathway of metabolising carbohydrates, specifically, the pathways related
to the metabolism of ascorbate, aldarate, pyruvate, butanoate, glycolysis/gluconeogenesis
(glucose), and the citrate cycle. Within the [ko00053] ascorbate and aldarate metabolism
pathway, four upregulated DEGs were identified: gudD, ABUW_2787 (aldH), kdgD, and
garD. Additionally, one downregulated DEG, namely, ABUW_1150, was observed. Re‑
garding the [ko00620] pyruvate metabolism pathway, three upregulated DEGs were de‑
tected: ABUW_1624 (yiaY), ald1, and ABUW_0255 (aarC), while one downregulated DEG:
ABUW_1150 was identified. For the [ko00650] butanoate metabolism pathway, three up‑
regulated DEGs: ABUW_0255 (aarC), ABUW_2506 (hmgL1), and ABUW_2456 (hmgL2),
and one downregulated DEG: gabD2,were identified.

Furthermore, the DEGs in this study were found to be enriched in the [ko00071] fatty
acid degradation pathway. Within this pathway, two DEGs were upregulated: hcaD and
ABUW_1624 (yiaY), while twoDEGswere downregulated: ABUW_1150 andABUW_1151.
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The DEGswere also identified in the pathway of xenobiotics degradation. In the [ko00627]
degradation pathway of aminobenzoate, three DEGs were upregulated: hcaB, vanA, and
vanB,while oneDEG:ABUW_1978 (ethA)was downregulated. For the [ko00625] chloroalkane
and chloroalkene degradation pathway, ABUW_1624 (yiaY) was found upregulated, and
ABUW_1150 was downregulated.

2.4.2. Environmental Information Processing Pathways
Six enriched DEGs were involved in the ABC transporters with ABUW_2820 (metQ),

the only one DEG was found upregulated; while the remaining five DEGs: ABUW_1570
(ssuA), ABUW_1569 (ssuC), hisJ, hisM, and hisQ, were downregulated. Additionally, five
downregulatedDEGs: ABUW_2618 (vgrG),ABUW_2578 (hcp), icmF (impL/vasK),ABUW_2566
(impK/ompA/vasF/dotU), and clpV (vasG) were found to be involved in the type VI secretion
system. In the two‑component systems, three upregulated DEGs: ABUW_1507 (cusS/copS/silS),
irlR (cusR/copR/silR), and kdpB, and two downregulated DEGs: pfeA (fepA/iroN/pirA) and
wza (gfcE), were identified.

2.4.3. Biofilm Formation Pathways
The analysis of DEGs revealed enrichment in the pathways related to biofilm forma‑

tion, specifically based on ko02025: Pseudomonas aeruginosa and ko02026: Escherichia coli.
Within these pathways, a total of 11 genes were found to be downregulated: ABUW_2572
(impM), icmF (impL/vasK), ABUW_2567 (impJ), ABUW_2568 (impA), ABUW_2580 (impB),
ABUW_2579 (impC), ABUW_2578 (hcp), ABUW_2575 (impH), clpV (vasG), wza (gfcE), and
ABUW_1145 (gcvA). Interestingly, 9 out of 11 genes were also associated with the type VI
secretion system, while the remaining 2 genes: wza and gcvA, encode for a polysaccharide
biosynthesis protein and a LysR family transcriptional regulator, respectively.

3. Discussion
The capability of CRAB to form the air–liquid biofilms known as pellicles serves a

dual purpose. First, it protects the bacteria from desiccation in clinical settings. Second,
it provides a favourable niche for the direct acquisition of oxygen from the air while ab‑
sorbing nutrients from the liquid media. Therefore, this unique adaptation can lead to
clinical challenges, including drug resistance [23]. In this study, we identified five DEGs
that encode enzymes involved in the degradation of branched‑chain amino acids (valine,
leucine, and isoleucine). These DEGs were found to be upregulated in the pellicle cells
of CRAB strains, with log2 fold changes ranging from 2.45 to 7.44 (Figure 4). The en‑
zymes identified include hydroxymethylglutaryl‑CoA lyase [EC:4.1.3.4], acyl‑CoA dehy‑
drogenase [EC:1.3.8.7], 3‑methylcrotonyl‑CoA carboxylase alpha subunit [E6.4.1.4A], and
3‑methylcrotonyl‑CoA carboxylase beta subunit [E6.4.1.4B].

