Antimicrobial Peptide Delivery Systems as Promising Tools Against Resistant Bacterial Infections
Abstract
:1. Introduction
2. Different Nanoencapsulation Methods for Efficient AMP Delivery
2.1. Inorganic Nanoparticles
2.2. Polymeric Nanoparticles
2.3. Lipid Nanoparticles
2.4. Other Types of Nanomaterials
3. Synergistic Effect of Nanoformulated Peptides
4. Clinical Translation of Nanoformulated Peptides
5. Other Approaches in AMP Therapeutic Development
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Gales, A.C.; Laxminarayan, R.; Dodd, P.C. Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLoS Med. 2023, 20, e1004264. [Google Scholar] [CrossRef] [PubMed]
- Serra-Burriel, M.; Campillo-Artero, C.; Agodi, A.; Barchitta, M.; Gikas, A.; Palos, C.; López-Casasnovas, G. Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS ONE 2020, 15, e0227139. [Google Scholar] [CrossRef] [PubMed]
- Morehead, M.S.; Scarbrough, C. Emergence of Global Antibiotic Resistance. Prim. Care-Clin. Off. Pract. 2018, 45, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.; Feng, W.; Wang, J.; Wang, R.; Zhang, B.; Bo, L.; Chen, Z.S.; Yang, H.; Sun, L. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist. Updates 2023, 68, 100954. [Google Scholar] [CrossRef]
- Giuliani, A.; Pirri, G.; Nicoletto, S. Antimicrobial peptides: An overview of a promising class of therapeutics. Open Life Sci 2007, 2, 1–33. [Google Scholar] [CrossRef]
- Mba, I.E.; Nweze, E.I. Antimicrobial Peptides Therapy: An Emerging Alternative for Treating Drug-Resistant Bacteria. Yale J. Biol. Med. 2022, 95, 445–463. [Google Scholar]
- Kaygorodova, I.A. Role of Antimicrobial Peptides in Immunity of Parasitic Leeches. In Doklady Biological Sciences; Pleiades Publishing: Moscow, Russia, 2023; Volume 511, pp. 183–195. [Google Scholar]
- Zhang, C.; Yang, M.; Ericsson, A.C. Antimicrobial Peptides: Potential Application in Liver Cancer. Front. Microbiol. 2019, 10, 1257. [Google Scholar] [CrossRef]
- Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; et al. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front. Cell Infect. Microbiol. 2021, 11, 668632. [Google Scholar] [CrossRef]
- Bin Hafeez, A.; Jiang, X.; Bergen, P.J.; Zhu, Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int. J. Mol. Sci. 2021, 22, 11691. [Google Scholar] [CrossRef]
- Rodríguez, A.A.; Otero-González, A.; Ghattas, M.; Ständker, L. Discovery, Optimization, and Clinical Application of Natural Antimicrobial Peptides. Biomedicines 2021, 9, 1381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-Y.; Yan, Z.-B.; Meng, Y.-M.; Hong, X.-Y.; Shao, G.; Ma, J.-J.; Cheng, X.-R.; Liu, J.; Kang, J.; Fu, C.-Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zuo, S.; Wang, B.; Zhang, K.; Wang, Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022, 27, 2675. [Google Scholar] [CrossRef]
- Savitskaya, A.; Masso-Silva, J.; Haddaoui, I.; Enany, S. Exploring the arsenal of antimicrobial peptides: Mechanisms, diversity, and applications. Biochimie 2023, 214, 216–227. [Google Scholar] [CrossRef]
- Matsuzaki, K.; Murase, O.; Tokuda, H.; Funakoshi, S.; Fujii, N.; Miyajima, K. Orientational and Aggregational States of Magainin 2 in Phospholipid Bilayers. Biochemistry 1994, 33, 75–81. [Google Scholar] [CrossRef]
- Ludtke, S.J.; He, K.; Heller, W.T.; Harroun, T.A.; Yang, L.; Huang, H.W. Membrane Pores Induced by Magainin. Biochemistry 1996, 35, 13723–13728. [Google Scholar] [CrossRef]
- Gazit, E.; Miller, I.R.; Biggin, P.C.; Sansom, M.S.P.; Shai, Y. Structure and Orientation of the Mammalian Antibacterial Peptide Cecropin P1 within Phospholipid Membranes. J. Mol. Biol. 1996, 258, 860–870. [Google Scholar] [CrossRef]
- Bucataru, C.; Ciobanasu, C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol. Res. 2024, 286, 127822. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Chen, H.; Song, Y.; Qin, Z.; Xu, L.; He, N.; Tan, Y.; Dessie, W. Advancements, challenges and future perspectives on peptide-based drugs: Focus on antimicrobial peptides. J. Pharm. Sci. 2023, 181, 106363. [Google Scholar] [CrossRef]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef]
- Gera, S.; Kankuri, E.; Kogermann, K. Antimicrobial peptides–Unleashing their therapeutic potential using nanotechnology. Pharmacol. Ther. 2022, 232, 107990. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.P.; Chen, J.Y. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. Eur. J. Med. Chem. 2023, 259, 115680. [Google Scholar] [CrossRef] [PubMed]
- Bellucci, M.C.; Romani, C.; Sani, M.; Volonterio, A. Dual Antibiotic Approach: Synthesis and Antibacterial Activity of Antibiotic–Antimicrobial Peptide Conjugates. Antibiotics 2024, 13, 783. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Liu, Q.; Lei, Z.; Sun, T. Development and challenges of antimicrobial peptide delivery strategies in bacterial therapy: A review. Int. J. Biol. Macromol. 2023, 253, 126819. [Google Scholar] [CrossRef]
