Determinants of Inadequate Empiric Antimicrobial Therapy in ICU Sepsis Patients in Al-Madinah Al-Munawwarah, Saudi Arabia: A Comparison of Artificial Neural Network and Regression Analysis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design, Settings, and Populations
4.2. Data Collection
4.3. Assessment of Empiric Antimicrobial Therapy (EAMT)’s Adequacy
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gyawali, B.; Ramakrishna, K.; Dhamoon, A.S. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med. 2019, 7, 2050312119835043. [Google Scholar] [CrossRef] [Green Version]
- Bullock, B.; Benham, M.D. Bacterial Sepsis. In StatPearls [Internet]; StatPearls Publishing: Tampa, FL, USA, 2019. [Google Scholar]
- Sakr, Y.; Jaschinski, U.; Wittebole, X.; Szakmany, T.; Lipman, J.; Ñamendys-Silva, S.A.; Martin-Loeches, I.; Leone, M.; Lupu, M.-N.; Vincent, J.-L.; et al. Sepsis in Intensive Care Unit Patients: Worldwide Data from the Intensive Care over Nations Audit. Open Forum Infect. Dis. 2018, 5, ofy313. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.A.; Mandel, J.; Parsons, P.; Sexton, D.; Hockberger, R.; Finlay, G. Evaluation and management of suspected sepsis and septic shock in adults. Uptodate Online 2018, 1–29. Available online: https://www.uptodate.com/contents/evaluation-and-management-of-suspected-sepsis-and-septic-shock-in-adults (accessed on 16 April 2023).
- Al-Sunaidar, K.A.; Abd Aziz, N.P.; Hassan, Y.P. Appropriateness of empirical antibiotics: Risk factors of adult patients with sepsis in the ICU. Int. J. Clin. Pharm. 2020, 42, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Montero, J.; Ortiz-Leyba, C.; Herrera-Melero, I.; Aldabo-Pallas, T.; Cayuela-Dominguez, A.; Marquez-Vacaro, J.A.; Carbajal-Guerrero, J.; Garcia-Garmendia, J.L. Mortality and morbidity attributable to inadequate empirical antimicrobial therapy in patients admitted to the ICU with sepsis: A matched cohort study. J. Antimicrob. Chemother. 2008, 61, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Ratzinger, F.; Eichbichler, K.; Schuardt, M.; Tsirkinidou, I.; Mitteregger, D.; Haslacher, H.; Perkmann, T.; Schmetterer, K.G.; Doffner, G.; Burgmann, H. Sepsis in standard care: Patients’ characteristics, effectiveness of antimicrobial therapy and patient outcome—A cohort study. Infection 2015, 43, 345–352. [Google Scholar] [CrossRef]
- Trifi, A.; Abdellatif, S.; Abdennebi, C.; Daly, F.; Nasri, R.; Touil, Y.; Lakhal, S.B. Appropriateness of empiric antimicrobial therapy with imipenem/colistin in severe septic patients: Observational cohort study. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 39. [Google Scholar] [CrossRef] [Green Version]
- Garnacho-Montero, J.; Garcia-Garmendia, J.L.; Barrero-Almodovar, A.; Jimenez-Jimenez, F.J.; Perez-Paredes, C.; Ortiz-Leyba, C. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit. Care Med. 2003, 31, 2742–2751. [Google Scholar] [CrossRef]
- Niederman, M.S.; Baron, R.M.; Bouadma, L.; Calandra, T.; Daneman, N.; DeWaele, J.; Kollef, M.H.; Lipman, J.; Nair, G.B. Initial antimicrobial management of sepsis. Crit. Care 2021, 25, 307. [Google Scholar] [CrossRef]
- Fitousis, K.; Moore, L.J.; Hall, J.; Moore, F.A.; Pass, S. Evaluation of empiric antibiotic use in surgical sepsis. Am. J. Surg. 2010, 200, 776–782. [Google Scholar] [CrossRef]