The research compiled over the years has consistently demonstrated the involvement
of branched‑chain amino acid metabolism in the remodelling of microbial biofilms [24–26].
For instance, a study conducted in China observed that Pseudomonas aeruginosa PAO1 biofilms
at the 48‑h mark exhibited the highest activity of P. aeruginosa aminopeptidase (PaAP), a
leucine aminopeptidase responsible for leucine hydrolysis. Deletion of the PaAP gene us‑
ing an in‑frame deletion method resulted in bacterial cell death during the late stages of
P. aeruginosa biofilm formation and led to disruptions in the biofilm structure [25]. More
recently, a study conducted in the USA reported that the deletion of the PaAP gene in
P. aeruginosa PAO1 led to a significantly increased cellular biomass (~10 µm3/µm2), but
a lower concentration of the matrix exopolysaccharide (~0.2 Psl/biomass) and a less ro‑
bust biofilm architecture compared to the wild type [26]. Therefore, it is speculated that
aminopeptidase plays a role in regulating substantial changes in the matrix composition
of pellicle biofilms in CRAB.
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Additionally, our study revealed that the ABUW_1624 (yiaY) gene, which encodes for
an alcohol dehydrogenase [EC:1.1.1.1] exhibited significant upregulation in pellicle cells
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compared to planktonic cells, with a log2 fold change of 5.71. ABUW_1624 (yiaY) is in‑
volved inmultiple pathways, including tyrosinemetabolism, pyruvatemetabolism, glycol‑
ysis, chloroalkane and chloroalkene degradation, and fatty acid degradation
(Figure 5). The upregulation of the yiaY gene was observed during the biofilm formation
of pathogenic Escherichia coli, with a fold change of 7.21 [27]. Similarly, in Acinetobacter
johnsonii, the upregulation of the yiaY gene associated with the tyrosine metabolism was
linked to the activation of protein–tyrosine kinases and protein–tyrosine phosphatase in
the stress response to tetracycline [28]. Therefore, these findings suggest that the expres‑
sion of the yiaY gene in pellicle‑forming CRAB not only potentially plays a regulatory role
in pellicle biofilm formation but may also contribute to the stress response to antibiotics
through the tyrosine metabolism pathway.
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chloroalkene degradation. (E) Fatty acid degradation. (The partial KEGG pathway maps were ob‑
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Furthermore, our study also identified an interlinkage between the upregulated
ABUW_1624 (yiaY) gene and adownregulatedABUW_1150 gene (log2 fold change =−6.33) in
pellicle cells. The ABUW_1150 gene encodes an aldehyde dehydrogenase (NAD+) [EC:1.2.1.3]
involved in the fatty acid degradation pathway (Figure 6). This suggests a high conver‑
sion activity from 1‑alcohol to aldehyde but a low conversion activity from aldehyde to
fatty acid. The study reported the overexpression of fatty acidmetabolismproteins (acetyl‑CoA
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synthetase/AMP‑fatty acid ligase, acyl‑CoAdehydrogenase, and enoyl‑CoAhydratase/isomerase)
in 1‑day‑old pellicle cells of A. baumannii strain ATCC 17978, speculating its association
with the biosynthesis of acyl‑homoserine lactones in quorum sensing [15]. Furthermore,
cis‑2‑decenoic acid, a short chain fatty acid, was identified as a signalling molecule capa‑
ble of inducing the biofilm dispersion in P. aeruginosa PAO1, E. coli, Klebsiella pneumoniae,
Proteus mirabilis, Streptococcus pyogenes, B. subtilis, Staphylococcus aureus, and Candida albi‑
cans [29,30]. Hence, it would be reasonable to conduct further investigations on the role
of ABUW_1624 (yiaY) and ABUW_1150 in CRAB pellicle development using gene knock‑
out methods.
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ABC transporters play a crucial role in achieving cellular homeostasis by utilising
ATP binding to export multiple substrates, including antibiotics during the bacterial stress
response [31]. In this study, ABUW_2820 (metQ), which encodes the substrate‑binding pro‑
tein for the D‑methionine transporter system, was observed being upregulated in pellicle
cells with a log2 fold change of 7.80 (Figure 7). The previous research has demonstrated
that a mixture of D‑amino acids, including D‑methionine and D‑tyrosine, can inhibit the
biofilm formation in Staphylococcus aureus and Pseudomonas aeruginosa by disrupting amy‑
loid fibres that connect cells within the biofilm [32]. Another recent study on Acinetobacter
baumannii ATCC 17978 shows that a transposon insertional mutant of met‑related genes,
specifically metG, significantly decreased pellicle biomass production [33]. Based on these
findings, it is hypothesised that ABUW_2820 (metQ) may play a role in pellicle develop‑
ment, as indicated by the involvement of met‑related genes. Further investigation is war‑
ranted to unravel its specific contribution to pellicle formation.