- de Pablo-Miró, M.; Pujol-Ruiz, S.; Iftimie, S.; Arenas-Miras, M.D.M.; López-Montesinos, I.; Duran-Jordà, X.; Anglès, A.; Grau, S.; Horcajada, J.P. Comparative analysis of dalbavancin versus other antimicrobial options for gram-positive cocci infections: Effectiveness, hospital stay and mortality. Antibiotics 2021, 10, 1296. [Google Scholar] [CrossRef]
- Díez-Aguilar, M.; Ekkelenkamp, M.; Morosini, M.I.; Huertas, N.; Del Campo, R.; Zamora, J.; Fluit, A.C.; Tunney, M.M.; Obrecht, D.; Bernardini, F.; et al. Anti-biofilm activity of murepavadin against cystic fibrosis Pseudomonas aeruginosa isolates. J. Antimicrob. Chemother. 2021, 76, 2578–2585. [Google Scholar] [CrossRef]
- Fadaka, A.O.; Sibuyi, N.R.S.; Madiehe, A.M.; Meyer, M. Nanotechnology-Based Delivery Systems for Antimicrobial Peptides. Pharmaceutics 2021, 13, 1795. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, J.; de la Fuente-Nunez, C.; Franco, O.L. Editorial: Antimicrobial Peptides: Molecular Design, Structure-Function Relationship, and Biosynthesis Optimization. Front. Microbiol. 2022, 13, 888540. [Google Scholar] [CrossRef]
- Silva, A.R.P.; Guimaraes, M.S.; Rabelo, J.; Belen, L.H.; Perecin, C.J.; Farias, J.G.; Santos, J.H.P.M.; Rangel-Yagui, C.O. Recent advances in the design of antimicrobial peptide conjugates. J. Mater. Chem. B 2022, 10, 3587–3600. [Google Scholar] [CrossRef]
- Hetta, H.F.; Ramadan, Y.N.; Al-Harbi, A.I.; AAhmed, E.; Battah, B.; Abd Ellah, N.H.; Zanetti, S.; Donadu, M.G. Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. Biomedicines 2023, 11, 413. [Google Scholar] [CrossRef]
- Li, G.; Lai, Z.; Shan, A. Advances of Antimicrobial Peptide-Based Biomaterials for the Treatment of Bacterial Infections. Adv. Sci. 2023, 10, 2206602. [Google Scholar] [CrossRef] [PubMed]
- Kharga, K.; Jha, S.; Vishwakarma, T.; Kumar, L. Current developments and prospects of the antibiotic delivery systems. Crit. Rev. Microbiol. 2024, 29, 1–40. [Google Scholar] [CrossRef]
- Imran, M.; Jha, S.K.; Hasan, N.; Insaf, A.; Shrestha, J.; Shrestha, J.; Devkota, H.P.; Khan, S.; Panth, N.; Warkiani, M.E.; et al. Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems. Pharmaceutics 2022, 14, 586. [Google Scholar] [CrossRef] [PubMed]
- Rajchakit, U.; Lamba, S.; Wang, K.; Lyons, N.; Lu, J.; Swift, S.; Pletzer, D.; Sarojini, V. Size-Controlled Synthesis of Gold Nanoparticles Tethering Antimicrobial Peptides with Potent Broad-Spectrum Antimicrobial and Antibiofilm Activities. Mol. Pharm. 2024, 21, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, Z.; Wang, J.; Sun, X.; Yang, X.; Liu, G. Mussel-inspired electroactive, antibacterial and antioxidative composite membranes with incorporation of gold nanoparticles and antibacterial peptides for enhancing skin wound healing. J. Biol. Eng. 2024, 18, 3. [Google Scholar] [CrossRef]
- Formaggio, D.M.D.; Magalhães, J.A.; Andrade, V.M.; Conceição, K.; Anastácio, J.M.; Santiago, G.S.; Arruda, D.C.; Tada, D.B. Co-Functionalization of Gold Nanoparticles with C7H2 and HuAL1 Peptides: Enhanced Antimicrobial and Antitumoral Activities. Pharmaceutics 2022, 14, 1324. [Google Scholar] [CrossRef]
- Park, J.; Shin, E.; Yeom, J.H.; Choi, Y.; Joo, M.; Lee, M.; Kim, J.H.; Bae, J.; Lee, K. Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice. J. Microbiol. 2022, 60, 128–136. [Google Scholar] [CrossRef]
- Subaer, S.; Hartati, H.; Ramadhan, I.; Ismayanti, H.; Setiawan, A. A Simple Synthesis and Microstructure Analysis of Human Peptide LL-37@Gold Nanoparticles (Known as LL-37@AuNPs) Conjugates as Antimicrobials and Substances for Wound Healing. Materials 2023, 16, 7675. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, Y.; Duan, W.; Qu, X.; Wu, J. Synergistic and On-Demand Release of Ag-AMPs Loaded on Porous Silicon Nanocarriers for Antibacteria and Wound Healing. ACS Appl. Mater. Interfaces 2021, 13, 16127–16141. [Google Scholar] [CrossRef]
- Gao, J.; Na, H.; Zhong, R.; Yuan, M.; Guo, J.; Zhao, L.; Wang, Y.; Wang, L.; Zhang, F. One step synthesis of antimicrobial peptide protected silver nanoparticles: The core-shell mutual enhancement of antibacterial activity. Colloids Surf. B Biointerfaces 2020, 186, 110704. [Google Scholar] [CrossRef]
- Ye, Z.; Zhu, H.; Zhang, S.; Li, J.; Wang, J.; Wang, E. Highly efficient nanomedicine from cationic antimicrobial peptide-protected Ag nanoclusters. J. Mater. Chem. B 2021, 9, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Darwish, R.M.; Salama, A.H. Study the Effect of Conjugate Novel Ultra-Short Antimicrobial Peptide with Silver Nanoparticles against Methicillin Resistant S. aureus and ESBL E. coli. Antibiotics 2022, 11, 1024. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Mao, J.; Zheng, P.; Wang, R.; Yang, Z.; Qian, S. Improving the biocompatibility and antibacterial efficacy of silver nanoparticles functionalized with (LLRR)3 antimicrobial peptide. World J. Microbiol. Biotechnol. 2024, 40, 1. [Google Scholar] [CrossRef] [PubMed]
- Xiong, P.; Huang, X.; Ye, N.; Lu, Q.; Zhang, G.; Peng, S.; Wang, H.; Liu, Y. Cytotoxicity of Metal-Based Nanoparticles: From Mechanisms and Methods of Evaluation to Pathological Manifestations. Adv. Sci. 2022, 9, 2106049. [Google Scholar] [CrossRef]