- Nygård, S.T.; Langeland, N.; Flaatten, H.K.; Fanebust, R.; Haugen, O.; Skrede, S. Aetiology, antimicrobial therapy and outcome of patients with community acquired severe sepsis: A prospective study in a Norwegian university hospital. BMC Infect. Dis. 2014, 14, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angus, D.C.; Linde-Zwirble, W.T.; Lidicker, J.; Clermont, G.; Carcillo, J.; Pinsky, M.R. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 2001, 29, 1303–1310. [Google Scholar] [CrossRef]
- Kanji, Z.; Dumaresque, C. Time to effective antibiotic administration in adult patients with septic shock: A descriptive analysis. Intensive Crit. Care Nurs. 2012, 28, 288–293. [Google Scholar] [CrossRef]
- Leone, M.; Bourgoin, A.; Cambon, S.; Dubuc, M.; Albanèse, J.; Martin, C. Empirical antimicrobial therapy of septic shock patients: Adequacy and impact on the outcome. Crit. Care Med. 2003, 31, 462–467. [Google Scholar] [CrossRef]
- Micek, S.T.; Welch, E.C.; Khan, J.; Pervez, M.; Doherty, J.A.; Reichley, R.M.; Kollef, M.H. Empiric combination antibiotic therapy is associated with improved outcome against sepsis due to Gram-negative bacteria: A retrospective analysis. Antimicrob. Agents Chemother. 2010, 54, 1742–1748. [Google Scholar] [CrossRef] [Green Version]
- Moraes, R.B.; Guillén, J.A.V.; Zabaleta, W.J.C.; Borges, F.K. De-escalation, adequacy of antibiotic therapy and culture positivity in septic patients: An observational study. Rev. Bras. Ter. Intensiv. 2016, 28, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Oshima, T.; Kodama, Y.; Takahashi, W.; Hayashi, Y.; Iwase, S.; Kurita, T.; Saito, D.; Yamaji, Y.; Oda, S. Empiric antibiotic therapy for severe sepsis and septic shock. Surg. Infect. 2016, 17, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Yasrab, M.; Khushdil, A.; Qamar, K.; Ahmed, Z. Neonatal sepsis in a tertiary care hospital: Bacteriological profile and its antibicrobial sensitivity. Pak. Armed Forces Med. J. 2018, 68, 1654–1658. [Google Scholar]
- Arabi, Y.M.; Dara, S.I.; Memish, Z.; Al Abdulkareem, A.; Tamim, H.M.; Al-Shirawi, N.; Parrillo, J.E.; Dodek, P.; Lapinsky, S.; Feinstein, D. Antimicrobial therapeutic determinants of outcomes from septic shock among patients with cirrhosis. Hepatology 2012, 56, 2305–2315. [Google Scholar] [CrossRef] [Green Version]
- Kazzaz, Y.M.; AlTurki, H.; Aleisa, L.; Alahmadi, B.; Alfattoh, N.; Alattas, N. Evaluating antimicrobial appropriateness in a tertiary care pediatric ICU in Saudi Arabia: A retrospective cohort study. Antimicrob. Resist. Infect. Control 2020, 9, 173. [Google Scholar] [CrossRef] [PubMed]
- Al-Ani, A.H.H.A.; Othman, N.; Hassali, M.A.; Ibrahim, B. Adequacy of Empiric Antibiotics Therapy and Its Impact on Outcomes in Adult Critically Ill Sepsis Patients: A Review. Malays. J. Med. Sci. 2022, 29, 17–23. [Google Scholar] [CrossRef]
- Kirişci, M. Comparison of artificial neural network and logistic regression model for factors affecting birth weight. SN Appl. Sci. 2019, 1, 378. [Google Scholar] [CrossRef] [Green Version]
- Eftekhar, B.; Mohammad, K.; Ardebili, H.E.; Ghodsi, M.; Ketabchi, E. Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Med. Inform. Decis. Mak. 2005, 5, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borzouei, S.; Mahjub, H.; Sajadi, N.A.; Farhadian, M. Diagnosing thyroid disorders: Comparison of logistic regression and neural network models. J. Fam. Med. Prim. Care 2020, 9, 1470. [Google Scholar]
- Faradmal, J.; Soltanian, A.R.; Roshanaei, G.; Khodabakhshi, R.; Kasaeian, A. Comparison of the performance of log-logistic regression and artificial neural networks for predicting breast cancer relapse. Asian Pac. J. Cancer Prev. APJCP 2014, 15, 5883–5888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsaeian, M.; Mohammad, K.; Mahmoudi, M.; Zeraati, H. Comparison of logistic regression and artificial neural network in low back pain prediction: Second national health survey. Iran. J. Public Health 2012, 41, 86–92. [Google Scholar]
