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Abstract: Background/Objectives: Carbapenem resistance poses a significant threat to public health
by undermining the efficacy of one of the last lines of antibiotic defense. Addressing this challenge
requires innovative approaches that can enhance our understanding and ability to combat resistant
pathogens. This review aims to explore the integration of machine learning (ML) and epidemiological
approaches to understand, predict, and combat carbapenem-resistant pathogens. It examines how
leveraging large datasets and advanced computational techniques can identify patterns, predict
outbreaks, and inform targeted intervention strategies. Methods: The review synthesizes current
knowledge on the mechanisms of carbapenem resistance, highlights the strengths and limitations
of traditional epidemiological methods, and evaluates the transformative potential of ML. Real-
world applications and case studies are used to demonstrate the practical benefits of combining ML
and epidemiology. Technical and ethical challenges, such as data quality, model interpretability,
and biases, are also addressed, with recommendations provided for overcoming these obstacles.
Results: By integrating ML with epidemiological analysis, significant improvements can be made in
predictive accuracy, identifying novel patterns in disease transmission, and designing effective public
health interventions. Case studies illustrate the benefits of interdisciplinary collaboration in tackling
carbapenem resistance, though challenges such as model interpretability and data biases must be
managed. Conclusions: The combination of ML and epidemiology holds great promise for enhancing
our capacity to predict and prevent carbapenem-resistant infections. Future research should focus
on overcoming technical and ethical challenges to fully realize the potential of these approaches.
Interdisciplinary collaboration is key to developing sustainable strategies to combat antimicrobial
resistance (AMR), ultimately improving patient outcomes and safeguarding public health.

Keywords: carbapenem resistance; machine learning; epidemiology; antimicrobial resistance; predictive
modeling; public health

1. Introduction

Antimicrobial resistance (AMR) represents a critical and escalating threat to global
health, with significant implications for the treatment and prevention of infectious diseases.
The rise of AMR is primarily driven by the misuse and overuse of antimicrobials in human
medicine, agriculture, and veterinary practices, leading to the emergence of drug-resistant
pathogens that are increasingly difficult to treat with existing medications. According to
the World Health Organization (WHO), AMR is among the top-ten global public health
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threats facing humanity. In 2019, bacterial AMR directly caused 1.27 million deaths and
contributed to 4.95 million deaths worldwide [1].

The impact of AMR extends beyond health, affecting economic stability and devel-
opment. Projections indicate that if no effective measures are taken, AMR could lead to
10 million deaths annually by 2050 and could cost the global economy up to USD 100 trillion
due to increased healthcare costs, loss of productivity, and other factors [2]. High-income
countries are experiencing significant issues with healthcare-associated infections caused
by resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), while low-
and middle-income countries bear a disproportionate burden of resistant infections due to
weaker healthcare infrastructure and surveillance systems [3]. In response to this global
crisis, coordinated international efforts are crucial. The WHO emphasizes a One Health ap-
proach, integrating actions across human health, animal health, and environmental sectors
to combat AMR comprehensively [4]. Strengthening antimicrobial stewardship programs,
enhancing infection prevention and control measures, and investing in the development of
new antibiotics, vaccines, and diagnostics are pivotal strategies recommended by global
health authorities to address AMR effectively [5,6].

While AMR spans a wide range of antimicrobial drugs and pathogens, carbapenem
resistance (CR) is particularly alarming. Carbapenems are considered one of the last lines
of defense against multidrug-resistant bacterial infections, making CR a significant clinical
challenge. The emergence of carbapenem-resistant organisms threatens the effectiveness of
this vital class of antibiotics, especially in treating severe hospital-acquired infections [7].
The motivation behind this review is to explore the intersection of machine learning (ML)
and epidemiology in addressing CR. The growing complexity and volume of AMR data,
combined with the increasing need for rapid predictions, present an opportunity to leverage
ML techniques in enhancing the surveillance, prediction, and control of carbapenem-
resistant infections (CRIs).

This review aims to synthesize the current state of research on the use of ML in AMR
prediction, particularly focusing on CR, and to propose future research directions that
combine these approaches. The review’s relevance lies in its potential to inform public
health policies and enhance clinical decision-making in managing CRIs.

The key contributions of this review include the following:

1. Comprehensive overview of synergy. A detailed analysis of how ML and epidemi-
ological methods can complement each other in addressing carbapenem resistance
is provided.

2. Identification of gaps in traditional approaches. The review outlines the limitations
of traditional epidemiological methods in capturing the complexity of resistance
mechanisms and transmission patterns and discusses how ML can fill these gaps.

3. Evaluation of ML applications. It examines the current state of ML applications in
antimicrobial resistance, particularly in predicting CR, and the potential effectiveness
of these models in clinical and public health settings.

4. Proposals for future research. The review identifies key areas for future research,
including the need for more robust data integration, model validation, and the devel-
opment of real-time surveillance systems.

5. Clinical and public health implications. The review emphasizes the clinical and public
health benefits of integrating ML and epidemiology to improve predictions, patient
outcomes, and intervention strategies.

The remainder of this paper is organized as follows: Section 2 discusses the epidemiol-
ogy and mechanisms of CR, including the clinical and public health implications. Section 3
delves into the traditional epidemiological approaches used in studying AMR, highlight-
ing their strengths and limitations. Section 4 focuses on the potential of ML to enhance
CR predictions, discussing existing models and applications. Section 5 explores how ML
and epidemiological methods can be integrated to provide a comprehensive approach to
tackling carbapenem resistance. Section 6 outlines future research directions and recom-
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mendations for improving AMR surveillance and prediction systems. Finally, Section 7
concludes the review by summarizing key insights and contributions.

2. Specific Focus on Carbapenem Resistance

AMR presents a wide array of challenges, but resistance to carbapenem antibiotics
is particularly concerning due to their role as the last effective treatment option for many
bacterial infections. The emergence and rapid spread of CR in organisms, such as Klebsiella
pneumoniae and Pseudomonas aeruginosa, exemplifies the severity of the AMR crisis. This
specific form of resistance underscores the broader challenge posed by AMR and highlights
the urgent need for improved surveillance, prevention, and treatment strategies.

Carbapenem-resistant organisms often exhibit complex resistance mechanisms that
make infections difficult to treat and control. Therefore, understanding these mechanisms
is essential for developing targeted strategies to combat CR on a global scale [7].

2.1. Mechanisms of Resistance

Carbapenem resistance arises through several mechanisms, primarily involving en-
zymatic degradation, efflux pumps, and porin mutations [8,9]. One of the most critical
mechanisms is the production of carbapenemases, a group of enzymes that can hydrolyze
carbapenems and other β-lactams, rendering these potent antibiotics ineffective. Notable
carbapenemases include KPC (Klebsiella pneumoniae carbapenemase), NDM (New Delhi
metallo-β-lactamase), VIM (Verona integron-encoded metallo-β-lactamase), and OXA-48
(Oxacillinase-48) [7,8]. These enzymes differ in their genetic origins and geographical dis-
tribution, but they all confer high levels of resistance, making infections difficult to treat [9].
The widespread dissemination of these enzymes is largely driven by plasmids, which
facilitate the transfer of resistance genes across different bacterial species, thus exacerbating
the problem of multidrug resistance [8,9].

