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Abstract: Staphylococcus pseudintermedius is an opportunistic pathogen that is frequently isolated from
canines. It is of escalating interest because of its increasing antimicrobial resistance and zoonotic
potential. Although many published articles are available that describe isolates obtained from
diseased dogs and humans, this study focused on isolates obtained from healthy dogs and their
owners who presented at clinics for routine veterinary care and utilized whole genome sequencing-
based analyses for strain comparisons. A total of 25 humans and 27 canines were sampled at
multiple sites, yielding 47 and 45 isolates, respectively. Whole genome sequence analysis was
performed. We detected mostly new sequence types (STs) and a high diversity. Strains carried few
antimicrobial resistance genes and plasmids, albeit three MRSP strains were found that belonged to
two internationally distributed STs. The virulence content did not provide insights toward a tendency
to colonization of humans but supported that there may be differences in the surface proteins between
carrier strains and those causing pyoderma. We identified 13 cases in which humans were infected
with strains from the dog they owned.

Keywords: Staphylococcus pseudintermedius; methicillin-resistant; diversity; virulence; dog; human;
comparative genomics

1. Introduction

Staphylococci are opportunistic organisms that can cause infections in humans and an-
imals [1]. This genus is mainly investigated for its molecular epidemiology, virulence [2,3],
and antimicrobial resistance [4,5]. The current study focused on Staphylococcus pseudinter-
medius, which commonly causes pyogenic soft tissue infections, otitis externa, sinusitis,
osteomyelitis, endocarditis, and post-operative abscesses [6–8]. S. pseudintermedius regularly
colonizes dogs and cats at multiple sites such as the skin and mucous membranes [9,10]
but may also be isolated from horses [11] and humans [12].

Dogs are of particular interest since up to 90% of dogs have been shown to carry this
bacterium [13]. Additionally, different strains of S. pseudintermedius can inhabit different
sites of a dog at the same time, which has vast implications for diagnostic testing and the
determination of antimicrobial sensitivity [14]. This organism can be zoonotic because
it can be transferred from pet dogs to their human owners, and there is the potential for

Antibiotics 2023, 12, 1266. https://doi.org/10.3390/antibiotics12081266 https://www.mdpi.com/journal/antibiotics

https://doi.org/10.3390/antibiotics12081266
https://doi.org/10.3390/antibiotics12081266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://orcid.org/0000-0003-0321-1180
https://orcid.org/0000-0002-4777-6880
https://orcid.org/0000-0001-5910-1429
https://orcid.org/0000-0003-0780-6384
https://doi.org/10.3390/antibiotics12081266
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/article/10.3390/antibiotics12081266?type=check_update&version=2


Antibiotics 2023, 12, 1266 2 of 11

S. pseudintermedius to cause infections in humans, particularly in immunocompromised
individuals [15]. Although carriage of S. pseudintermedius may be short-term and sporadic
in healthy humans, dogs can be carriers for extended periods of time [13].

Antimicrobial resistance in S. pseudintermedius is of growing concern, especially the
methicillin-resistant S. pseudintermedius (MRSP) strains [16–19]. Like methicillin-resistant
Staphylococcus aureus (MRSA), MRSP has evolved via the horizontal transfer, acquisition,
and insertion of the staphylococcal cassette chromosome (SCC), which carries a mec gene
(mecA or C) as well as other genes encoding virulence characteristics, other resistance
genes, and metal resistances [20]. The mecA gene encodes an alternative penicillin-binding
protein (PBP2a) that has a low affinity for β-lactam antibiotics [21], leading to resistance to
these commonly used antibiotics. MRSP strains have also been associated with resistance
to multiple classes of antimicrobials and hence are termed multidrug-resistant (MDR).
The occurrence of these antimicrobial-resistant strains is unsettling because it limits the
options for therapeutic management of infections and has a grave impact on morbidity and
mortality [6].