- Panáček, D.; Hochvaldová, L.; Bakandritsos, A.; Malina, T.; Langer, M.; Belza, J.; Martincová, J.; Večeřová, R.; Lazar, P.; Poláková, K.; et al. Silver Covalently Bound to Cyanographene Overcomes Bacterial Resistance to Silver Nanoparticles and Antibiotics. Adv. Sci. 2021, 8, 2003090. [Google Scholar] [CrossRef]
- Zheng, W.; Jia, Y.; Zhao, Y.; Zhang, J.; Xie, Y.; Wang, L.; Zhao, X.; Liu, X.; Tang, R.; Chen, W.; et al. Reversing Bacterial Resistance to Gold Nanoparticles by Size Modulation. Nano Lett. 2021, 21, 1992–2000. [Google Scholar] [CrossRef] [PubMed]
- Naidu, S.; Pandey, J.; Mishra, L.C.; Chakraborty, A.; Roy, A.; Singh, I.K.; Singh, A. Silicon nanoparticles: Synthesis, uptake and their role in mitigation of biotic stress. Ecotoxicol Environ. Saf. 2023, 255, 114783. [Google Scholar] [CrossRef]
- Beitzinger, B.; Gerbl, F.; Vomhof, T.; Schmid, R.; Noschka, R.; Rodriguez, A.; Wiese, S.; Weidinger, G.; Ständker, L.; Walther, P.; et al. Delivery by Dendritic Mesoporous Silica Nanoparticles Enhances the Antimicrobial Activity of a Napsin-Derived Peptide Against Intracellular Mycobacterium tuberculosis. Adv. Healthc. Mater. 2021, 10, 2100453. [Google Scholar] [CrossRef]
- Tenland, E.; Pochert, A.; Krishnan, N.; Rao, K.U.; Kalsum, S.; Braun, K.; Glegola-Madejska, I.; Lerm, M.; Robertson, B.D.; Lindén, M.; et al. Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS ONE 2019, 14, e0212858. [Google Scholar] [CrossRef]
- Rouco, H.; García-García, P.; Évora, C.; Díaz-Rodríguez, P.; Delgado, A. Screening strategies for surface modification of lipid-polymer hybrid nanoparticles. Int. J. Pharm. 2022, 624, 121973. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, Y.; Li, Y.; Tang, C.; Xu, Z.; Li, C.; Xu, F.; Mai, Y. Hybrid Polymer Vesicles: Controllable Preparation and Potential Applications. Biomacromolecules 2023, 24, 3929–3953. [Google Scholar] [CrossRef] [PubMed]
- Ren, R.; Lim, C.; Li, S.; Wang, Y.; Song, J.; Lin, T.W.; Muir, B.W.; Hsu, H.Y.; Shen, H.H. Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. Nanomaterials 2022, 12, 3855. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Deng, T.; Lin, F.C.; Zhang, B.; Zink, J.I. Supramolecular Assemblies of Heterogeneous Mesoporous Silica Nanoparticles to Co-deliver Antimicrobial Peptides and Antibiotics for Synergistic Eradication of Pathogenic Biofilms. ACS Nano 2020, 14, 5926–5937. [Google Scholar] [CrossRef]
- Niemz, A.; Tirrell, D.A. Self-association and membrane-binding behavior of melittins containing trifluoroleucine. J. Am. Chem. Soc. 2001, 123, 7407–7413. [Google Scholar] [CrossRef]
- Xu, B.; Shaoyong, W.; Wang, L.; Yang, C.; Chen, T.; Jiang, X.; Yan, R.; Jiang, Z.; Zhang, P.; Jin, M.; et al. Gut-targeted nanoparticles deliver specifically targeted antimicrobial peptides against Clostridium perfringens infections. Sci. Adv. 2023, 9, eadf8782. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumar, D.; Kumar, D.; Garg, Y.; Chopra, S.; Bhatia, A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024, 25, 108. [Google Scholar] [CrossRef]
- Cesaro, A.; Lin, S.; Pardi, N.; de la Fuente-Nunez, C. Advanced delivery systems for peptide antibiotics. Adv. Drug Deliv. Rev. 2023, 196, 114733. [Google Scholar] [CrossRef]
- Teixeira, M.C.; Carbone, C.; Sousa, M.C.; Espina, M.; Garcia, M.L.; Sanchez-Lopez, E.; Souto, E.B. Nanomedicines for the delivery of antimicrobial peptides (Amps). Nanomaterials 2020, 10, 560. [Google Scholar] [CrossRef]
- Ortiz-Gómez, V.; Rodríguez-Ramos, V.D.; Maldonado-Hernández, R.; González-Feliciano, J.A.; Nicolau, E. Antimicrobial Polymer-Peptide Conjugates Based on Maximin H5 and PEG to Prevent Biofouling of E. coli and P. aeruginosa. ACS Appl. Mater. Interfaces 2020, 12, 46991–47001. [Google Scholar] [CrossRef]
- Li, T.; Yang, N.; Teng, D.; Mao, R.; Hao, Y.; Wang, X.; Wang, J. C-terminal mini-PEGylation of a marine peptide N6 had potent antibacterial and anti-inflammatory properties against Escherichia coli and Salmonella strains in vitro and in vivo. BMC Microbiol. 2022, 22, 128. [Google Scholar] [CrossRef]
- Kozuka, Y.; Masuda, T.; Isu, N.; Takai, M. Antimicrobial Peptide Assembly on Zwitterionic Polymer Films to Slow Down Biofilm Formation. Langmuir 2024, 40, 7029–7037. [Google Scholar] [CrossRef] [PubMed]
- Drayton, M.; Kizhakkedathu, J.N.; Straus, S.K. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules 2020, 25, 3048. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Vaghasiya, K.; Ray, E.; Verma, R.K. Nano-encapsulated HHC10 host defense peptide (HDP) reduces the growth of Escherichia coli via multimodal mechanisms. Artif. Cells Nanomed. Biotechnol. 2018, 46, S156–S165. [Google Scholar] [CrossRef] [PubMed]
- Casciaro, B.; D’Angelo, I.; Zhang, X.; Loffredo, M.R.; Conte, G.; Cappiello, F.; Quaglia, F.; Di, Y.P.P.; Ungaro, F.; Mangoni, M.L. Poly(lactide- co-glycolide) Nanoparticles for Prolonged Therapeutic Efficacy of Esculentin-1a-Derived Antimicrobial Peptides against Pseudomonas aeruginosa Lung Infection: In Vitro and in Vivo Studies. Biomacromolecules 2019, 20, 1876–1888. [Google Scholar] [CrossRef] [PubMed]