Furthermore, efflux pumps are able to actively extrude a wide range of different
antibiotics out of the bacterial cells, being one of the most important causes of resistance to
carbapenems. In general, this decreases the intracellular drug content to subtherapeutic
levels. This not only leads to reduced efficacy of carbapenems but also ensures that bacteria
can survive even in environments of high antibiotic pressure. Overexpression of efflux
pumps can be driven by genetic changes, or an alteration in regulation, often through the
influence of the presence of antibiotics. This underscores the dynamic nature of bacterial
adaptation [10].

Besides enzymatic degradation and active efflux mechanisms, the third important
mechanism of resistance is changes in the permeability of bacterial cell membranes. It
most frequently occurs in the form of mutations in the porin proteins, leading to decreased
expression or a complete loss of specific porin channels, acting as portals for antibiotics
to cross the bacterial cell membrane. These mutations result in a reduced uptake of
carbapenems, preventing the antibiotics from reaching their intracellular targets, such
as penicillin-binding proteins [11]. The combined effect of porin loss and cabapenemase
production can result in extremely high levels of resistance, posing a significant challenge
to treatment [12].

Resistance mechanisms are further complicated by the ability of bacteria to share
resistance genes through horizontal gene transfer (HGT). This process allows for the rapid
spread of resistance determinants between different bacteria, even across species and genera.
HGT occurs through various means, including transformation, transduction, and conjuga-
tion, with conjugative plasmids being particularly important in the spread of carbapenem
resistance [13]. The global spread of carbapenemase-producing Enterobacteriaceae (CPE) is
a testament to the role of HGT in the dissemination of resistance, making it a critical factor
in the ongoing battle against antibiotic resistance [7].

The combination of the above resistance mechanisms creates a complex challenge
in the control of carbapenem-resistant infections (CRIs) [14]. A multifaceted approach
involving new antibiotic development, use of combination therapy, and strict infection
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control practices is required to limit the dissemination of the resistant bacterial strains. In
addition, ongoing surveillance and research on the molecular mechanisms of resistance
maintain an edge in this continuing battle [12].

2.2. Epidemiology and Incidence of Carbapenem-Resistant Organisms

Resistance to carbapenem has escalated into a health problem worldwide, especially
during the last decade. The most threatening ones are the carbapenem-resistant Enter-
obacteriaceae (CRE), carrying the most concerning ability to cause severe and frequently
untreatable infections. The presence of these bacteria has been documented in multiple
geographical areas, with strikingly high rates in countries that face specific problems related
to poor antibiotic stewardship practices, as well as where overuse of antibiotics occurs both
in healthcare and agriculture [15,16].

However, the effects of the emergence and spread of CRE have varied among different
European countries. For example, in countries such as Greece and Italy, challenges related
to CRE have been especially prominent [16]. The combination of factors, such as heavy
antibiotic consumption, high rates of hospital-acquired infections, and poor infection
control measures, has contributed to the wide dissemination of this type of resistance, with
the majority of outbreaks occurring in healthcare environments [17]. Recent studies showed
that hospital-acquired infections in Greece account for approximately 316,000 hospital
bed days and EUR 73 million in costs due to resistant pathogens, particularly Klebsiella
pneumoniae and Escherichia coli, with over 50% of K. pneumoniae isolates being carbapenem-
resistant [18].

It is no different in Asia, as high levels of carbapenem resistance have been reported
from a number of countries, such as India and China, where antibiotics are freely available
without prescription, healthcare facilities are possibly limited or under-resourced, and
there is massive use of antibiotics in agriculture and aquaculture. The carbapenemase-
producing organisms (CPOs) have presented tremendous challenges to public health. In
India, there have been reports of a high prevalence of CPOs, particularly those carrying the
New Delhi metallo-β-lactamase (NDM) gene, in both community-acquired and nosocomial
infections [15]. For instance, a study reported that 90.3% of carbapenem-resistant bacteria
were carbapenemase producers, with NDM-1 being the most dominant at 47% [19]. Equally
burdened by a huge population and significant infectious disease load, China has likewise
reported increasing incidences of CRE. Between 2012 and 2016, 85.7% of CRE strains in
China carried carbapenemase genes, with KPC being predominant in K. pneumoniae, and
NDM in E. coli and Enterobacter cloacae. Moreover, the resistance rates of K. pneumoniae to
meropenem in China have reached 24.2%, underscoring the severity of the problem [19].

The United States remains no exception to the impending threat of CR pathogens.
Reports of CRE infections are increasing all over the country, posing significant threats to
public health. The CDC has defined CRE as an urgent threat, and there has been much
concern expressed over the potential to spread in healthcare settings. More than 2.8 million
antibiotic-resistant infections occur in the U.S. each year, resulting in over 35,000 deaths.
CRE, in particular, has been responsible for 13,100 cases and 1100 deaths annually [20]. The
outbreaks of CRE in the U.S. healthcare facilities have been associated with high morbidity
and mortality, pointing to the need for an improved infection control practice and antibiotic
stewardship [20].

Besides CRE, other CR pathogens include Pseudomonas aeruginosa and Acinetobacter
baumannii. These are part of the problem and considerably affect the outcomes of treatment,
the prevalence of which has increased with time. Community-acquired pneumonia due
to CR A. baumannii (CRAB) is also rampant in healthcare settings, especially in the ICUs,
with resistance rates described at over 30–90% in regions such as Asia, Eastern Europe, and
Latin America [21].

Even though it varies across different regions, CR P. aeruginosa (CR-PA) shows similar
alarming resistance rates worldwide [22]. In the United States, CR-PA is a significant
healthcare-associated pathogen, responsible for 10–30% of P. aeruginosa isolates. A study
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highlighted that carbapenemase-producing P. aeruginosa is frequently found in ventilator-
associated pneumonia (VAP) and catheter-related urinary tract infections, contributing
to longer hospital stays and higher mortality rates [22]. Both these non-fermenting CR
pathogens, including A. baumannii, lead to increased healthcare burdens, accounting for
over 80% of CR cases in a five-year U.S.-based study [23].

A systematic review of carbapenem resistance in animals, foods, and the environ-
ment on the African continent further emphasized the widespread nature of this issue.
The review found a pooled prevalence of 19.1% across animal, environmental, and food
ecosystems, highlighting Escherichia spp. (53.5%), Klebsiella spp. (35.4%), and Pseudomonas
spp. (15.7%) as the predominant CRB species. The most common carbapenemase genes
reported were from the blaOXA (52.4%) and blaNDM (40.5%) families. These findings
suggest that animal–environment–food ecosystems play a significant role as reservoirs
for CRE and other carbapenem-resistant bacteria, further driving their dissemination into
human populations [24].

This global and multisectoral spread of carbapenem resistance highlights the urgent
need for enhanced surveillance, infection control, and new antibiotics targeting both
fermenting and non-fermenting CR pathogens, as well as stricter antibiotic stewardship
practices across all sectors.