Recently, there has been increasing evidence of the role of MRSP in causing infections
in canines as well as humans [22], including the transmission of Staphylococcus pseudin-
termedius between humans [23,24]. This is mainly due to the advancement in the tech-
niques used to identify the Staphylococcus species, which include matrix-assisted laser
desorption/ionization–time of flight (MALDI-TOF) mass spectrometry and the combina-
tion of molecular subtyping and sequencing techniques that aid in increasing the accuracy
of identifying S. pseudintermedius infections [13]. As a result, there is a rapidly growing
pool of genomic data available regarding S. pseudintermedius. Most of the data involve
MRSP, which displays a rather a clonal population structure [4]. Although there are many
different sequence types, a geographical pattern of distribution was observed by Perreten
et al. in 2010 [25], when ST71 was the major clone observed in Europe and ST68 was the
major clone observed in the USA. Recent studies published in 2022 indicated that ST71 is
currently the major MRSP clone observed globally [4,26,27].

There is an increasing interest in identifying and comparing the various virulence fac-
tors and colonization capacities possessed by the various sequence types of both MRSP and
methicillin-susceptible S. pseudintermedius (MSSP) to determine if there are any associations
with in vivo virulence. Thus far, there are indications that the surface proteins (spsD/F/P/Q)
that are involved in colonization might be predominant in those isolates that cause pyo-
derma in dogs [28], indicating that these isolates may exhibit a higher pathogenicity. The
genes encoding for spsL and spsD have been associated with host specificity; however,
further research is required for confirmation because these genes show a high sequence
variation [29].

The objectives of this study were to elucidate the clonal types of S. pseudintermedius
present in Trinidad and Tobago and to determine the zoonotic potential and specific
characteristics of the accessory genome of strains isolated from healthy dogs and their
owners using genome sequencing.

2. Results
2.1. Strains

Seventy-two strains were included in this study. They originated from 27 apparently
healthy dogs and 25 owners of these dogs, representing 25 human–dog pairs and 2 dogs for
which their owner was negative. Forty-five strains originated from dogs, and twenty-seven
were from humans. Of the dog strains, 17 were isolated from the nose, 18 were from the
mouth, and 10 were from the skin of the abdomen. Of the human strains, 8 were isolated
from the nose, 5 were from the mouth, and 14 were from the hands (Table 1).

2.2. MLST

Only seven previously identified STs (ST1709, ST1097, ST373, ST758, ST71, ST45,
and ST192) representing 12 strains were found amongst the 72 strains. All other isolates
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presented novel sequence types, as shown in Figure 1. One strain could not be typed due to
absence of the pta gene. An eBURST analysis demonstrated that the strains were singletons.

Table 1. Origin of the strains investigated.

Animal Number of Isolates Isolation Site
Nose

(n)
Mouth

(n)
Abdomen (Dog)

Hand (Human) (n)

Dog (n = 27) 45 17 18 10
Human (n = 25) 27 8 5 14
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Figure 1. SNP-based phylogenetic tree and accessory genome of the analyzed S. pseudintermedius
strains. New sequence types all had STs higher than 2300. Virulence genes are shown in brown,
and resistance genes are all in purple. Samples are named according to their origin; the last letters
signify whether the strain originated from a dog (D) or human (H) sampling site with N for nose,
H for hand, B for abdomenal skin, and M for mouth. Strains with the same prefix were from the same
dog–owner combination. The strain named reference 1-44876 was the S. pseudintermedius reference
genome ATCC 49051.

2.3. Phylogeny

In all cases, not a single dog–human combination contained exactly the same strain,
with all showing at least one SNP difference (Table S1 in the Supplementary Materials).
In 13 cases, the SNP differences were between 1 and 12, indicating that both isolates
represented the same clone or strain. A second group of two cases could be identified with
the number of SNPs between 12 and 50, and finally a third group with more than 50 SNPs
included nine cases. In the latter group, no transfer of the strain could be demonstrated,
while in the second group, it was unclear whether these strains represented the same clone
and transmission had occurred. However, multiple strains colonizing the same dog (as



Antibiotics 2023, 12, 1266 4 of 11

well as multiple strains in a human in a few cases) were observed. In one dog, two identical
strains were isolated from different sampling sites (Figure 1).