- Gaglio, S.C.; Jabalera, Y.; Montalbán-López, M.; Millán-Placer, A.C.; Lázaro-Callejón, M.; Maqueda, M.; Carrasco-Jimenez, M.P.; Laso, A.; Aínsa, J.A.; Iglesias, G.R.; et al. Embedding Biomimetic Magnetic Nanoparticles Coupled with Peptide AS-48 into PLGA to Treat Intracellular Pathogens. Pharmaceutics 2022, 14, 2744. [Google Scholar] [CrossRef]
- Ali, M.; van Gent, M.E.; de Waal, A.M.; van Doodewaerd, B.R.; Bos, E.; Koning, R.I.; Cordfunke, R.A.; Drijfhout, J.W.; Nibbering, P.H. Physical and Functional Characterization of PLGA Nanoparticles Containing the Antimicrobial Peptide SAAP-148. Int. J. Mol. Sci. 2023, 24, 2867. [Google Scholar] [CrossRef]
- Jiao, X.; Liu, B.; Dong, X.; Wang, S.; Cai, X.; Zhang, H.; Qin, Z. Exploring PLGA-OH-CATH30 Microspheres for Oral Therapy of Escherichia coli-Induced Enteritis. Biomolecules 2024, 14, 86. [Google Scholar] [CrossRef]
- Ma, X.; Yang, N.; Mao, R.; Hao, Y.; Teng, D.; Huang, Y.; Wang, J. Polylactic Glycolic Acid-Mediated Delivery of Plectasin Derivative NZ2114 in Staphylococcus epidermidis Biofilms. Antibiotics 2024, 13, 228. [Google Scholar] [CrossRef]
- Ma, B.; Hu, G.; Guo, S.; Zeng, Q.; Chen, Y.; Hwan Oh, D.; Jin, Y.; Fu, X. Use of peptide-modified nanoparticles as a bacterial cell targeting agent for enhanced antibacterial activity and other biomedical applications. Food Res. Int. 2022, 161, 111638. [Google Scholar] [CrossRef]
- Cheng, Y.; Qin, J.; Huang, Y.; Wang, T. The antimicrobial effects of PLGA microspheres containing the antimicrobial peptide OP-145 on clinically isolated pathogens in bone infections. Sci. Rep. 2022, 12, 14541. [Google Scholar] [CrossRef]
- Albdrawy, A.I.; Aleanizy, F.S.; Eltayb, E.K.; Aldossari, A.A.; Alanazi, M.M.; Alfaraj, R.; Eltahir, E.; Albasri, H.M.; Alanazi, J.S.; Alqahtani, F.Y. Effect of C7-3-Peptide-Loaded Chitosan Nanoparticles Against Multi-Drug-Resistant Neisseria gonorrhoeae. Int. J. Nanomed. 2024, 19, 609–631. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Raghav, R.; Priyanka, K.; Rishi, P.; Sharma, S.; Srivastava, S.; Verma, I. Exploiting chitosan and gold nanoparticles for antimycobacterial activity of in silico identified antimicrobial motif of human neutrophil peptide-1. Sci. Rep. 2019, 9, 7866. [Google Scholar] [CrossRef]
- Hassan, A.; Ikram, A.; Raza, A.; Saeed, S.; Paracha, R.Z.; Younas, Z.; Khadim, M.T. Therapeutic potential of novel mastoparan-chitosan nanoconstructs against clinical MDR Acinetobacter baumannii: In silico, in vitro and in vivo Studies. Int. J. Nanomed. 2021, 16, 3755–3773. [Google Scholar] [CrossRef]
- Jayathilaka, E.H.T.T.; Nikapitiya, C.; De Zoysa, M.; Whang, I. Antimicrobial Peptide Octominin-Encapsulated Chitosan Nanoparticles Enhanced Antifungal and Antibacterial Activities. Int. J. Mol. Sci. 2022, 23, 15882. [Google Scholar] [CrossRef] [PubMed]
- Okasha, H.; Dahroug, H.; Gouda, A.E.; Shemis, M.A. A novel antibacterial approach of Cecropin-B peptide loaded on chitosan nanoparticles against MDR Klebsiella pneumoniae isolates. Amino Acids 2023, 55, 1965–1980. [Google Scholar] [CrossRef]
- Martin-Serrano, Á.; Gómez, R.; Ortega, P.; Mata, F.J.D.L.a. Nanosystems as vehicles for the delivery of antimicrobial peptides (Amps). Pharmaceutics 2019, 11, 448. [Google Scholar] [CrossRef]
- Ren, D.; Zhang, Y.; Du, B.; Wang, L.; Gong, M.; Zhu, W. An Antibacterial, Conductive Nanocomposite Hydrogel Coupled with Electrical Stimulation for Accelerated Wound Healing. Int. J. Nanomed. 2024, 19, 4495–4513. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Li, Q.; Fang, Z.; Jin, M.; Zeng, Q.; Huang, G.; Jia, Y.G.; Wang, L.; Chen, Y. Conductive and antimicrobial macroporous nanocomposite hydrogels generated from air-in-water Pickering emulsions for neural stem cell differentiation and skin wound healing. Biomater. Sci. 2020, 8, 6957–6968. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Q.; Chen, X.; Jiang, T.; Song, P.; Wang, B.; Zhao, X. Mussel-inspired nanocomposite hydrogel based on alginate and antimicrobial peptide for infected wound repair. Int. J. Biol. Macromol. 2022, 219, 1087–1099. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.; Zhou, J.; Wang, Z.; Yang, C.; Wang, P.; Fareed, M.S.; He, Y.; Su, J.; Cha, R.; et al. The Antimicrobial, Hemostatic, and Anti-Adhesion Effects of a Peptide Hydrogel Constructed by the All-d-Enantiomer of Antimicrobial Peptide Jelleine-1. Adv. Healthc. Mater. 2023, 12, 2301612. [Google Scholar] [CrossRef]
- Sun, L.; Ouyang, J.; She, Z.; Li, R.; Zeng, F.; Yao, Z.; Wu, S. Injectable-Hydrogel-Based Tissue Sealant for Hemostasis, Bacteria Inhibition, and Pro-Angiogenesis in Organ Bleeding Wounds and Therapeutic Outcome Monitoring Via NIR-II Optical Imaging. Adv. Healthc. Mater. 2024, 13, 2303997. [Google Scholar] [CrossRef]