2.3. Clinical Implications

Carbapenem-resistant infections, especially those caused by CPOs, such as Klebsiella
pneumoniae, have significant clinical relevance due to their association with higher mortality
rates. A study conducted in Italian hospitals between 2010 and 2013 reported a 14-day mor-
tality rate of 34.1% among patients with KPC-producing K. pneumoniae (KPC-Kp) infections.
Risk factors associated with this high mortality include bloodstream infections (BSIs), septic
shock, chronic renal failure, and the use of colistin-resistant isolates. Inadequate empirical
therapy further elevates these risks [25]. A meta-analysis of worldwide studies on CRE
infections reported that 26–44% of deaths in patients with CRIs were directly attributable
to resistance [23]. This highlights the profound clinical consequences of CRE, particularly
in the context of BSIs, which are associated with even higher mortality rates [26].

Furthermore, CPO outbreaks are increasingly being observed in healthcare settings,
leading to endemic outbreaks in some regions [26,27]. For example, a prolonged outbreak
of NDM-producing Klebsiella pneumoniae occurred in Tuscany, Italy, from 2018 to 2021.
Genomic sequencing of 117 isolates from 76 patients revealed the spread of a high-risk
clone (ST-147), resistant to nearly all antibiotics, highlighting the regional transmission of
this multidrug-resistant organism [28]. These infections disproportionately affect critically
ill and immunocompromised patients, further deteriorating their clinical outcomes and
stressing the urgent need for robust infection control measures, surveillance, and the
development of novel therapeutic interventions [25,27].

The substantial mortality rates associated with CRE, particularly in bloodstream in-
fections, underscore the need for effective therapeutic interventions. In response, newer
combination therapies, such as β-lactam/β-lactamase inhibitors, have emerged as promis-
ing treatment options, demonstrating improved survival rates in clinical studies [25].
However, the growing prevalence of CRE and the phenomenon of heteroresistance, i.e., the
presence of antibiotic-resistant subpopulations within a seemingly sensitive population,
which may contribute to treatment failure, together form a critical challenge in clinical
settings, reinforcing the need for an aligned international response to control the spread of
these resistant pathogens [29].

3. Epidemiological Methods
3.1. Introduction to Epidemiology

Epidemiology is the study of the distribution of diseases and health events within a
population, focusing on the factors that influence their prevalence and distribution. This
field is essential for informing public health interventions, policy development, and clinical
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practice aimed at reducing the burden of disease and improving health outcomes. Over
time, knowledge gained from epidemiological studies has contributed greatly to fighting
infectious diseases, treating chronic diseases, and extending the human lifespan [30].

The integration of advanced data analytics and computational tools in epidemiol-
ogy has greatly expanded our ability to analyze health data and model disease dynam-
ics. The use of advanced statistical methods, ML algorithms, and big data analytics
has improved the identification of risk factors, outbreak monitoring, and evaluation of
interventions [31,32]. These innovations will not only provide more accurate predictions,
but also open up new research opportunities, potentially revolutionizing public health
strategies and improving health outcomes around the world.

3.2. Traditional Epidemiological Approaches to Studying AMR

Traditional epidemiological methods have played a key role in understanding the
dissemination and impact of AMR. Epidemiological approaches often involve observational
studies, such as cohort, case-control, and cross-sectional studies, which help identify risk
factors associated with the emergence and distribution of resistance. Surveillance systems,
such as the WHO Global Antimicrobial Resistance Surveillance System (GLASS), collect
and analyze data on AMR trends in different regions, relying on laboratory data to monitor
resistance models [16]. These systems provide critical information to guide public health
interventions and antibiotic stewardship programs.

Statistical modeling is another cornerstone of traditional epidemiological methods
in AMR research. Regression models, for instance, are commonly used to examine the
relationship between antibiotic exposure and the emergence of resistance, adjusting for po-
tential confounding factors. While traditional approaches have provided valuable insights
into the epidemiology of AMR, they often rely on certain assumptions and may struggle to
capture the complexity and non-linearity of resistance dynamics [31]. Nonetheless, these
methods remain fundamental for generating evidence that guides effective public health
strategies to combat AMR.

3.3. Strengths and Limitations of Epidemiological Approaches in the Context of Rapidly Evolving
Resistance Patterns

As in most branches of science, the traditional approach to epidemiology involves
the use of frequentist-based statistical approaches that rely on hypothesis testing and
computations of probability related to an association or treatment effect. In this area,
classic regression models either predict the outcome variable based on a number of other
variables or model the relation of individual variables to the outcome [30]. These models
are, however, based on certain assumptions; for instance, linearity and the absence of
multicollinearity, which present many challenges when the research questions become
sophisticated and the amounts of data increase, the so-called “curse of dimensionality” [31].

Despite these challenges, traditional epidemiology has produced successful studies
and standardized surveillance systems that have significantly advanced our understand-
ing of AMR. For example, the European Antimicrobial Resistance Surveillance Network
(EARS-Net) has been instrumental in tracking resistance trends across Europe, leading to
informed public health interventions. The burden of antibiotic-resistant infections in the
EU and European Economic Area (EEA) was assessed by another study focusing on cases,
deaths, and disability-adjusted life years (DALYs) [33]. Using data from the EARS-Net,
the researchers estimated 671,689 infections, with 63.5% linked to healthcare. These infec-
tions led to approximately 33,110 deaths and 874,541 DALYs [34]. Similarly, the Global
Antimicrobial Resistance Surveillance System (GLASS), launched in 2015, has provided
valuable data on AMR patterns worldwide, facilitating global comparisons and targeted
responses [16].

However, traditional methods also have limitations, particularly in the context of
rapidly evolving resistance patterns. These limitations include the following:
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• Data lag. The time required to collect, process, and analyze data can result in delays,
making it challenging to respond promptly to emerging resistance threats [35].

• Data completeness. Incomplete data collection and reporting can lead to gaps in under-
standing the full scope of AMR. Variability in laboratory capacities and surveillance
systems across regions further complicates this issue [36].

• Complexity of AMR. AMR is influenced by a multitude of factors, including antibiotic
usage, infection control practices, and genetic mechanisms. Traditional methods may
struggle to account for these complex, multifactorial influences without integrating
more advanced analytical techniques [37].

• Predictive limitations. Traditional epidemiological methods often focus on descriptive
and retrospective analyses, which may not be sufficient for predicting future resistance
trends or for real-time surveillance [38].

To overcome these challenges, the integration of machine learning and other advanced
computational techniques with traditional epidemiological methods is increasingly being
advocated. Machine learning can enhance the ability to analyze large and complex datasets,
identify hidden patterns, and make real-time predictions, thereby complementing and
extending the capabilities of traditional epidemiological approaches [39,40].

4. Machine Learning in Healthcare
4.1. Introduction to Machine Learning

Machine learning (ML) is a branch of artificial intelligence that involves training
algorithms to recognize patterns in data and make predictions or decisions without explicit
programming for each task. There are three main types of ML:

• Supervised learning, which involves training an algorithm on a labeled dataset, where
the input–output pairs are known. The algorithm learns to map inputs to the correct
output. Common algorithms include linear regression, decision trees, and support
vector machines [41].