- Marquet, K.; Liesenborgs, A.; Bergs, J.; Vleugels, A.; Claes, N. Incidence and outcome of inappropriate in-hospital empiric antibiotics for severe infection: A systematic review and meta-analysis. Crit. Care 2015, 19, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakkar, A.K.; Shafiq, N.; Sahni, N.; Mohindra, R.; Kaur, N.; Gamad, N.; Panditrao, A.; Kondal, D.; Malhotra, S.; Kumar, M.P.; et al. Assessment of Appropriateness of Antimicrobial Therapy in Resource-Constrained Settings: Development and Piloting of a Novel Tool-AmRAT. Antibiotics 2021, 10, 200. [Google Scholar] [CrossRef]
- Yokota, P.K.; Marra, A.R.; Martino, M.D.; Victor, E.S.; Durão, M.S.; Edmond, M.B.; dos Santos, O.F. Impact of appropriate antimicrobial therapy for patients with severe sepsis and septic shock—A quality improvement study. PLoS ONE 2014, 9, e104475. [Google Scholar] [CrossRef]
- Desai, N.; Gross, J. Scoring systems in the critically ill: Uses, cautions, and future directions. BJA Educ. 2019, 19, 212–218. [Google Scholar] [CrossRef]
- Ho, K.; Finn, J.; Knuiman, M.; Webb, S. Combining multiple comorbidities with Acute Physiology Score to predict hospital mortality of critically ill patients: A linked data cohort study. Anaesthesia 2007, 62, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Zilberberg, M.D.; Shorr, A.F.; Micek, S.T.; Vazquez-Guillamet, C.; Kollef, M.H. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: A retrospective cohort study. Crit. Care 2014, 18, 596. [Google Scholar] [CrossRef]
- Masterton, R.; Drusano, G.; Paterson, D.; Park, G. Appropriate antimicrobial treatment in nosocomial infections—The clinical challenges. J. Hosp. Infect. 2003, 55, 1–12. [Google Scholar] [CrossRef]
- Carrara, E.; Pfeffer, I.; Zusman, O.; Leibovici, L.; Paul, M. Determinants of inappropriate empirical antibiotic treatment: Systematic review and meta-analysis. Int. J. Antimicrob. Agents 2018, 51, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Lueangarun, S.; Leelarasamee, A. Impact of inappropriate empiric antimicrobial therapy on mortality of septic patients with bacteremia: A retrospective study. Interdiscip. Perspect. Infect. Dis. 2012, 2012, 765205. [Google Scholar] [CrossRef] [Green Version]
- Zilberberg, M.D.; Nathanson, B.H.; Sulham, K.; Fan, W.; Shorr, A.F. Carbapenem resistance, inappropriate empiric treatment and outcomes among patients hospitalized with Enterobacteriaceae urinary tract infection, pneumonia and sepsis. BMC Infect. Dis. 2017, 17, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Chen, Y.; Hang, Y.; Luo, H.; Fang, X.; Xiao, Y.; Cao, X.; Zou, S.; Hu, X.; Hu, L. Impact of inappropriate empirical antibiotic treatment on clinical outcomes of urinary tract infections caused by Escherichia coli: A retrospective cohort study. J. Glob. Antimicrob. Resist. 2021, 26, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Montravers, P.; Bassetti, M. The ideal patient profile for new beta-lactam/beta-lactamase inhibitors. Curr. Opin. Infect. Dis. 2018, 31, 587–593. [Google Scholar] [CrossRef]
- Antimicrobial Stewardship Subcommittee of the National Antimicrobial Resistance Committee and the General Administration of Pharmaceutical Care at Ministry of Health, Saudi Arabia. National Antimicrobial Therapy Guidelines for Community and Hospital Acquired Infections in Adults, 2018th ed.; Ministry of Health, Saudi Arabia: Riyadh, Saudi Arabia, 2016.