We isolated S. pseudintermedius at multiple sites on dogs (nose, mouth, and ventral
abdomen) and obtained several isolates from the same dog. We obtained multiple strains
(two to four strains) from 15 dogs; in 5 of the cases the isolates represented the same strain
(less than 12 SNPs), and in 10 cases, the isolates were different strains.

In contrast, although we sampled multiple anatomical sites in humans (nose, mouth
and hands), we isolated significantly (chi-squared; p = 0.008) fewer strains from different
sites from a single human than from dogs. We obtained two isolates from five people, and
in four of those cases, the isolates represented different strains (more than 12 SNPs). In one
single case, the same strain was isolated twice.

2.4. Antimicrobial Resistance (AMR) Genes

It is important to note that the isolates utilized in this study were not independent
because we isolated them from owners and dogs in the same household as well as multiple
clones from one dog. As such, there was a bias in the dataset for duplicates. Seventeen
strains were fully susceptible, and a few strains carried multiple resistance genes. Forty-five
out of seventy-two strains carried a blaZ, and three MRSPs were identified: two ST71s
from a dog and his owner and one ST45 from the nose of a dog. The mecA gene in the
ST71 strain was located in the SCCmec type III(3A), while the SCCmec element of the ST45
strain was non-typeable as commonly noted in CC45 strains [25]. A BLASTN analysis of
the formerly described non-categorized ψSCCmec57395 revealed a 100% identity with this
element; when using easyfig [30], the structure was shown to be the same. Thirty strains
were tet(M)-positive, and two strains (the MRSP ST72) carried the tet(K) gene. Fifteen
strains carried the dfrG gene. All other AMR genes were only carried by between one and
six strains. Resistance to quaternary ammonium compounds mediated by the qacG gene
was carried by ten strains (Figure 1).

2.5. Plasmids

Few strains carried plasmids, and even fewer carried more than one. A total of
17 strains carried one or more plasmid replicons. One strain carried two plasmids, and the
MRSP strain ST45 carried four plasmids. The most common plasmid replicon found was
the repUS43 replicon, which was carried by 15 strains. The second most common was the
rep7a replicon, which was carried by four strains, of which two also carried the repUS43
replicon. The additional replicons found (repUS12 and rep13) were carried by the ST45
MRSP that also carried the other two replicons.

2.6. Virulence Genes

S. pseudintermedius virulence genes were found in all strains (Figure 1). Using the
VFDBins, only a few enterotoxins (sea, sec, selI, selK, and selq) were found in a few strains.
Using the S. pseudintermedius database to compare these strains, it was found that all strains
contained the enterotoxin-encoding genes (seaR and seaS), all but three contained the se-int,
and only few contained the sec-canine. The accessory gene regulator genes (agrA and agrD)
were found in all strains, while the agrB gene was frequently absent. All four described
types of agrD were detected. The most common type was type III with 22 strains that
were positive. Types I and IV were found in 17 strains, and type II was found in 14 strains.
Other virulence gene regulators present in all strains were the global regulator (rot, srrA,
and sigB), and the traP and sarA genes were detected in all but one strain. All strains also
contained genes encoding leukotoxins (lukF-I and lukS-I), proteases (clpP and clpX), the
elastin binding protein gene (ebpS), β-hemolysin (hlb), and all but one surface protease
(htrA). While all strains contained the exfoliative toxin gene (siet), all but one contained
the speta gene, few contained the exfoliative toxin genes exi (10) and expB (9), and none the
expA gene. Most of the strains had the capacity to form biofilms since they contained the
icaA/B/C/D genes (63/72). All but two strains contained the nuclease gen nucC, and slightly
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more than half contained the coagulase gene coa. The sialidase encoding gene nanB was
found in 13 strains. Several staphylococcal surface proteins were present, of which some
were in all strains while others were in fewer strains. The spsJ, spsO, and spsP genes were
not detected.