• Unsupervised learning, where the algorithm is trained on data without labeled re-
sponses and aims to find hidden patterns or intrinsic structures in the input data.
Key techniques include clustering (e.g., k-means and hierarchical clustering) and
association (e.g., Apriori algorithm) [42].

• Reinforcement learning, where the algorithm learns by interacting with an environ-
ment, receiving rewards or penalties based on the actions it takes. It aims to maximize
cumulative rewards over time. Examples include Q-learning and deep reinforcement
learning [43].

4.2. Key Algorithms and Applications

Machine learning algorithms vary in complexity and application. Some commonly
used algorithms for building predictive models to forecast AMR trends, evaluate resistance
risk, and provide decision support for treatment planning include the following:

• Linear regression, which is used for predicting a continuous target variable based on
one or more predictor variables [44].

• Decision trees, with a flowchart-like structure, where each internal node represents a
decision based on an attribute, and each leaf node represents an outcome [45].

• Support vector machine (SVM), which is a classification method that finds the hyper-
plane that best separates the data into classes [46].

• Neural networks and deep learning models are inspired by the human brain’s struc-
ture, capable of learning complex patterns from large datasets, used extensively in
image and speech recognition. In the context of deep learning, an artificial neural net-
work with more than one hidden layer is referred to as deep learning, distinguishing
it from simpler models with fewer layers [47].

A diagram that outlines some commonly used algorithms in predictive modeling of
AMR is shown in Figure 1.
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4.3. Bridging Terminology: Aligning Epidemiology and Machine Learning Concepts

In the fields of epidemiology and ML, certain terminologies and concepts align closely,
despite their usage in different contexts. In epidemiology and biostatistics, terms such
as dependent variable, outcome variable, and response variable are used to refer to the
variable that is being measured or predicted. In ML and statistical modeling, this concept
corresponds to the label or class that the model aims to predict. Conversely, independent
variables, predictor variables, and explanatory variables in epidemiology are equivalent to
features in ML, which are the inputs or attributes used to predict the label [31].

A common tool in epidemiological studies is the contingency table or 2 × 2 table,
which displays the relationship between two categorical variables. In ML, this is referred to
as a confusion matrix, which is used to evaluate the performance of classification models by
showing the actual versus predicted classifications. Sensitivity in epidemiology, also known
as recall in ML, measures the true-positive rate of a test. The positive predictive value in
epidemiology, which assesses how many of the positive test results are true positives, is
analogous to precision in ML [31].

When discussing outcome groups, the majority class in ML represents the outcome
group with the highest frequency, while the minority class refers to the outcome group with
the lowest frequency. In epidemiology, this concept is reflected in the proportion of cases in
each category of the outcome variable, particularly when the outcome is categorical. This is
similar to the concept of class balance in machine learning, which denotes the distribution
of cases among different classes [31]. Understanding these terms and their equivalents
across both fields improves clarity and facilitates effective communication when merging
epidemiological insights in ML methods.

4.4. Benefits of Machine Learning in Analyzing Complex Biological Data and Predicting Trends

Machine learning offers numerous benefits in healthcare, especially in analyzing
complex biological data and predicting trends. One significant advantage is its ability to
handle big data. ML algorithms can process and analyze vast amounts of information
from various sources, such as electronic health records (EHRs), genomic data, and medical
imaging [48]. Additionally, ML models excel in predictive analytics by identifying patterns
and correlations in historical data, enabling the prediction of disease outbreaks, patient
outcomes, and treatment responses [49].

Another key benefit is in personalized medicine, where ML helps tailor medical
treatment to individual patients based on their genetic profile, lifestyle, and other factors,
thereby improving treatment efficacy and reducing adverse effects [40]. Furthermore, ad-
vanced ML models significantly enhance diagnostics, offering high accuracy in diagnosing
diseases from medical images, pathology slides, and other diagnostic tests [50,51].

5. Integration of Machine Learning and Epidemiology

Integrating ML with epidemiological data enhances the ability to predict and respond
to resistance trends. This integration involves handling diverse data sources, developing
predictive models, and conducting real-time surveillance.
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5.1. Data Sources and Preprocessing Techniques

Data sources: Both machine learning and epidemiology rely on several data sources to
offer good models and meaningful outputs. Some of the main categories these data sources
fall under include the following:

• Genomic data. Genomic sequences, which comprise DNA or RNA of both pathogens
and hosts, are helpful in the identification of genetic markers responsible for specific
traits, such as drug resistance and virulence, which become indispensable for full
comprehension of infectious disease mechanisms and epidemiology [52].

• Clinical data. Patients’ electronic health records (EHRs) are a rich source of vital
information, such as demographics, diagnosis, treatment, and results/outcomes. This
dataset captures detailed patient histories that can be used to track disease progression
and treatment responses [53].

• Environmental data. Environmental factors, such as air quality, water quality, and
climatic variables, may affect dissemination of infectious diseases. Such information
may even indicate changing environmental conditions and, thus, the impact on disease
transmission [54].

• Sociodemographic data. Information on aspects such as the population’s economic
status, density, and education level is critical for understanding disease transmission
within populations. More so, such elements can bring to light health-related disparities
and susceptibilities [55].

Preprocessing techniques for data preparation: To ensure the accuracy and usability of
these diverse datasets, several preprocessing steps are critical, as follows:

• Data cleaning. Identification and correction of errors, inconsistencies, or incomplete-
ness. Cleaning the data assures dependability and quality within the data and, hence,
validation of ML models [56].

• Normalization. When several datasets are combined, normalization is necessary to
standardize their scale. Certain algorithms are sensitive to the range of the data; thus,
normalization ensures that no feature dominates the model because of a difference in
its scale [57].

• Feature selection, which determines the most relevant variables. This, in turn, aids
model performance by reducing dimensionality and weeding out insignificant or
redundant data. It is totally focused on the most important part of the data and yields
a higher performance with low computational complexity [58]. Figure 2 outlines the
steps for a machine learning workflow for predictive modeling of AMR. This workflow
illustrates how machine learning models handle diverse datasets for predicting AMR
trends and providing clinical decision support.

Challenges and solutions in data integration: Integrating ML with epidemiological
data allows for more precise modeling of disease dynamics and resistance patterns. For
example, linking genomic data with clinical outcomes can reveal genetic determinants
of drug resistance, while environmental and sociodemographic data provide a broader
context within public health frameworks [59–61]. Genomic data, in particular, have become
an important component of epidemiological analysis, especially in understanding the
molecular mechanisms behind resistance and disease transmission. The integration with
traditional epidemiological approaches has transformed how infectious diseases, such as
carbapenem resistance, are studied [62].

However, combining these diverse data sources poses several challenges. A key issue
is data format inconsistencies, as genomic, clinical, and environmental datasets often use
different formats, complicating integration. Standardizing formats can help streamline the
integration process and improve the efficiency of analysis.