- Phua, J.; Koh, Y.; Du, B.; Tang, Y.-Q.; Divatia, J.V.; Tan, C.C.; Gomersall, C.D.; Faruq, M.O.; Shrestha, B.R.; Binh, N.G. Management of severe sepsis in patients admitted to Asian intensive care units: Prospective cohort study. BMJ 2011, 342, d3245. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.-P.; Lee, C.-H.; Lu, Y.-S.; Hsu, L.-N. A comparison of MICU survival prediction using the logistic regression model and artificial neural network model. J. Nurs. Res. 2006, 14, 306–314. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chen, Y.-F.; Chen, H.-Y.; Hung, C.-T.; Shi, H.-Y. Artificial Neural Network and Cox Regression Models for Predicting Mortality after Hip Fracture Surgery: A Population-Based Comparison. Medicina 2020, 56, 243. [Google Scholar] [CrossRef] [PubMed]
- Strich, J.R.; Heil, E.L.; Masur, H. Considerations for Empiric Antimicrobial Therapy in Sepsis and Septic Shock in an Era of Antimicrobial Resistance. J. Infect. Dis. 2020, 222, S119–S131. [Google Scholar] [CrossRef] [PubMed]
- Corcione, S.; Shbaklo, N.; Vicentini, C.; Corradi, A.; Scabini, S.; Pinna, S.M.; Tarozzo, A.; Curtoni, A.; Cattel, F.; Cavallo, R.; et al. Impact of an empiric antimicrobial therapy manual on antimicrobial usage and multidrug resistant organism trends in a large Italian teaching hospital. Infect. Prev. Pract. 2022, 4, 100187. [Google Scholar] [CrossRef]
- Panch, T.; Szolovits, P.; Atun, R. Artificial intelligence, machine learning and health systems. J. Glob. Health 2018, 8, 020303. [Google Scholar] [CrossRef] [PubMed]
- Rather, I.A.; Kim, B.-C.; Bajpai, V.K.; Park, Y.-H. Self-medication and antibiotic resistance: Crisis, current challenges, and prevention. Saudi J. Biol. Sci. 2017, 24, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Degoricija, V.; Sharma, M.; Legac, A.; Gradišer, M.; Šefer, S.; Vučičević, Ž. Survival analysis of 314 episodes of sepsis in medical intensive care unit in university hospital: Impact of intensive care unit performance and antimicrobial therapy. Croat. Med. J. 2006, 47, 385–397. [Google Scholar]
- Garnacho-Montero, J.; Gutiérrez-Pizarraya, A.; Escoresca-Ortega, A.; Fernández-Delgado, E.; López-Sánchez, J.M. Adequate antibiotic therapy prior to ICU admission in patients with severe sepsis and septic shock reduces hospital mortality. Crit. Care 2015, 19, 302. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Ellis, P.; Arabi, Y.; Roberts, D.; Light, B.; Parrillo, J.E.; Dodek, P.; Wood, G.; Kumar, A.; Simon, D. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009, 136, 1237–1248. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- IBM Corp. Statistics for Windows, version 25.0; IBM Corp: Armonk, NY, USA, 2017.