- Cherri, M.; Stergiou, P.S.; Ahmadian, Z.; Povolotsky, T.L.; Thongrom, B.; Fan, X.; Mohammadifar, E.; Haag, R. Redox-Responsive Hydrogels Loaded with an Antibacterial Peptide as Controlled Drug Delivery for Healing Infectious Wounds. Adv. Healthc. Mater. 2024, 27, 2401289. [Google Scholar] [CrossRef]
- Jeong, S.H.; Cheong, S.; Kim, T.Y.; Choi, H.; Hahn, S.K. Supramolecular Hydrogels for Precisely Controlled Antimicrobial Peptide Delivery for Diabetic Wound Healing. ACS Appl. Mater. Interfaces 2023, 15, 16471–16481. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Hu, B.; Yuan, X.; Cai, L.; Gao, H.; Yang, Q. Nanogel: A versatile nano-delivery system for biomedical applications. Pharmaceutics 2020, 12, 290. [Google Scholar] [CrossRef] [PubMed]
- Fasiku, V.O.; Omolo, C.A.; Kiruri, L.W.; Devnarain, N.; Faya, M.; Mocktar, C.; Govender, T. A hyaluronic acid-based nanogel for the co-delivery of nitric oxide (NO) and a novel antimicrobial peptide (AMP) against bacterial biofilms. Int. J. Biol. Macromol. 2022, 206, 381–397. [Google Scholar] [CrossRef] [PubMed]
- van Gent, M.E.; Klodzinska, S.N.; Drijfhout, J.W.; Nielsen, H.M.; Nibbering, P.H. Encapsulation in oleyl-modified hyaluronic acid nanogels substantially improves the clinical potential of the antimicrobial peptides SAAP-148 and Ab-Cath. Eur. J. Pharm. Biopharm. 2023, 193, 254–261. [Google Scholar] [CrossRef]
- van Gent, M.E.; van Baaren, T.; Kłodzińska, S.N.; Ali, M.; Dolezal, N.; van Doodewaerd, B.R.; Bos, E.; de Waal, A.M.; Koning, R.I.; Drijfhout, J.W.; et al. Encapsulation of SAAP-148 in Octenyl Succinic Anhydride-Modified Hyaluronic Acid Nanogels for Treatment of Skin Wound Infections. Pharmaceutics 2023, 15, 429. [Google Scholar] [CrossRef]
- van Gent, M.E.; Kłodzińska, S.N.; Severin, M.; Ali, M.; van Doodewaerd, B.R.; Bos, E.; Koning, R.I.; Drijfhout, J.W.; Nielsen, H.M.; Nibbering, P.H. Encapsulation into hyaluronic acid-based nanogels improves the selectivity index of the snake cathelicidin Ab-Cath. Nanomedicine 2023, 52, 102694. [Google Scholar] [CrossRef]
- Lam, S.J.; O’Brien-Simpson, N.M.; Pantarat, N.; Sulistio, A.; Wong, E.H.H.; Chen, Y.Y.; Lenzo, J.C.; Holden, J.A.; Blencowe, A.; Reynolds, E.C.; et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 2016, 1, 16162. [Google Scholar] [CrossRef]
- Song, J.; Cortez-Jugo, C.; Shirbin, S.J.; Lin, Z.; Pan, S.; Qiao, G.G.; Caruso, F. Immobilization and Intracellular Delivery of Structurally Nanoengineered Antimicrobial Peptide Polymers Using Polyphenol-Based Capsules. Adv. Funct. Mater. 2022, 32, 2107341. [Google Scholar] [CrossRef]
- Grizzo, A.; dos Santos, D.M.; da Costa, V.P.V.; Lopes, R.G.; Inada, N.M.; Correa, D.S.; Campana-Filho, S.P. Multifunctional bilayer membranes composed of poly(lactic acid), beta-chitin whiskers and silver nanoparticles for wound dressing applications. Int. J. Biol. Macromol. 2023, 251, 126314. [Google Scholar] [CrossRef] [PubMed]
- Chiloeches, A.; Zágora, J.; Plachá, D.; Torres, M.D.T.; de la Fuente-Nunez, C.; López-Fabal, F.; Gil-Romero, Y.; Fernández-García, R.; Fernández-García, M.; Echeverría, C.; et al. Synergistic Combination of Antimicrobial Peptides and Cationic Polyitaconates in Multifunctional PLA Fibers. ACS Appl. Bio. Mater. 2023, 6, 4805–4813. [Google Scholar] [CrossRef] [PubMed]
- Doktorovova, S.; Souto, E.B.; Silva, A.M. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers—A systematic review of in vitro data. Eur. J. Pharm. Biopharm. 2014, 87, 1–18. [Google Scholar] [CrossRef]
- Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020, 7, 587997. [Google Scholar] [CrossRef]
- van Gent, M.E.; Ali, M.; Nibbering, P.H.; Kłodzińska, S.N. Current advances in lipid and polymeric antimicrobial peptide delivery systems and coatings for the prevention and treatment of bacterial infections. Pharmaceutics 2021, 13, 1840. [Google Scholar] [CrossRef]
- Gomaa, A.I.; Martinent, C.; Hammami, R.; Fliss, I.; Subirade, M. Dual coating of liposomes as encapsulating matrix of antimicrobial peptides: Development and characterization. Front. Chem. 2017, 5, 103. [Google Scholar] [CrossRef] [PubMed]
- Viera Herrera, C.; O’Connor, P.M.; Ratrey, P.; Paul Ross, R.; Hill, C.; Hudson, S.P. Anionic liposome formulation for oral delivery of thuricin CD, a potential antimicrobial peptide therapeutic. Int. J. Pharm. 2024, 654, 123918. [Google Scholar] [CrossRef]
- Cantor, S.; Vargas, L.; Rojas, O.E.A.; Yarce, C.J.; Salamanca, C.H.; Oñate-Garzón, J. Evaluation of the antimicrobial activity of cationic peptides loaded in surface-modified nanoliposomes against foodborne bacteria. Int. J. Mol. Sci. 2019, 20, 680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wu, F.; Wu, L.; Tian, Y.; Zhou, B.; Zhang, X.; Huang, R.; Yu, C.; He, G.; Yang, L. Novel Self-Assembled Micelles Based on Cholesterol-Modified Antimicrobial Peptide (DP7) for Safe and Effective Systemic Administration in Animal Models of Bacterial Infection. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef]