2.7. Prophages

All strains carried prophages, of which some were only incomplete phages. Due to
the multitude of incomplete phages, it was not possible to make concise comparisons.
However, similar-sized phages were found in the dog–owner pairs as well as similar sizes
of incomplete phages. There was certainly a great variety of different sizes of prophages
amongst the strains within the same ST and between the different STs.

3. Discussion

In contrast to most other studies that focused on MRSP, we sequenced a collection
of colonizing strains that included the strains that also infected the owner of the dog. To
our knowledge, there is only one study that used WGS and thus unambiguously showed
transmission [23]. We studied apparently healthy animals that came to veterinary clinics
for routine checkups or vaccinations.

3.1. Genetic Diversity

Most of the strains represented new STs and were singletons indicating a geographi-
cally specific population structure of S. pseudintermedius in Trinidad. New STs of
S. pseudintermedius from dogs have been frequently reported in as yet underexplored
regions [27,31,32], and these studies showed a specific geographical association of S. pseud-
intermedius sequence types. In contrast, MRSP isolates were more common STs with the
European MRSP ST71, which was identified in one dog–human pair, and the MRSP ST45,
which was only found in a dog. This study detected the most reported MRSP clones
(ST71 and ST45 [33]), indicating a worldwide expansion of these clones that includes the
Caribbean region, probably through tourism or animal trade. While the US is geographi-
cally closer, the MRSP ST68 clone, which is typically associated with the US [33], was not
detected. Nevertheless, in Trinidad, MRSP does not seem to be highly prevalent because
most strains are MSSP.

The MRSP ST71 was also found on an owner, while the MRSP ST45 strain was not
found on an owner. There were no real indications that there was a difference in colonization
capacity between the two detected MRSP clones because we did not detect any difference
in the virulence genes apart from the coa and spsI genes, which were present in the ST45
strain but not in the ST71 strain. Intriguingly, the human ST71 strain, while being nearly
identical (only one SNP difference) in all investigated accessory genes, lacked the spsD gene.
Whether this was associated with an adaptation after colonization of the owner remains to
be determined.

One strain could not be typed using MLST because the pta gene was absent. The pta
gene encodes a phosphate acetyltransferase, and to the best of our knowledge, the absence
of that gene has never been reported previously. Assuming that the gene was incompletely
sequenced, we were not able to locate potential parts of the gene in the sequence. Upon
observation of the cluster pattern of the strain (N2S2DN; Figure 1), it was observed that it
was not clustering together with a specific sequence type. Thus, we assumed that this gene
was absent in this strain and that this was a rare finding.

It has been shown previously using different methods that the genetic diversity of
strains in a single individual dog can be considerable [34]. Also, in our study, this was
evident, although there were also quite a number of dogs with the same clone present. This
was less obvious in humans, although it should be noted that there were also fewer humans
from whom we could obtain multiple isolates using our methodology. We did not find any
indication that certain S. pseudintermedius strains colonize humans better than animals.
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Transmission of S. pseudintermedius from dogs to humans has been studied on several
occasions [29,35]. The transfer, which has been demonstrated at different degrees, is also
dependent on the sampling methods used as well as whether the dog was experiencing
pyoderma, making it difficult to estimate transmission rates in general. The same/similar
strains have been found to colonize both the animal and the owner, though colonization
with unrelated strains has also been demonstrated [24,36,37]. High diversity may account
for the variation amongst strains colonizing dogs and humans. Indeed, it has been shown
that there was a large diversity of strains on the same dog and that the detection of types
differed over time [38]. As such, the absence of the strain that was found on the owner
and dog may be merely a result of this high diversity of strains and the limited number of
isolates investigated from each dog in this study. A study assessing the diversity of strains
from the same dog would be of interest.