The typeVI secretion system (T6SS) is a phage‑related system responsible for the secre‑
tion of toxic effector molecules that can kill both prokaryotic and eukaryotic cells, leading
to cell death [34]. In our study, the identified DEGs involved in the T6SS were all down‑
regulated with a log2 fold change ranging from −3.97 to −7.33 (Figure 8). This suggests a
lower expression of T6SS in the pellicle cells compared to planktonic cells. The role of T6SS
for biofilm forming ability in A. baumannii remains a subject of debate. A study conducted
by Kim et al. [35] from Korea reported that T6SS positive A. baumannii isolates produced
more biofilm mass compared to T6SS negative isolates, suggesting a positive correlation
between T6SS and biofilm formation. However, contradictory findings were reported by
Dong et al. [36] from China. The authors generated a deletion mutant of the hcp gene that
caused the loss of T6SS function, thus, a significant increase in biofilm formation was ob‑
served in A. baumannii mutant compared to the wild type. Another two studies reported
that the deletion of tssM, a type VI secretion system membrane subunit in A. baumannii
DSM30011 and ATCC 17978 strains did not impact biofilm formation compared to their
respective wild types [37,38]. Overall, the results of T6SS on biofilm formation in A. bau‑
mannii are inconsistent.
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Figure 7. The identified ATP‑binding cassette transporters in pellicle cells of clinical carbapenem‑
resistant Acinetobacter baumannii strains. Green denotes the mentioned proteins. (A) D‑methionine
transporter. (B) Histidine transporter. (C) Lysine/Arginine/Ornithine transporter. (D) Alkanesulfonate
transporter. (The partial KEGG pathway maps were obtained from the Kanehisa Laboratories.).
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The two‑component systems (TCS) are essential signal transduction pathways that
enable bacteria to sense and respond to environmental cues through the coordinated ac‑
tion of histidine kinases and response regulators [39]. In our study, high expressions of
ABUW_1507 (cusS) and irlR (cusR) genes (log2 fold change = 5.78 and 7.33) encoding the
CusS sensor histidine kinase and the CusR response regulator, respectively, were observed
in the pellicle‑forming CRAB group (Figure 9). These genes are part of the CusSR TCS,
which is involved in copper homeostasis regulation. Copper is an essential trace element re‑
quired for numerous enzymatic reactions involved in bacterial electron transfer processes.
However, high copper concentrations can result in cellular damage by interacting with
lipids, proteins, nucleic acids, and other macromolecules [40]. Interestingly, transposon
insertion mutants of cusS and cusR in A. baumannii AB5075 exhibited attenuated virulence
in both Galleria mellonella larvae and murine models, highlighting the importance of this
TCS in the pathogenicity of A. baumannii [41].
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Another TCS, the kdpB gene, encodes for the potassium‑transporting ATPase ATP‑
binding subunit in the KdpDE TCS, was also upregulated with a log2 fold change of 2.78
in pellicle cells of the CRAB strains (Figure 9). The KdpDE TCS consists of the membrane‑
bound histidine kinase sensor KdpD, which autophosphorylates in response to low potas‑
sium conditions. It then transfers the phosphoryl group to the cytoplasmic response reg‑
ulator KdpE, which, in turn, promotes the transcription of K+ uptake systems, ensuring
intracellular K+ homeostasis [42]. The studies involving the deletion of K+ transporters,
including the KdpDE TCS, in A. baumannii ATCC 19606 have demonstrated a significant
attenuation in virulence. The survival rate of G. mellonella larvae infected with the deletion
mutant was only 20% within the first 24 h, compared to 60% for the wild‑type strain [43].
Furthermore, the recent research has demonstrated that inhibiting K+ channels hampers
biofilm formation in A. baumannii RS307, suggesting a correlation between membrane po‑
tential changes and K+ channels during biofilm development [44]. These findings consis‑
tently highlight the essential role of potassium ions and their respective channels in regu‑
lating virulence phenotypes, including biofilm formation.