- Kumar, P.; Pletzer, D.; Haney, E.F.; Rahanjam, N.; Cheng, J.T.J.; Yue, M.; Aljehani, W.; Hancock, R.E.W.; Kizhakkedathu, J.N.; Straus, S.K. Aurein-Derived Antimicrobial Peptides Formulated with Pegylated Phospholipid Micelles to Target Methicillin-Resistant Staphylococcus aureus Skin Infections. ACS Infect. Dis. 2019, 5, 443–453. [Google Scholar] [CrossRef]
- Meikle, T.G.; Dharmadana, D.; Hoffmann, S.V.; Jones, N.C.; Drummond, C.J.; Conn, C.E. Analysis of the structure, loading and activity of six antimicrobial peptides encapsulated in cubic phase lipid nanoparticles. J. Colloid Interface Sci. 2021, 587, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Hagedorn, L.; Jürgens, D.C.; Merkel, O.M.; Winkeljann, B. Endosomal escape mechanisms of extracellular vesicle-based drug carriers: Lessons for lipid nanoparticle design. Extracell Vesicles Circ. Nucl. Acids 2024, 5, 344–357. [Google Scholar] [CrossRef]
- Ibrahim, U.H.; Gafar, M.A.; Khan, R.; Tageldin, A.; Govender, T.; Mackraj, I. Engineered extracellular vesicles coated with an antimicrobial peptide for advanced control of bacterial sepsis. J. Extracell. Biol. 2024, 3, e70000. [Google Scholar] [CrossRef] [PubMed]
- Su, L.Y.; Yao, M.; Xu, W.; Zhong, M.; Cao, Y.; Zhou, H. Cascade encapsulation of antimicrobial peptides, exosomes and antibiotics in fibrin-gel for first-aid hemostasis and infected wound healing. Int. J. Biol. Macromol. 2024, 269, 132140. [Google Scholar] [CrossRef]
- Fernandez, J.; Acosta, G.; Pulido, D.; Malý, M.; Copa-Patiño, J.L.; Soliveri, J.; Royo, M.; Gómez, R.; Albericio, F.; Ortega, P.; et al. Carbosilane Dendron-Peptide Nanoconjugates as Antimicrobial Agents. Mol. Pharm. 2019, 16, 2661–2674. [Google Scholar] [CrossRef]
- Zhang, M.K.; Lyu, Y.; Zhu, X.; Wang, J.P.; Jin, Z.Y.; Narsimhan, G. Enhanced solubility and antimicrobial activity of alamethicin in aqueous solution by complexation with γ-cyclodextrin. J. Funct. Foods 2018, 40, 700–706. [Google Scholar] [CrossRef]
- Poolsup, S.; Kim, C.Y. Therapeutic applications of synthetic nucleic acid aptamers. Curr. Opin. Biotechnol. 2017, 48, 180–186. [Google Scholar] [CrossRef]
- Ding, F.; Gao, Y.; He, X. Recent progresses in biomedical applications of aptamer-functionalized systems. Bioorg. Med. Chem. Lett. 2017, 27, 4256–4269. [Google Scholar] [CrossRef]
- Yeom, J.H.; Lee, B.; Kim, D.; Lee, J.K.; Kim, S.; Bae, J.; Park, Y.; Lee, K. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials 2016, 104, 43–51. [Google Scholar] [CrossRef]
- Touti, F.; Lautrette, G.; Johnson, K.D.; Delaney, J.C.; Wollacott, A.; Tissire, H.; Viswanathan, K.; Shriver, Z.; Mong, S.K.; Mijalis, A.J.; et al. Antibody–Bactericidal Macrocyclic Peptide Conjugates To Target Gram-Negative Bacteria. ChemBioChem 2018, 19, 2039–2044. [Google Scholar] [CrossRef]
- Dowaidar, M. Cell-penetrating peptides with nanoparticles hybrid delivery vectors and their uptake pathways. Mitochondrion 2024, 78, 101906. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhou, J.; Ran, P.; Lei, F.; Meng, J.; Wei, J.; Li, X. Photoactivated Release of Nitric Oxide and Antimicrobial Peptide Derivatives for Synergistic Therapy of Bacterial Skin Abscesses. Adv. Healthc. Mater. 2022, 11, 2200199. [Google Scholar] [CrossRef]
- Medaglia, S.; Otri, I.; Bernardos, A.; Marcos, M.D.; Aznar, E.; Sancenón, F.; Martínez-Máñez, R. Synergistic antimicrobial photodynamic therapy using gated mesoporous silica nanoparticles containing curcumin and polymyxin B. Int. J. Pharm. 2024, 654, 123947. [Google Scholar] [CrossRef]
- Alenazi, N.A.; Aleanizy, F.S.; Alqahtani, F.Y.; Aldossari, A.A.; Alanazi, M.M.; Alfaraj, R. Anti-quorum sensing activity of poly-amidoamine dendrimer generation 5 dendrimer loaded kinase inhibitor peptide against methicillin-resistant Staphylococcus aureus. Saudi Pharm. J. 2024, 32, 101932. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Xian, D.; Li, F.; Zhou, G.; Jiang, L.; Wu, J.; Lin, L.; Zheng, Y.; Liu, G.; Xu, Q.; et al. ε-poly-L-lysine microneedle patch loaded with amorphous doxycycline nanoparticles for synergistic treatment of skin infection. Int. J. Biol. Macromol. 2024, 266, 131383. [Google Scholar] [CrossRef] [PubMed]
- Miao, C.; Zhang, Y.; Liu, G.; Yang, J.; Yu, K.; Lv, J.; Liu, R.; Yao, Z.; Niu, Y.; Wang, X.; et al. Multi-step strategies for synergistic treatment of urinary tract infections based on D-xylose-decorated antimicrobial peptide carbon dots. Biomaterials 2024, 308, 122547. [Google Scholar] [CrossRef]
- Zarghami, V.; Ghorbani, M.; Bagheri, K.P.; Shokrgozar, M.A. Improving bactericidal performance of implant composite coatings by synergism between Melittin and tetracycline. J. Mater. Sci. Mater. Med. 2022, 33, 46. [Google Scholar] [CrossRef]
- Wali, N.; Shabbir, A.; Wajid, N.; Abbas, N.; Naqvi, S.Z.H. Synergistic efficacy of colistin and silver nanoparticles impregnated human amniotic membrane in a burn wound infected rat model. Sci. Rep. 2022, 12, 6414. [Google Scholar]
- Haji Hossein Tabrizi, A.; Habibi, M.; Foroohi, F.; Mohammadian, T.; Asadi Karam, M.R. Investigation of the effects of antimicrobial and anti-biofilm peptide IDR1018 and chitosan nanoparticles on ciprofloxacin-resistant Escherichia coli. J. Basic Microbiol. 2022, 62, 1229–1240. [Google Scholar] [CrossRef]