Another challenge is data privacy and security, particularly when dealing with sensi-
tive clinical and sociodemographic information. Additionally, missing data present a hurdle
for comprehensive analysis. All these challenges and possible solutions are discussed in
Section 7.
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5.2. Predictive Modeling

Development of predictive models: ML has become a powerful tool in the fight
against carbapenem resistance by enabling the development of sophisticated predictive
models. These models utilize various ML techniques to analyze large and complex datasets,
aiming to forecast resistance patterns and guide effective interventions [63–65]. Supervised
learning algorithms are commonly employed, where models are trained on historical data
that include information on infection cases, antibiotic usage, and resistance outcomes [66].
This training helps the models identify patterns and correlations that indicate the likelihood
of resistance [67,68].

Key features incorporated into these predictive models include patient demographics,
clinical history, hospital environment, and the genetic characteristics of pathogens [69]. By
considering these variables, ML models provide valuable insights into the emergence and
spread of carbapenem-resistant infections. For example, models can predict how changes
in antibiotic prescribing practices or hospital infection control measures might impact
resistance trends [70]. This proactive approach allows healthcare providers to implement
timely and targeted interventions to manage and mitigate the spread of resistance [71–73].

Evaluation metrics for model performance: The performance of predictive models
is evaluated using various metrics to ensure their accuracy and reliability. Common
evaluation metrics include the following:

• Accuracy. The proportion of true results (both true positives and true negatives)
among the total number of cases examined. It indicates the overall correctness of the
model [74].

• Precision. The proportion of true-positive results among all positive results predicted
by the model. It measures the model’s ability to correctly identify true resistance cases
without including false positives [75].
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• Recall (sensitivity). The proportion of true-positive results among all actual positive
cases. It assesses the model’s ability to detect true resistance cases [76].

• F1 score. The harmonic mean of precision and recall, providing a single metric that
balances both. It is particularly useful when the data are imbalanced, meaning the
number of positive cases is much smaller than the number of negative cases [77].

• Area under the receiver operating characteristic (ROC) curve (AUROC). A plot of
the true-positive rate against the false-positive rate at various threshold settings. The
AUROC provides a single measure of the model’s ability to discriminate between
positive and negative cases [78]. In the context of predicting antibiotic resistance, it
measures how effectively the model can differentiate between cases where bacteria
are resistant to an antibiotic and cases where they are not.

Case studies demonstrating successful predictions and early detection of resistance
trends: Several case studies exemplify the successful application of ML in predicting
and managing carbapenem resistance. Machine learning has proven highly effective in
predicting BSIs and detecting antimicrobial resistance trends, particularly for carbapenem-
resistant Gram-negative bacteria (CRGNB) in intensive care unit (ICU) patients. In a
multicenter study from China, a random forest algorithm achieved an AUROC of 0.88 for
CRGNB prediction and 0.86 for overall BSI prediction, enabling early intervention and
targeted antibiotic therapies [63]. Similarly, a 2022 study demonstrated that ML algorithms,
particularly random forest, could predict CRGNB carriage with 85.92% accuracy [79].
These models integrate variables, such as prior antibiotic use, mechanical ventilation, and
invasive procedures, to provide real-time monitoring of resistance patterns. The early
detection of CRGNB infections allows hospitals to optimize antimicrobial stewardship,
reduce unnecessary use of broad-spectrum antibiotics, and better target high-risk patients,
significantly improving clinical outcomes and infection control efforts.

Another study focused on developing and validating a ML-based algorithm to predict
CR bacterial infections at the time of culture collection, achieving a sensitivity of 30%, a
positive predictive value (PPV) of 30%, and a negative predictive value (NPV) of 99%, with
Pseudomonas species accounting for 58% of the resistant infections. Integration of the model
into the EHR system could enable real-time predictions, improving antibiotic stewardship
by allowing early intervention and reducing unnecessary use of last-resort antibiotics [80].

Despite limitations, including reliance on single-center datasets, in most of the studies,
these models showed promise for broader application, particularly in high-risk healthcare
settings, as they can be easily retrained with additional data to reflect changing microbi-
ological trends. This early detection is crucial for improving antimicrobial stewardship,
reducing the unnecessary use of broad-spectrum antibiotics, and focusing treatments on
high-risk patient groups. As these tools evolve, they promise to further optimize infection
control strategies and enhance patient outcomes in hospital settings [81].

5.3. Epidemiological Insights

Enhancing traditional epidemiological analysis with machine learning: Machine learn-
ing (ML) significantly enhances traditional epidemiological analysis by providing advanced
tools for data processing, pattern recognition, and predictive modeling [31,82]. Traditional
epidemiology often relies on statistical methods that may not fully capture complex inter-
actions within large datasets [31]. In contrast, ML algorithms can handle high-dimensional
data, identify non-linear relationships, and uncover hidden patterns that are not apparent
through conventional methods. This capability allows for more accurate risk assessments
and targeted interventions.

Identifying risk factors and transmission patterns: ML models can integrate diverse
data sources, such as genomic, clinical, environmental, and sociodemographic data, to
identify risk factors and transmission patterns of AMR. For example, ML algorithms can
analyze patient records to determine the factors associated with higher risks of infection
with antibiotic-resistant pathogens. By mapping these factors, ML helps in understanding
how resistance spreads within communities and healthcare settings [71,83–85].
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Real-time surveillance and outbreak prediction: Real-time surveillance and out-
break prediction have become increasingly effective through the application of ML al-
gorithms [86,87]. These algorithms excel at continuously analyzing incoming data to detect
early signs of an outbreak, providing timely alerts to public health authorities and en-
abling them to take immediate action [88,89]. Predictive models can forecast the spread
of antimicrobial resistance based on current trends, allowing for proactive measures to
mitigate the impact of potential outbreaks. ML-driven surveillance systems, in particular,
offer significant advantages in monitoring hospital data for unusual antibiotic resistance
patterns, facilitating rapid responses to emerging threats [90,91]. For instance, a study by
Caglayan developed a predictive framework using ML to identify ICU patients at risk
of colonization with multi-drug-resistant organisms, including CRE [92]. The analysis of
4670 ICU admissions showed that the best-performing model achieved 82% sensitivity and
83% specificity. Among the key risk factors identified were prior stays in long-term care
facilities and recent isolation procedures. This tool can be instrumental for clinicians in im-
plementing timely infection control measures for high-risk patients, ultimately improving
patient outcomes and preventing the spread of resistant infections.

5.4. Real-World Applications

Examples of machine learning in hospitals and public health: Machine learning has
made notable strides in improving health outcomes by analyzing large-scale data to predict
AMR trends. For instance, ML models have been applied to monitor and predict outbreaks
of multidrug-resistant tuberculosis (MDR-TB). By integrating diverse data sources, such
as patient records, radiomic features (such as cavitation), and sociodemographic informa-
tion, ML enhances the ability to track and control the spread of MDR-TB more effectively
than traditional methods [93,94]. This approach allows public health officials to allocate
resources more efficiently, focusing on high-risk areas and implementing targeted interven-
tions to curb resistance. Such predictive modeling empowers public health systems to act
preemptively, potentially reducing the overall burden of drug-resistant infections.