Our study successfully elucidated the transcriptomic profiles from the pellicle cells of
three pellicle‑forming CRAB strains compared to the planktonic cells of three non‑pellicle‑
forming CRAB strains. Although the small sample size is a limitation for this study, the
knowledge of the underlying mechanisms driving pellicle formation, a rare trait in CRAB,
holds significant importance in the field of antibiotic resistance research. The further as‑
sessment of their functional role in pellicle formation, as well as carbapenem resistance,
requires future experimental validation.
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4. Materials and Methods
4.1. Bacterial Strains and Culture Conditions

The clinical CRAB strains used in this study, including 3 pellicle‑forming strains:
AB21 (bronchoalveolar lavage), AB34 (sputum), and AB69 (tracheal secretion), and 3 non‑
pellicle‑forming strains: AB11, AB20, andAB31, were recovered from sputum. Thepellicle‑
forming ability of these strains was confirmed through a pellicle formation assay and
impedance‑based xCELLigence real‑time cell analysis using an Agilent xCELLigence sys‑
tem (Agilent, Santa Clara, CA, USA) [20].

4.2. Pellicle and Planktonic Growth Conditions
All 6 CRAB strains were revived on Luria‑Bertani agar plates (BDDifco, Grayson, GA,

USA), and single colonies were inoculated into Mueller–Hinton (MH) broth (BD Difco,
Grayson, GA, USA). The cultures were incubated overnight at 37 ◦C with an agitation
speed of 150 rpm. The overnight cultures were diluted 1:100 into MH broth and incu‑
bated at 37 ◦Cwith an agitation speed of 150 rpm and were allowed to grow for 3.5 h until
reaching the log phase, characterised by an OD600 of 0.6. Once the desired log‑phase den‑
sity was achieved, the cultures were further diluted to an OD600 of 0.1 using MH broth in
borosilicate glass beakers. Each beaker contained a volume of 200mL, providing sufficient
space for biofilm formation. The cultures were then incubated statically at 37 ◦C for 48 h
in the absence of light.