- AL-Rousan, N.; Mat Isa, N.A.; Mat Desa, M.K.; AL-Najjar, H. Integration of logistic regression and multilayer perceptron for intelligent single and dual axis solar tracking systems. Int. J. Intell. Syst. 2021, 36, 5605–5669. [Google Scholar] [CrossRef]
- Wang, A.; An, N.; Xia, Y.; Li, L.; Chen, G. A logistic regression and artificial neural network-based approach for chronic disease prediction: A case study of hypertension. In Proceedings of the 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), Taipei, Taiwan, 1–3 September 2014; pp. 45–52. [Google Scholar]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398. [Google Scholar]
- Alam, M. Codes in MATLAB for Training Artificial Neural Network Using Particle Swarm Optimization; Research Gate: Berlin, Germany, 2016. [Google Scholar]
Variables | Total n (%), or Mean ± SD |
---|---|
Age (years) a | 67.6 ± 15.1 |
Gender b | |
Male | 156 (61.7) |
Female | 97 (38.3) |
Type of residency b | |
Hajj/Umrah visitor | 13 (5.1) |
Local/resident | 240 (94.9) |
Diagnosis b | |
Sepsis | 113 (44.7) |
Septic shock | 140 (55.3) |
History of antibiotic use b | 85 (33.6) |
Admission site b | |
Emergency department | 177 (70.0) |
Medical Wards | 2 (0.8) |
Surgical wards | 51 (20.2) |
Other institutes | 23 (9.1) |
Surgical history b | 87 (34.4) |
Time of surgery b | |
Within the past week | 52 (20.6) |
More than 1 week–months | 12 (4.7) |
More than 6 months | 23 (9.1) |
Type of surgical history b | |
Abdominal | 2 (0.8) |
Orthopedic | 6 (2.4) |
Neurosurgery | 4 (1.6) |
Cardiovascular | 14 (5.5) |
Urological | 3 (1.2) |
Lower limb amputation | 41 (16.2) |
Diabetic septic foot debridement | 13 (5.1) |
Fasciotomy | 2 (0.8) |
Malignancy | 1 (0.4) |
GCS score b | |
Severe (≤8) | 58 (22.9) |
Moderate (9–12) | 144 (56.9) |
Minor (≥13) | 51 (20.2) |
Number of comorbidities a | 2.3 ± 0.93 |
Type of comorbidities b | |
Diabetes Mellitus | 213 (84.2) |
Hypertension | 214 (84.6) |
Asthma | 9 (3.6) |
Chronic Obstructive Pulmonary Disease | 5 (2.0) |
Coronary Artery Disease | 60 (23.7) |
Congestive Heart Disease | 10 (4.0) |
Chronic renal disease | 11 (4.3) |
Old malignancy | 5 (2.0) |
Liver diseases | 2 (0.8) |
Central Nervous System | 54 (21.3) |
Need for Mechanical Ventilation b | 149 (58.9) |
Number of organ failure a | 3.47 ± 1.78 |
Liver failure b | 190 (75.1) |
Acute kidney injury b | 141 (55.7) |
Respiratory failure b | 153 (60.5) |
Central Nervous System b | 147 (58.1) |
Cardiac failure b | 121 (47.8) |
Disseminated intravascular coagulation b | 110 (43.5) |
Venous thromboembolism b | 17 (6.7) |
APACHE II score a | 27.1 ± 8.4 |
Onset of infection b | |
Hospital-acquired infection | 75 (29.6) |
Community-acquired infection | 178 (70.4) |
Source of infection b | |
Respiratory tract infection | 116 (45.8) |
Urinary tract infection | 45 (17.8) |
Abdominal infection | 4 (1.6) |
Soft tissue/skin infection | 65 (25.7) |
Surgical site infection | 21 (8.3) |
CNS infection | 1 (0.4) |
Unknown | 1 (0.4) |
MDRO b | 78 (30.8) |
Variables | Adequate | Inadequate | Variable Coefficient (B) | Crude OR (95%CI) | p Value | Variable Coefficient (B) | Adjusted OR (95% CI) | p Value |