Success stories and lessons learned from integrating machine learning with epidemi-
ology: There are several success stories where ML integration with traditional epidemio-
logical tools has led to significant improvements in patient care and infection control. For
instance, in one large healthcare system, ML algorithms outperformed traditional scoring
systems, such as the Modified Early Warning Score (MEWS), Sequential Organ Failure
Assessment (SOFA), and Systemic Inflammatory Response Syndrome (SIRS), in predicting
severe sepsis. The ML model used only patient age and six vital signs from electronic
health records (EHRs) to enhance early sepsis detection, while also reducing alarm fatigue,
a prevalent concern in patient safety [95]. This demonstrates the ability of ML to provide
more precise alerts, improving both detection and clinical workflow.

Similarly, the InSight algorithm, developed at the University of California, San Fran-
cisco Medical Center, achieved impressive results in detecting sepsis and septic shock. It
reached an area under the receiver operating characteristic curve (AUROC) of 0.92 for
sepsis detection and 0.96 for predicting septic shock four hours before onset [96]. This ML
model not only outperformed existing sepsis scoring systems but also proved to be robust
in the face of missing data, adaptable across institutions through transfer learning, and
generalizable to various clinical settings. Its strong performance underscores the potential
of ML to drive improvements in early diagnosis and intervention, which are critical in
conditions such as sepsis, where early treatment significantly improves outcomes.

Machine learning has also contributed to better antibiotic stewardship programs.
One study demonstrated the effectiveness of the XGBoost algorithm (https://xgboost.
readthedocs.io/en/latest/index.html, accessed on 19 August 2024) in predicting antibiotic
resistance for three Gram-negative bacteria: Escherichia coli, Klebsiella pneumoniae, and
Pseudomonas aeruginosa. Using data from 15,695 hospital admissions in the UK, the ML
model slightly outperformed clinicians in selecting appropriate antibiotics, achieving an
AUROC of 0.70 [97]. Importantly, this approach could reduce the use of broad-spectrum

https://xgboost.readthedocs.io/en/latest/index.html
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antibiotics by up to 40%, a key step in combating the development of further antibiotic
resistance. Despite these promising results, the study called for further validation through
prospective trials to ensure its effectiveness and acceptance in clinical practice.

Another notable example of ML-driven antibiotic stewardship is the successful reduc-
tion of extended-spectrum beta-lactamase (ESBL)-targeted therapies in hospital settings.
An ML program identified patients at low risk for ESBL-producing pathogens, allowing
for more targeted use of antibiotics instead of relying on broad empirical carbapenem
use [72]. This precision-guided treatment approach not only helps preserve the efficacy of
carbapenems but also reduces the risk of fostering additional resistance.

The lessons learned from these implementations emphasize several key points for
integrating ML into healthcare. First, high-quality data are essential for accurate and reliable
predictions. Second, interdisciplinary collaboration between data scientists, healthcare
professionals, and public health officials is critical to ensure that ML models are not
only computationally robust but also clinically relevant. Third, continuous evaluation
and refinement of ML models are necessary to maintain their effectiveness, especially
as healthcare environments and microbial landscapes evolve. Effective communication
between all stakeholders ensures that the full potential of ML can be realized in improving
patient outcomes and public health [98].

5.5. Case Studies

Specific instances where machine learning and epidemiology have been used to
address carbapenem resistance: Several case studies highlight the successful integration of
ML and epidemiological methods to combat carbapenem resistance. One notable example is
a study conducted in a large urban hospital, where ML algorithms were used to predict the
occurrence of carbapenem-resistant Klebsiella pneumoniae (CRKP) infections. The predictive
model analyzed patient data, including demographics, medical history, and previous
antibiotic use, to identify individuals at high risk of developing CRKP infections [99].
This approach allowed for early intervention and targeted infection control measures,
significantly reducing the incidence of CRKP infections. Another case study involved the
use of ML to analyze national surveillance data on CRIs in the United States [80]. A machine
learning model was developed to predict CRIs using data from 68,472 patients. Built with
extreme gradient boosting, the model achieved an AUC of 0.846, with a 99% negative
predictive value. Despite moderate sensitivity, it effectively ruled out CR infections, aiding
in early detection and intervention in healthcare settings.

Impact on patient outcomes and public health interventions: The integration of ML and
epidemiology offers significant theoretical advantages, such as enhancing patient outcomes
and public health interventions. In the hospital setting, predictive models could enable
healthcare providers to implement timely and appropriate infection control measures,
potentially reducing the spread of carbapenem-resistant pathogens and improving patient
outcomes [92]. On a broader scale, ML-driven epidemiological studies have the potential
to significantly influence public health policies and resource allocation. By accurately
predicting areas at high risk for carbapenem resistance, it is postulated that public health
authorities can more effectively prioritize interventions, such as enhanced surveillance,
targeted education campaigns, and stricter antibiotic stewardship programs [100,101].
This targeted approach could lead to a notable reduction in the incidence of carbapenem-
resistant infections and a subsequent improvement in overall public health outcomes [102].
A multinational cohort study by Giannella et al. developed a risk prediction model for CRE
infections following liver transplantation [90]. The model identifies several risk factors,
including prior antibiotic use, specific comorbidities, and healthcare exposure, providing
clinicians with a valuable tool to predict CRE infections and implement preventive measures
in high-risk patients. Freire et al. extended this work by proposing a predictive risk score
for CRE colonization prior to liver transplantation, using clinical and epidemiological
data [91]. This risk score could guide preventive measures, such as targeted antibiotic
prophylaxis, to address the challenge of identifying CRE colonization in patients on the
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waiting list. Public health authorities can use these findings to prioritize resources, focusing
efforts on hospitals with higher incidences of CRE carriage among vulnerable populations,
thereby reducing overall healthcare costs and improving patient safety.

The following table (Table 1) summarizes prediction models for carbapenem resistance,
highlighting data sources, accuracy, and ML algorithms used. These studies illustrate
how combining ML techniques with epidemiological data enhances early detection and
intervention for CRIs.

Table 1. Summary of prediction models for carbapenem resistance: integration of machine learning
and epidemiological data across studies.

No. Author Geographical
Setting

Publication
Year

Medical
Setting Data Source ML

Algorithms
Performance
Evaluation Bacterial Species

1
Timothy
Sullivan

[99]

United States
(Single Center) 2018 Hospital

setting

EHR data, Klebsiella
pneumoniae

bacteremia cases

Multiple
logistic

regression

AUROC: 0.731,
Sensitivity: 73%,
Specificity: 59%,
PPV: 16%, NPV:

95%

Klebsiella
pneumoniae

(Carbapenem-
resistant)

2
Ariane
Khaledi

[71]
Germany, Spain 2020

Clinical
settings,

multicen-
ter

Whole genome
sequencing (WGS),

transcriptomic
data, gene

presence/absence,
expression profiles

Machine
Learning

(unspecified
classifiers)

Sensitivity: 0.8–0.9,
Predictive values:

>0.9

Pseudomonas
aeruginosa

(Carbapenem-
resistant)

3
Ed

Moran
[97]

United Kingdom
(Single Center) 2020 Hospital

setting

Blood and urine
cultures,

demographics,
microbiology and
prescribing data

XGBoost

AUROC: 0.70,
Point-scoring tools:

AUROC 0.61 to
0.67, estimated

reduction in
broad-spectrum
antibiotic use by

40%

Escherichia coli,
Klebsiella

pneumoniae,
Pseudomonas

aeruginosa

4
Ryan J.

McGuire
[80]

United States
(Single Center) 2021

Tertiary-
care

academic
medical
center

Demographics,
medications, vital
signs, procedures,

lab results, cultures

Extreme
gradient
boosting

(XGBoost)

AUROC: 0.846,
Sensitivity: 30%,
PPV: 30%, NPV:

99%

Carbapenem-
resistant bacteria

5
Maddalena

Gian-
nella [90]

Multinational 2021

Liver trans-
plantation
units (mul-

ticenter)

Demographics,
clinical data,
mechanical

ventilation, acute
renal injury,

surgical
reintervention

Multivariable
logistic

regression,
Fine-Gray

subdistribu-
tion hazard

model

AUROC: 74.6
(derivation),

AUROC: 73.9
(bootstrapped

validation), Brier
Index: 16.6

Carbapenem-
resistant

Enterobacteri-
aceae (CRE)

6
Qiqiang

Liang
[79]

China (Single
Center) 2022

Intensive
care unit

(ICU)

Demographics,
screening records,
clinical data, vitals

Random
forest,

XGBoost,
decision tree,

logistic
regression

AUROC: 0.91
(random forest),
0.89 (XGBoost,

decision tree), 0.78
(logistic regression)

Carbapenem-
resistant

Gram-negative
bacteria

(CRGNB)

7

Maristela
Pinheiro

Freire
[91]

Brazil, Italy 2022

Liver trans-
plantation
units (mul-

ticenter)

Antibiotic use,
hepato-renal

syndrome,
CLIF-SOFA scores,

cirrhosis
complications

Machine
learning

(unspecified)

Sensitivity: 66%,
Specificity: 83%,

NPV: 97%

Carbapenem-
resistant

Enterobacterales
(CRE)
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Table 1. Cont.

No. Author Geographical
Setting

Publication
Year

Medical
Setting Data Source ML

Algorithms
Performance
Evaluation Bacterial Species

8
Çaǧlar

Çaǧlayan
[92]

United States
(Single Center) 2022

Intensive
care unit

(ICU)

EHR, MDRO
screening program,
sociodemographic
and clinical factors

Logistic
regression

(LR), random
forest (RF),
XGBoost

Sensitivity: VRE
80%, CRE 73%,

MRSA 76%, MDRO
82%; Specificity:
VRE 66%, CRE

77%, MRSA 59%,
MDRO 83%

MRSA, VRE,
Carbapenem-

resistant
Enterobacteri-
aceae (CRE)

9
Qiqiang

Liang
[63]

China (Single
Center) 2024

Intensive
care unit

(ICU)

Demographics,
mechanical
ventilation,

invasive
catheterization,
carbapenem use

history

Random
forest,

XGBoost,
SVM

AUROC: random
forest 0.86,
XGBoost

(infection): 0.86,
SVM: 0.88, RF
(CRGNB): 0.87

Carbapenem-
resistant

Gram-negative
bacteria

(CRGNB)

10 Yun Li
[65] China/USA 2024

Intensive
care unit

(ICU)

Electronic health
record data

(PLAGH-ICU,
MIMIC-IV)

Machine
learning
models

AUROC: 0.786
(PLAGH-ICU),

0.744 (MIMIC-IV)

Multidrug-
resistant

organisms
(MDRO),
including

carbapenem-
resistant species

11 Bing Liu
[64]

China (Single
Center) 2024

Multiple
hospital
settings

Whole-genome
sequencing (WGS)
data, metagenomic
sequencing (MGS),
genomic features

Machine
learning

(unspecified
algorithms)

AUROC: 0.906
(IPM), 0.925

(MEM), PPV: 0.897
(IPM), 0.889 (MEM)

Pseudomonas
aeruginosa

(Carbapenem-
resistant)

AUROC: area under the receiver operating characteristic curve; CLIF-SOFA: Chronic Liver Failure–Sequential
Organ Failure Assessment; EHR: electronic health record; SVM: support vector machine; LR: logistic regression;
RF: random forest; XGBoost: extreme gradient boosting; CRE: carbapenem-resistant Enterobacteriaceae; MRSA:
methicillin-resistant Staphylococcus aureus; VRE: vancomycin-resistant Enterococci; MDRO: multidrug-resistant
organisms; NPV: negative predictive value; PPV: positive predictive value; CRGNB: carbapenem-resistant Gram-
negative bacteria; PLAGH-ICU: a Chinese hospital ICU dataset; MIMIC-IV: Medical Information Mart for Intensive
Care IV; IPM: imipenem; MEM: meropenem; WGS: whole-genome sequencing; MGS: metagenomic sequencing.

6. Challenges and Future Directions
6.1. Technical and Ethical Challenges

Data quality and completeness: One of the primary technical challenges in integrating
ML with epidemiological studies is ensuring the quality and completeness of the data.
Addressing data quality is crucial, as accurate, comprehensive datasets are fundamental to
reliable modeling and outcomes. Inconsistent data collection methods, missing values, and
errors in data entry can lead to biased models and inaccurate conclusions. This challenge
is amplified when integrating data from diverse sources, such as genomic, clinical, and
environmental datasets, which often suffer from data format inconsistencies. Standardizing
data collection protocols and formats—using systems such as HL7 for clinical data—can
streamline integration and improve data quality [103]. Robust data cleaning, validation
processes, and advanced imputation techniques, such as k-nearest neighbors (KNN) or
multiple imputation by chained equations (MICE), are crucial for addressing these issues
and ensuring the reliability of the datasets. [104].

Interpretability of machine learning models: ML models, especially deep learning
algorithms, often deliver high accuracy but lack interpretability, which limits their adoption
in clinical and epidemiological settings. Healthcare professionals need to trust and under-
stand how decisions are made. This “black box” nature becomes a barrier, particularly
when integrated with complex epidemiological data, such as genomic or environmental
information. Developing interpretable models and techniques to explain predictions can
help build trust among healthcare providers and epidemiologists, ensuring that decisions
are transparent and justifiable [105].
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Ethical considerations in data use and patient privacy: Ethical concerns about patient
privacy and data security are frequently raised in relation to large datasets in ML. The
integration of clinical and sociodemographic data further complicates these matters, as
sensitive patient information must be securely stored and anonymized. Strict compliance
with data protection regulations, such as the General Data Protection Regulation (GDPR)
and Health Insurance Portability and Accountability Act (HIPAA), is essential, as are robust
encryption techniques to safeguard data.

The GDPR sets strict rules for the processing of sensitive patient data, including
medical records, and requires that personal data be anonymized or pseudonymized before
transfer. This is essential to ensure patient confidentiality and prevent reidentification.
However, these requirements can limit the availability of detailed data, which are essential
for effective ML models in AMR monitoring. For example, while anonymization can protect
individual privacy, it reduces the granularity of the data, which can impact the ability of
models to detect specific AMR trends or patterns.