4.3. Cell Harvesting
The pellicles produced by pellicle‑forming strains were formed on top of the culture

and far from the bottom of the beaker, thus, pellicle cells were collected from the surfaces
of the culture. The planktonic cells from non‑pellicle‑forming strains were collected from
the 1/3 upper phase of bacterial culture. The collected cells were subjected to centrifu‑
gation with a centrifugation speed of 2600× g for 10 min at 4 ◦C. The harvested pellets
were washed twice with 5 mL of chilled sterile phosphate‑buffered saline solution, and
the pellets were treated with RNAprotect bacteria reagent (Qiagen, Hilden, Germany) ac‑
cording to the manufacturer’s instructions. The treated cells were stored at −80 ◦C for
further experiments.

4.4. RNA Extraction and Quality Assessment
For RNA extraction, 0.1 g of the previously treated cells of each strain were resus‑

pended in TE buffer (30 mM Tris·Cl‑1 mM EDTA, pH 8.0) containing 15 mg/mL lysozyme
and 5% (v/v) of proteinase K solution and incubated for 10min at room temperature for cell
lysis. The total RNA was extracted and purified using RNeasy Mini kit (Qiagen, Hilden,
Germany) and further treatedwith RNase‑Free DNases Set (Qiagen, Hilden, Germany) for
DNA removal. The purified total RNA was stored at −80 ◦C for further experiments. The
quality of the purified total RNA was checked using bleached agarose gel electrophore‑
sis [45]. A 1% (w/v) agarose gel was prepared with the addition of 1% (v/v) Clorox bleach
in 1X Tris‑acetate‑EDTA (TAE) buffer. The purity of the RNA (OD260/280) was measured
using a NanoDrop 2000 UV‑Vis spectrophotometer (ThermoFisher Scientific, Denver, CO,
USA). The concentration of the RNA was measured using a Qubit RNA Broad Range as‑
say kit (Invitrogen, Waltham,MA, USA) for accurate quantification, and the RNA integrity
was assessed by the RNA ScreenTape TapeStation system (Agilent, Santa Clara, CA, USA).

4.5. RNA‑Sequencing Library Preparation and Illumina Sequencing
The cDNA libraries for RNA‑sequencing of each strain were prepared using the hy‑

brid of QIAseq Fast Select Bacterial—5S/16S/23S kit (Qiagen, Hilden, Germany) and QI‑
Aseq Stranded RNA Library Kit (Qiagen, Hilden, Germany). Briefly, Fast Select FH buffer
was added to the purified total RNA for the removal of 5S, 16S, and 23S rRNA. The frag‑
mentation of mRNA was then performed by incubating the mixture at multiple different
temperatures and times following the manufacturer’s protocol. Next, the fragmentised
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mRNA was used as a template for the synthesis of first‑strand cDNA, followed by the
second‑strand synthesis, and end‑repaired, poly‑A‑tailing, and ligated with the unique
combinatorial dual‑index Y‑adapters. Finally, CleanStart library amplification was per‑
formed and purified with QIAseq beads (Qiagen, Hilden, Germany) to obtain the final
cDNA libraries.

The concentration and integrity of the final cDNA libraries were assessed using a
Qubit dsDNAHigh Sensitivity assay kit (Invitrogen,Waltham,MA,USA) andD5000 Screen‑
Tape Assay TapeStation system (Agilent, Santa Clara, CA, USA). Then, the accurate quan‑
tification of the final cDNA libraries was performed with real‑time qPCR using QIAseq Li‑
braryQuant assay kit (Qiagen, Hilden, Germany)with theABI 7500 Fast real‑time PCR sys‑
tem (ThermoFisher, Denver, CO, USA). Finally, the final cDNA libraries were sequenced
with 150 bp paired‑end on a HiSeq 2500 sequencing platform (Illumina, San Diego, CA, USA).

4.6. Bioinformatic Analysis of RNA‑Seq Data
The raw reads obtained were cleaned by removing adaptor sequences, empty reads,

and low‑quality sequences and then normalised using CLC genomics workbench v12.0.3
(Qiagen, Hilden, Germany). The high‑quality cleaned reads were aligned to the reference
genome of Acinetobacter baumannii AB5075‑UW (Gene accession no: CP008706.1) with pa‑
rameters as follows: mismatch cost 2; insertion cost 3; deletion cost 3; length fraction 0.8,
and similarity fraction 0.8. After alignment, the total gene counts were normalised using
the weight trimmed mean of M values (TMM) method, and the expression values were
converted into counts per million (CPM).