---|---|---|---|---|---|---|---|---|
Type of surgical history b | ||||||||
Lower limb amputation | 32 (62.7) | 9 (25.7) | −1.631 | 0.196 (0.089–0.431) | <0.001 | −2.215 | 0.109 (0.025–0.478) | 0.003 |
Type of comorbidities b | ||||||||
Coronary Artery Disease | 15 (12.6) | 45 (33.6) | 1.254 | 3.506 (1.831–6.710) | <0.001 | 1.140 | 3.128 (1.016–9.629) | 0.047 |
APACHE II score a | 22.76 ± 8.11 | 31.10 ± 6.59 | 0.146 | 1.157 (1.111–1.204) | <0.001 | 0.100 | 1.087 (1.010–1.170) | 0.026 |
MDRO b | 16 (13.4) | 62 (46.3) | 1.713 | 5.543 (2.962–10.374) | <0.001 | 1.990 | 7.318 (2.839–18.864) | <0.001 |
Classification | ||||
---|---|---|---|---|
Sample | Observed | Predicted | ||
Adequate | Inadequate | Percentage Correct | ||
Logistic regression | Adequate | 86 | 33 | 72.3% |
Inadequate | 32 | 102 | 76.1% | |
Overall Percentage | 74.3% | |||
ANN—Training | Adequate | 64 | 13 | 83.1% |
Inadequate | 15 | 60 | 80.0% | |
Overall Percentage | 52.0% | 48.0% | 81.6% | |
ANN—Testing | Adequate | 28 | 6 | 82.4% |
Inadequate | 9 | 41 | 82.0% | |
Overall Percentage | 44.0% | 56.0% | 82.1% |
Independent Variable Importance | ||
---|---|---|
Importance | Normalized Importance | |
Coronary artery disease | 0.137 | 28.0% |
Surgical history | 0.160 | 32.7% |
MDRO infection | 0.214 | 43.9% |
APACHI II score | 0.489 | 100.0% |
ROC-AUC Value | Discrimination Quality |
---|---|
≥0.9 | Outstanding |
0.8–0.9 | Excellent |
0.7–0.8 | Acceptable |
0.5 | No discrimination |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dala Ali, A.H.H.; Harun, S.N.; Othman, N.; Ibrahim, B.; Abdulbagi, O.E.; Abdullah, I.; Ariffin, I.A. Determinants of Inadequate Empiric Antimicrobial Therapy in ICU Sepsis Patients in Al-Madinah Al-Munawwarah, Saudi Arabia: A Comparison of Artificial Neural Network and Regression Analysis. Antibiotics 2023, 12, 1305. https://doi.org/10.3390/antibiotics12081305
Dala Ali AHH, Harun SN, Othman N, Ibrahim B, Abdulbagi OE, Abdullah I, Ariffin IA. Determinants of Inadequate Empiric Antimicrobial Therapy in ICU Sepsis Patients in Al-Madinah Al-Munawwarah, Saudi Arabia: A Comparison of Artificial Neural Network and Regression Analysis. Antibiotics. 2023; 12(8):1305. https://doi.org/10.3390/antibiotics12081305
Chicago/Turabian StyleDala Ali, Ahmad Habeeb Hattab, Sabariah Noor Harun, Noordin Othman, Baharudin Ibrahim, Omer Elhag Abdulbagi, Ibrahim Abdullah, and Indang Ariati Ariffin. 2023. "Determinants of Inadequate Empiric Antimicrobial Therapy in ICU Sepsis Patients in Al-Madinah Al-Munawwarah, Saudi Arabia: A Comparison of Artificial Neural Network and Regression Analysis" Antibiotics 12, no. 8: 1305. https://doi.org/10.3390/antibiotics12081305
APA StyleDala Ali, A. H. H., Harun, S. N., Othman, N., Ibrahim, B., Abdulbagi, O. E., Abdullah, I., & Ariffin, I. A. (2023). Determinants of Inadequate Empiric Antimicrobial Therapy in ICU Sepsis Patients in Al-Madinah Al-Munawwarah, Saudi Arabia: A Comparison of Artificial Neural Network and Regression Analysis. Antibiotics, 12(8), 1305. https://doi.org/10.3390/antibiotics12081305