- Wu, F.; Yuan, Z.; Shafiq, M.; Zhang, L.; Rafique, M.; Yu, F.; EL-Newehy, M.; EL-Hamshary, H.; Morsi, Y.; Xu, Y.; et al. Synergistic effect of glucagon-like peptide-1 analogue liraglutide and ZnO on the antibacterial, hemostatic, and wound healing properties of nanofibrous dressings. J. Biosci. Bioeng. 2022, 134, 248–258. [Google Scholar] [CrossRef]
- Patrulea, V.; Gan, B.H.; Perron, K.; Cai, X.; Abdel-Sayed, P.; Sublet, E.; Ducret, V.; Nerhot, N.P.; Applegate, L.A.; Borchard, G.; et al. Synergistic effects of antimicrobial peptide dendrimer-chitosan polymer conjugates against Pseudomonas aeruginosa. Carbohydr. Polym. 2022, 280, 119025. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, J.; Ferrari, M. Clinical cancer nanomedicine. Nano Today 2019, 25, 85–98. [Google Scholar] [CrossRef] [PubMed]
- TI, J.; Cao, Y.; Yu, C.; Popat, A. Clinical translation of silica nanoparticles. Nat. Rev. Mater. 2021, 6, 1072–1074. [Google Scholar]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioeng. Transl. Med. 2021, 6, e10246. [Google Scholar] [CrossRef]
- Kim, S.; No, Y.H.; Sluyter, R.; Konstantinov, K.; Kim, Y.H.; Kim, J.H. Peptide-nanoparticle conjugates as a theranostic platform. Coord. Chem. Rev. 2024, 500, 215530. [Google Scholar] [CrossRef]
- Shreffler, J.W.; Pullan, J.E.; Dailey, K.M.; Mallik, S.; Brooks, A.E. Overcoming hurdles in nanoparticle clinical translation: The influence of experimental design and surface modification. Int. J. Mol. Sci. 2019, 20, 6056. [Google Scholar] [CrossRef]
- Lee, N.Y.; Ko, W.C.; Hsueh, P.R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 2019, 10, 1153. [Google Scholar] [CrossRef]
- Eleraky, N.E.; Allam, A.; Hassan, S.B.; Omar, M.M. Nanomedicine fight against antibacterial resistance: An overview of the recent pharmaceutical innovations. Pharmaceutics 2020, 12, 142. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, X.; Wu, Y.; Chen, X.; Feng, L.; Xie, N.; Shen, G. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment. Signal Transduct. Target Ther. 2024, 9, 34. [Google Scholar]
- Zhou, C.; Liu, Y.; Li, Y.; Shi, L. Recent advances and prospects in nanomaterials for bacterial sepsis management. J. Mater. Chem. B 2023, 11, 10778–10792. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Botelho Sampaio de Oliveira, K.; Lopes Leite, M.; Albuquerque Cunha, V.; Brito da Cunha, N.; Luiz Franco, O. Challenges and advances in antimicrobial peptide development. Drug Discov. Today 2023, 28, 103629. [Google Scholar] [CrossRef] [PubMed]
- Cresti, L.; Cappello, G.; Pini, A. Antimicrobial Peptides towards Clinical Application—A Long History to Be Concluded. Int. J. Mol. Sci. 2024, 25, 4870. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Wang, K.; Lei, L.; Zhao, D.; Yang, H.; Fang, Y.; Lu, K. Multispectral bioactivity studies of N-terminal fatty acid modified antimicrobial peptide Andricin B. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 325, 125084. [Google Scholar] [CrossRef] [PubMed]
AMP Nanoformulation | Target Bacteria | Synergistic Activity Achieved | Reference |
---|---|---|---|
Lys AB2 P3-His-Au-NPs | A. baumanii | Increase in the survival rate of infected mice and reduction in the cytotoxicity. | [38] |
LL-37-Au-NPs | S. aureus | Increase wound healing. | [39] |
Ura56-PEG-Au-NPs | MRSA, E. coli, multidrug-resistant P. aeruginosa, and A. baumannii | Increase in AMP stability. Increase in AMP efficacy. Reduction in the cytotoxicity. | [35] |
Tryasine-Ag-NPs | E. coli, S. aureus | Increase in AMP efficacy. Reduction in the cytotoxicity. | [43] |
(LLRR)3-Ag-NPs | E. coli and S. aureus | Increase in AMP efficacy. Reduction in the cytotoxicity. | [44] |
Mellitin-ofloxacin-MSNs | P. aeruginosa biofilm | Increase in antibiofilm efficacy in vitro and in vivo. | [54] |
NapFab-MSNs | M. tuberculosis | Increase in antibacterial efficacy. | [49] |
AMP Nanoformulation | Target Bacteria | Synergistic Activity Achieved | Reference |
---|---|---|---|
N6-PEG | E. coli and Salmonella pullorum | Increase in AMP stability. Increase in antibacterial efficacy. Increase in AMP biodistribution. Increase in AMP half-life. | [61] |
KR12-PEG | E. coli biofilm | Increase in antibiofilm efficacy. | [62] |
OH-CATH30-PLGA | E. coli | Increase in antibacterial efficacy. Increase in immunomodulatory activity. | [68] |
NZ2114-PLGA | Staphylococcus epidermidis | Increase in antibacterial efficacy. Increase in the AMP stability. Reduction in cytotoxicity. | [69] |
Octominin-chitosan-NPs | Candida albicans and A. baumannii | Increase in antibacterial efficacy. Reduction in cytotoxicity. | [75] |
Cecropin-B-chitosan-NPs | MDR K. pneumoniae | Increase in antibacterial efficacy. Reduction in toxicity. | [76] |
Jelleine-1 hydrogel | E. coli and S. aureus | Increase in antibacterial efficacy. | [81] |
GelMA@Ti3C2/V-Os hydrogel | S. aureus and E. coli | Increase in antibacterial efficacy. Increase in immunomodulatory activity. | [78] |