3.2. AMR

In this study, only 3 out of 72 strains were methicillin-resistant, and the other strains
were broadly susceptible to most antibiotics. The resistance against antimicrobials in
S. pseudintermedius is quite variable according to the studies performed, though MRSP
strains tend to be increasingly prevalent, and those strains tend to be multidrug-resistant [39,
40], as also seen in our study. The AMR genes found in these strains are the classical
resistance genes often found in S. pseudintermedius [41,42].

3.3. Plasmids

Though the resistance genes detected are frequently associated with plasmids [42],
few plasmids were present, and most of the strains were devoid of plasmids. The repUS43
replicon has been found in different Gram-positive bacteria worldwide (assessed through a
BLAST search of the sequence and has been shown to be associated with plasmids carrying
the antimicrobial resistance gene, although in our study, no such association could be
found, which may have been caused by the fact that the assembly did not allow for a
closed sequence. Typically, the MRSP strains carried the rep7a, and only one MSSP carried
a plasmid with this replicon; this replicon also has been found in a multitude of Gram-
positive bacteria (via BLAST search). The MRSP ST45 carried most plasmids with all four
different replicons we detected.

3.4. Virulence

The S. pseudintermedius strains isolated in this study seemed to have a core virulence
gene content similar to previously studied strains [43]. Four genes coding for surface
proteins (spsD, spsF, spsP, and spsQ) involved in colonization by binding to the host’s extra-
cellular matrix were previously shown to be present mainly in dog pyoderma isolates [28],
although this was not absolute. In our collection of strains, we detected these genes to
a lesser extent than most of the other surface proteins (23, 1, 0, and 3, respectively). It is
striking that three of those surface proteins were nearly absent, indicating that those genes
may indeed be of importance in pyoderma since our strains were from healthy dogs. This
indicated that the strains used in this study were mainly the typical colonizing strains and
that these strains can readily colonize humans.

Differences in virulence and phage content have been found between human and
dog MRSP strains of a same ST, including an ST45 strain [44] similar to that in our study.
On the other hand, in a larger collection of strains, no differences could be found [29].
Unfortunately, the owner of the dog carrying this ST45 strain did not carry the same strain.
The ST71 strain of our study showed a difference with the human strain lacking the spsD
gene, while in the study by Phumthanakor et al. (2021) [44], the spsP and spsQ genes were
differently present in the dog and human strains. Nevertheless, these surface proteins
are probably associated with pyoderma in dogs. It may thus well be that these proteins
were lost since they are specific for adhesion to dog keratinocytes. Differences were also
seen in the phages; however, since our sequences were Illumina-generated sequences, the
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comparison of the presence of phages was not possible. Though several differences were
noted, they might have been artificial because they were partially located on different
contigs. Long-read sequencing could solve this issue.

Other differences were noted between strains of the same ST, and those were mainly
seen in different surface proteins (spsB/D/I/L/Q/R). Other genes that differed were the
enterotoxin se-int and the nuclease nunC. Differences in the presence was also seen for
several sps genes within a sequence type, which has been noted before [43]. The reason
why these surface proteins differ so much between clonally related strains compared to
other genes remains to be elucidated.

4. Materials and Methods
4.1. Isolates

The isolates were obtained from dogs and their owners and identified using MALDI-
TOF in a previous study [45]. Sampling in this former study was done on dog–owner
combinations with the aim to isolate all Staphylococcaceae and determine the species
distribution and overlaps as well as the antimicrobial susceptibility of the isolates. The
S. pseudintermedius isolates included in this study were selected from this collection based
on the presence of an isolate in a dog and owner. From several dogs and owners, several
isolates were obtained from different locations and subsequently subjected to genome
sequencing. There were isolates included from two dogs for which the owner isolate
was excluded because of contamination of the DNA sample that became evident after
sequence analysis.