Additionally, the GDPR places limitations on the transfer of personal data outside
the European Economic Area (EEA). In the case of AMR monitoring, which often requires
international cooperation, these regulations may prevent data sharing with countries that
do not have equivalent data protection laws. Ensuring compliance requires setting up
complex legal frameworks, such as standard contractual clauses, which can slow down
data exchange and collaboration efforts.

Furthermore, the integration of clinical, genomic, and sociodemographic data for
AMR surveillance raises ethical issues regarding consent and transparency [106]. Under
the GDPR, patients must explicitly consent to the use of their data and have the right
to withdraw this consent. Balancing these ethical considerations with the need for large,
diverse datasets to improve predictive modeling for AMR poses a significant challenge.

Addressing biases in data and algorithms: Bias in data and algorithms poses a sig-
nificant challenge, leading to unfair or discriminatory outcomes. Biases may originate at
various stages, from data collection to model training and deployment. For example, if
a training dataset is not representative of the broader population, models may perform
poorly for underrepresented groups, resulting in inequitable healthcare delivery. When in-
tegrating diverse datasets, such as genomic, clinical, environmental, and sociodemographic
data, it is crucial to monitor biases continuously. Algorithms should be developed with
fairness in mind, ensuring equitable outcomes across all population groups [107].

Model generalizability in diverse healthcare contexts: The generalizability of machine
learning models remains a significant challenge, particularly in healthcare settings with
varying resources, patient populations, and infrastructure [108]. Factors contributing to CR
may differ widely across regions and environments, further complicating the application
of predictive models across diverse contexts. The variability in EHRs and laboratory data
from different institutions or countries adds to the complexity, as these data may not
be easily reproducible or standardized. To address this, it is crucial to tailor models to
specific local contexts and continuously refine them with locally sourced data to ensure
that predictions remain accurate and effective. Even when algorithms are developed, their
prospective validation in diverse clinical environments is essential to ensure generalizability
and reliability across various healthcare systems [105].

Addressing the limitations and operational challenges of machine learning in clini-
cal implementation: While the integration of ML into healthcare holds great promise for
enhancing patient outcomes and streamlining public health initiatives, it is crucial to ac-
knowledge the limitations and operational challenges that accompany its implementation.
One significant barrier is the requirement for large, high-quality datasets, which can be
difficult to obtain, especially in settings with limited data-sharing practices [106]. Further-
more, integrating ML into existing clinical workflows may encounter resistance from staff
due to concerns about reliability and accountability, as well as the need for comprehensive
training on new technologies. Addressing these challenges through targeted strategies and
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ongoing evaluation will be essential for realizing the full potential of ML in improving
healthcare delivery [107].

6.2. Future Directions

Potential advancements in machine learning algorithms and computational power:
Advancements in ML algorithms and computational power are poised to significantly
enhance the capabilities of epidemiological studies. The development of more sophisticated
algorithms, such as deep learning models with improved architectures, can lead to better
performance in detecting and predicting patterns of AMR [109]. Additionally, the increasing
availability of high-performance computing resources, including cloud-based platforms
and specialized hardware, such as GPUs and TPUs, allows for the processing of larger
datasets and the training of more complex models [110].

Opportunities for integrating other emerging technologies (e.g., AI and big data analyt-
ics) with epidemiology: The integration of other emerging technologies with epidemiology
presents numerous opportunities for advancing the field. Artificial intelligence (AI), big
data analytics, and the Internet of Things (IoT) can provide valuable insights into the
spread and control of AMR. For example, AI can enhance the analysis of genomic data to
identify resistance genes, while big data analytics can uncover trends and correlations in
vast datasets from various sources, including electronic health records and environmental
sensors [111]. The IoT can facilitate real-time monitoring of environmental conditions
and the spread of infectious diseases, enabling more timely and effective public health
interventions [112].

Recommendations for policy and practice to maximize the impact of these interdisci-
plinary approaches: To maximize the impact of interdisciplinary approaches combining
ML and epidemiology, several key recommendations should be implemented, as follows:

• Standardization of data collection. The establishment of standardized protocols for
data collection and reporting is critical. This will enhance the quality and comparability
of datasets, which are vital for the effectiveness of ML models in epidemiological
studies [113].

• Investment in infrastructure. Governments and organizations should invest in the
necessary infrastructure, including high-performance computing resources and se-
cure data storage solutions, to support the integration of ML and epidemiological
methods [114].

• Interdisciplinary collaboration. It is essential to foster collaboration among data
scientists, epidemiologists, healthcare professionals, and policymakers. Such interdis-
ciplinary partnerships can drive the creation of effective and practical solutions for
tackling antimicrobial resistance (AMR) and other public health challenges [40].

• Ethical and regulatory frameworks. Developing comprehensive ethical and regulatory
frameworks is crucial. These frameworks should address privacy concerns, data
security, and the responsible use of AI and ML technologies, thereby ensuring public
trust and the successful deployment of these approaches in real-world settings [115].

6.3. The Role of Interdisciplinary Collaboration in Advancing This Field

Interdisciplinary collaboration plays a crucial role in advancing the integration of ML
and epidemiology. By bringing together experts from various fields, including computer
science, public health, medicine, and social sciences, collaborative efforts can leverage
diverse perspectives and expertise to tackle complex challenges associated with AMR. Such
collaborations can lead to the development of innovative models, the identification of novel
intervention strategies, and the creation of comprehensive public health policies that are
informed by data-driven insights [116].

In essence, the integration of ML and epidemiology is not just about combining tools
from different disciplines, but about creating a synergistic framework where each discipline
informs and enhances the other. This collaborative approach can lead to breakthroughs in
understanding and combating AMR, ultimately leading to more effective interventions,
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better patient outcomes, and stronger public health systems. By leveraging the strengths of
various fields, interdisciplinary collaboration can drive the innovation needed to address
one of the most pressing global health challenges of our time.

7. Conclusions

The integration of ML and epidemiology has the potential to transform public health
interventions by offering precise predictions and tailored approaches to infection control.
ML-driven models help healthcare systems and public health authorities respond more
effectively to the growing challenge of AMR, reducing the spread of resistant infections, im-
proving patient outcomes, and optimizing the use of resources. This data-driven approach
promises to significantly enhance both patient care and public health efforts.

Looking ahead, the future of combining ML and epidemiology holds great promise
for combating AMR. As ML algorithms and computational power continue to advance,
their application in healthcare will become increasingly sophisticated and impactful. The
integration of emerging technologies, such as AI and big data analytics, with epidemiologi-
cal methods will further enhance the ability to predict, monitor, and respond to resistance
trends. This synergy will enable more efficient resource allocation, early detection of resis-
tance patterns, and timely interventions, ultimately helping to curb the growing threat of
antimicrobial resistance on a global scale.

Furthermore, the broader impact of this integration will foster a more proactive and
informed approach to public health, enabling healthcare systems to implement targeted
interventions and policies that not only address current challenges but also anticipate
future outbreaks of AMR. By leveraging the power of ML in epidemiology, we can build a
more resilient and responsive healthcare infrastructure that significantly improves global
health outcomes.
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