4.6.1. Gene Differential Expression and Enrichment Analysis for RNA‑Seq Data
The differential expression for the RNA‑seq tool in the CLC genomics workbench

v12.0.3 (Qiagen, Hilden, Germany) was used for identifying DEGs in pellicle cells com‑
pared to planktonic cells. Genes that were differentially expressed with p‑value < 0.05 and
FDR p‑value < 0.01were statistically significant, while the downregulated and upregulated
DEGswere applied with the cut‑off factor of a log2 fold change of <−2 and >2, respectively.
The heatmap was generated using the hierarchy clustering method of average linkage
with the distancemeasurementmethod of Spearman rank correlation viaHeatMapper [46],
whereas a volcano plot of DEGs was constructed using SRplot (www.bioinformatics.com.
cn/en, accessed on 8May 2023). An enrichment analysis was performed to identify ortholo‑
gous genes and classify them into functional categories based on the similar ortholog align‑
ment of their amino acid sequences (E‑value < 0.001, Bit score > 60) based on the latest data
from the clusters of orthologous groups (COG) database [47] using eggnog‑MAPPER [48].
The COG bar chart was plotted using GraphPad Prism 8.0.2.

4.6.2. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes Pathway
Enrichment Analysis

The Gene Ontology (GO) enrichment analysis was performed based on Fisher exact
test (p‑value < 0.05) using Blast2GO 6.0.3. The GO terms of the DEGs were annotated us‑
ing the InterProScan and GO‑slim tools based on the latest EMBL‑EBI database. For the
Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis, the DEGs were
annotated with the KEGG Orthology (KO) terms and pathways using bi‑directional blast
hit (Blast hit score > 60) on all available Acinetobacter baumannii genes set lists (Organism
lists: acb, abm, aby, abc, abn, abb) in the KEGG Automatic Annotation Server (KAAS) [49].
Then, the KEGG enrichment analysiswas performed based on the functional hypergeomet‑
ric test [50] using the hypergeometric p‑value test calculator provided by the Graeber Lab
(https://systems.crump.ucla.edu/hypergeometric/, accessed on 8 May 2023). The GO and
KEGG enrichment bubble graphswere plotted using SRplot (www.bioinformatics.com.cn/en,
accessed on 8May 2023).

www.bioinformatics.com.cn/en
www.bioinformatics.com.cn/en
https://systems.crump.ucla.edu/hypergeometric/
www.bioinformatics.com.cn/en
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5. Conclusions
In this study, a comparative transcriptomic analysis between pellicle cells and plank‑

tonic cells of clinical CRAB strains was performed, resulting in the identification of
366 DEGs with 162 genes upregulated and 204 genes downregulated in pellicle cells. Our
findings provide valuable insights into several potential pathways associated with pellicle
formation in CRAB. The upregulation of genes involved in the metabolism of branched‑
chain amino acids suggests their role in remodelling and promoting the formation of pelli‑
cle biofilms in CRAB. Additionally, the upregulation of ABUW_1624 (yiaY) and downreg‑
ulation of ABUW_1150, both involved in fatty acid degradation may impact the synthesis
of lipid membrane components in CRAB cells, subsequently influencing biofilm dispersal
and the production of quorum sensingmolecules. Furthermore, the high expression of the
gene ABUW_2820 (metQ), which is involved in the D‑methionine transporter system, as
well as two‑component systems: CusSR and KdpDE, suggests their potential involvement
in the pellicle formation of CRAB. In summary, understanding the molecular mechanisms
involved in pellicle development is crucial for the development of effective strategies to
combat CRAB infections.
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