Novel AMP nanogel | E. coli, MRSA, and P. aeruginosa | Increase in antibacterial efficacy. | [86] |
SAAP-148 and Ab-Cath-OL-HA nanogel | AMR S. aureus and A. baumannii | Improved selectivity. Reduced toxicity. | [89] |
AMP Delivery System | Composition | Strengths | Weaknesses | Administration |
---|---|---|---|---|
Au-NPs | Gold | Biocapacity, relative stability, cell permeability. Antimicrobial, antioxidant, and anti-inflammatory activity. Reduces toxicity. Oxidative stress. Ease of industrial manufacturing for commercialization. | Oxidation-inducing toxicity. Accumulation in tissues. Poor biocompatibility. Lack of delivery ability. | Mainly topical delivery |
Ag-NPs | Silver | Broad antibacterial action. Low toxicity. Oxidative stress. Strong bactericidal efficacy. Ease of industrial manufacturing for commercialization. | Accumulation in tissues. Poor biocompatibility. Lack of delivery ability. | Mainly topical delivery |
MSNs | Silicon | Improves stability and bioavailability. Biocompatible. Biodegradable. Easier preparation and modification. High load capacity. Promotes controlled AMP loading and release. Ease of industrial manufacturing for commercialization. | Accumulation in tissues. Lack of delivery ability. | Mainly topical delivery |
PEG | Small polymer particles | Improves solubility and bioavailability. Promotes controlled and sustained AMP release. Good colloidal integrity and stability. Bactericidal efficacy. | It is not biodegradable. Toxic organic preparation may generate residual material. It can cause immunogenicity. Can compromise AMP antimicrobial activity. | Mainly topical delivery |
PLGA | Small polymer particles | Improves solubility and bioavailability. Promotes controlled and sustained AMP release. It is biodegradable. Reduces toxicity. Good colloidal integrity and stability. Bactericidal efficacy. | Toxic organic preparation may generate residual material. Can cause immunogenicity. | Mainly topical delivery |
Chitosan | Small polymer particles | Improves solubility and bioavailability. Promotes controlled and sustained AMP release. Biocompatible. Biodegradable. Antimicrobial activity. Strong adhesion to the mucosa. Reduces toxicity. Good colloidal integrity and stability. Bactericidal efficacy. | Toxic organic preparation. may generate residual material. Can cause immunogenicity. | Mainly topical delivery |
Hydrogels | Networks of crosslinked polymers with a high water content | Antimicrobial efficacy. Biocompatibility. No toxic organic preparation. Controlled and responsive AMP release. Good colloidal integrity and stability. Bactericidal efficacy. | Cell adhesion absence. Mechanical strength for some specific hydrogels. | Topical delivery, mainly wound healing |
Liposomes | Vesicles of amphiphilic phospholipids and cholesterol | Improves biocompatibility, solubility, bioavailability, and reduces toxicity. Biodegradable. High load capacity. High encapsulation efficiency. Enhanced release. Ease of industrial manufacturing for commercialization. | Risk of phagocytosis and clearance. Polymeric changes and premature AMP release. Poor stability for long-term storage. Relatively weaker antibacterial activity. | Topical, oral, pulmonary, and systemic delivery |
Micelles | Spheres of single-layer lipid vesicles of surfactants | Improves biocompatibility, solubility, bioavailability, and reduces toxicity. Biodegradable. High load capacity. Ease of industrial manufacturing for commercialization. | Less incorporation of hydrophobic AMPs. Polymeric changes and premature AMP release. Poor stability for long-term storage. Relatively weaker antibacterial activity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, K.B.S.; Leite, M.L.; Melo, N.T.M.; Lima, L.F.; Barbosa, T.C.Q.; Carmo, N.L.; Melo, D.A.B.; Paes, H.C.; Franco, O.L. Antimicrobial Peptide Delivery Systems as Promising Tools Against Resistant Bacterial Infections. Antibiotics 2024, 13, 1042. https://doi.org/10.3390/antibiotics13111042
de Oliveira KBS, Leite ML, Melo NTM, Lima LF, Barbosa TCQ, Carmo NL, Melo DAB, Paes HC, Franco OL. Antimicrobial Peptide Delivery Systems as Promising Tools Against Resistant Bacterial Infections. Antibiotics. 2024; 13(11):1042. https://doi.org/10.3390/antibiotics13111042
Chicago/Turabian Stylede Oliveira, Kamila Botelho Sampaio, Michel Lopes Leite, Nadielle Tamires Moreira Melo, Letícia Ferreira Lima, Talita Cristina Queiroz Barbosa, Nathalia Lira Carmo, Douglas Afonso Bittencourt Melo, Hugo Costa Paes, and Octávio Luiz Franco. 2024. "Antimicrobial Peptide Delivery Systems as Promising Tools Against Resistant Bacterial Infections" Antibiotics 13, no. 11: 1042. https://doi.org/10.3390/antibiotics13111042
APA Stylede Oliveira, K. B. S., Leite, M. L., Melo, N. T. M., Lima, L. F., Barbosa, T. C. Q., Carmo, N. L., Melo, D. A. B., Paes, H. C., & Franco, O. L. (2024). Antimicrobial Peptide Delivery Systems as Promising Tools Against Resistant Bacterial Infections. Antibiotics, 13(11), 1042. https://doi.org/10.3390/antibiotics13111042