4.2. Whole Genome Sequencing and Sequence Analysis

Overnight cultures were grown in tryptic soy broth at 37 ◦C with 200 rpm shaking.
Genomic DNA was extracted using the DNeasy Blood and Tissue kit (Qiagen). Library
preparation was carried out using the Nextera XT kit and paired-end 2 × 250 nbp se-
quencing on a MiSeq, all following standard Illumina protocols (Illumina Inc., San Diego,
CA, USA). All raw reads were deposited under bioproject PRJNA778212 (BioSamples:
SAMN22933514 and SAMN31370566-SAMN31370626).

De novo assembly was conducted using a unicycler, quality was assessed with QUAST,
and sequences were annotated using RASTk on the Patric server (https://www.patricbrc.
org/ accessed on 6 August 2022). MLST was performed on the CGE server using ‘MLST’
(https://cge.cbs.dtu.dk/services/MLST/, accessed for this manuscript on 12 August
2022) [46]. Unknown MLST profiles and alleles were submitted to the ‘Public databases
for molecular typing and microbial genome diversity’ (https://pubmlst.org/ accessed for
this manuscript on 2 November 2022), and new allele numbers and sequence types were
obtained. MLST profiles were compared using BURST on pubMLST.

To investigate the genetic relatedness of the isolates, we used CSI Phylogeny 1.4 on
the CGE server (http://www.genomicepidemiology.org/ accessed for this manuscript
on 20 August 2022) for SNP analysis [47] using the S. pseudintermedius reference genome
ATCC 49051 (named 1-44876). The relatedness of the isolates was visualized using ITol [48].

The following analyses were performed with pipelines from the Center for Genomic
Epidemiology (http://www.genomicepidemiology.org/ accessed for this manuscript on
25 August 20222): Kmer analysis to confirm the species identification (KmerFinder) [49],
ResFinder v.3.0 for the detection of resistance genes [50], PlasmidFinder v2.0 for the de-
tection of plasmid replicons [51], and SCCmecFinder for identification of the SCCmec type.
Sequences not included in the SCCmec typing scheme were downloaded, and BLASTN was
used for finding similar sequences. Structure of the pseudoSCCmec elements was compared
using easyfig [30]. Phages were analyzed using Phaster (https://phaster.ca/ accessed for
this manuscript on 27 October 2022) [52].

Virulence genes were determined with Abricate using vfdb [53] and a database specif-
ically developed for the detection of S. pseudintermedius virulence genes (DB_SP) [43]. The
specific database contained the sequences for spsA-R, clpP, siet, speta, se-int, lukF-I, lukS-I,

https://www.patricbrc.org/
https://www.patricbrc.org/
https://cge.cbs.dtu.dk/services/MLST/
https://pubmlst.org/
http://www.genomicepidemiology.org/
http://www.genomicepidemiology.org/
https://phaster.ca/
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sec-canine, exi, expB, agrA-D, icaA-D, nanB, coa, clpX, saeR, saeS, htrA, nucC, hlb, sigB, srrA,
sarA, rot, traP, expA, and epbS. We determined the four different agrD types (GenBank
accession nos. EU157356.1, EU157391.1, EU157400.1, and EU157402.1) using BLASTN on
the Patric server [34].

Statistical analysis of differences between prevalence of characteristics between dogs
and humans were assessed via the chi-squared test.

5. Conclusions

Less than half of the sampled dog–owner combinations showed that humans were
colonized with S. pseudintermedius strains of the healthy dog they owned (defined as less
than 12 SNPs). In some cases, other strains were found, although this may merely have
reflected the high diversity of S. pseudintermedius strains that can be present within one
dog. We identified mostly new STs and a high diversity of S. pseudintermedius strains in
Trinidad. Strains carried few antimicrobial resistance genes and few plasmids, albeit three
MRSP strains were found belonging to two internationally distributed STs. There were no
indications that strains isolated from owners possessed specific virulence genes that could
facilitate the colonization of humans.
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