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Abstract: Antibiotic resistance poses a serious threat to the current healthcare system, negatively
impacting the effectiveness of many antimicrobial treatments. The situation is exacerbated by the
widespread overuse and abuse of available antibiotics, accelerating the evolution of resistance. Thus,
there is an urgent need for novel approaches to therapy to overcome established resistance mech-
anisms. Plants produce molecules capable of inhibiting bacterial growth in various ways, offering
promising paths for the development of alternative antibiotic medicine. This review emphasizes
the necessity of research efforts on plant-derived chemicals in the hopes of finding and creating
novel drugs that can successfully target resistant bacterial populations. Investigating these natural
chemicals allows us to improve our knowledge of novel antimicrobial pathways and also expands our
antibacterial repertoire with novel molecules. Simultaneously, it is still necessary to utilize present
antibiotics sparingly; prudent prescribing practices must be encouraged to extend the effectiveness of
current medications. The combination of innovative drug research and responsible drug usage offers
an integrated strategy for managing the antibiotic resistance challenge.

Keywords: natural bioactive compounds; antibiotics; biological chemistry; pharmacology;
phytochemistry; antibiotic resistance; plants; one health

1. Introduction

Antibiotics were the most important and influential medical achievement of the
20th century, playing an indispensable role in ensuring both human and animal health.
These substances, also referred to as antimicrobials, are capable of inhibiting bacterial
proliferation (bacteriostatics) or killing bacteria (bactericides) to cure infections. Antibiotics
vary significantly in their bactericidal mechanisms and chemical compositions, reflecting
the absence of a universally effective antibiotic capable of targeting all bacterial types [1].

Before the advent of antibiotics, the knowledge of microbes and infectious diseases
was inadequate. The methods of curing and preventing the transmission of contagious
diseases were ineffective, resulting in the consequent deaths of millions of people. For
instance, in the 14th century, the bubonic plague pandemic also known as the “Black Death”
caused millions of deaths in Europe, due to the lack of available antibiotics against Yersinia
pestis at the time [2].

In 1676, through the discovery of microscopic organisms, Antonie van Leeuwenhoek
sowed the seeds for the development of antibiotics. It was not until the late 19th century
that significant independent research on bacteria was conducted by Louis Pasteur, who
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studied Bacillus anthracis, and Robert Koch, who focused on Mycobacterium tuberculosis [3].
The work of these bacteriologists established a link between specific bacterial species and
infectious diseases, setting the stage for the modern era of microbiology.

The first antibiotic, mycophenolic acid, was discovered in 1893 by the Italian mi-
crobiologist Bartolomeo Gosio, from the mold Penicillium glaucum. In 1909, Paul Ehrlich
discovered arsphenamine (Salvarsan), i.e., the first synthetic antibiotic derived from arsenic
effective against Treponema pallidum, i.e., the agent of syphilis. During World War I, Pron-
tosil, an antibiotic with a broad spectrum of action, was used to treat wounded soldiers. In
1928, the bacteriologist Alexander Fleming discovered that the fungus Penicillium notatum
inhibited the growth of colonies of Staphylococcus aureus, hypothesizing that the fungus
could produce a compound that inhibited the bacteria. In 1929, he isolated the molecule
that he called penicillin, marking the discovery of the first antibiotic as we know them
nowadays [4].

Antibiotics experienced a glorious era between the 1940s and 1970s when more than
20 chemical classes were derived from hundreds of species of bacteria and fungi. The last
time a new class of antibiotics was discovered and patented was in 1987, and refers to
oxazolidinones, which introduced a novel mechanism based on blocking bacterial protein
synthesis [5]. Recently, the development of new antibiotics has continued slowly, and only
5 of the 20 pharmaceutical companies that contributed to antibiotic research in the 1970s
still remain active [6].

In the development of therapeutic and preventive strategies within medical and veteri-
nary domains, it is crucial to acknowledge the concurrent existence of two interrelated yet
distinct phenomena: antimicrobial resistance (AMR) and antibiotic resistance (ABR) [7–9].
AMR occurs when a microorganism becomes resistant to an antimicrobial drug previously
effective against it. ABR only refers to bacteria developing resistance against antibiotics.
Thus, a bacterium is considered antibiotic-resistant when the antibiotic meant to eradicate
it or to stop its growth is no longer effective. The term “ESKAPE” encompasses the six
pathogenic bacteria known for their virulence and high antibiotic resistance: Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter spp. These ESKAPE pathogens are associated with high mortal-
ity risk, tending to become resistant to one or more antibiotics if used in combination, due
to the selection of resistant strains and also to horizontal resistant gene transfer [10].

The proliferation of AMR and ABR is primarily attributed to the excessive and inappro-
priate use of antibiotics across both medical and agricultural domains. In the agricultural
sector, particularly within animal husbandry, antibiotics are routinely administered not
only for therapeutic purposes but also as growth promoters and prophylactics, aimed at
enhancing productivity and consumer goods output. Furthermore, these compounds often
persist in the environment, thereby exerting selective pressure on microbial communities
and facilitating the emergence and dissemination of resistant strains. This environmental
persistence represents a significant factor in the global spread of AMR [11].

After outlining the background and then the key issues related to antibiotic resistance,
it is evident that further research on this topic is required, with an emphasis on substitute
remedies. After reviewing the main pharmacological targets and the basic mechanisms
underlying antibiotic and antimicrobial resistance, we will discuss how natural compounds
may be a viable substitute for the use of conventional antibiotics in this review, thus
highlighting the presence of relevant molecules in the most common matrices.

2. From Cure to Concern: Tracing the Pathway to Antibiotic Resistance
2.1. Mechanisms of Antibiotic Actions

The term “antibiotic” refers to a natural or synthetic drug capable of blocking or at least
slowing the proliferation of bacteria. Antibiotics exert their effects by targeting different
bacterial structures and can be classified according to their mechanisms of action. The most
important groups of antibiotics and their main targets are presented and summarized in
Figure 1 and Table 1.
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Figure 1. Schematic illustration of bacterial targets of currently used antibiotics. Abbreviations:
PABA, para-aminobenzoic acid; DHF, dihydrofolate; THF, tetrahydrofolate.

Table 1. Antibiotics’ primary targets and the corresponding key classes.

Target Key Classes

Cell wall synthesis

β-lactams (penicillins, cephalosporins, monobactams, and carbapenems): they prevent the
action of transpeptidase, the enzyme responsible for the formation of the bonds necessary for

the structure of peptidoglycan [12–14].
Glycopeptides (vancomycin): they inhibit cell wall synthesis in bacteria by binding to the

D-alanyl-D-alanine terminus of cell wall precursors [15].

Cytoplasmic membrane structure Polymyxins (polymyxins B and E, also known as colistin): they can damage and break the
membranes of the bacterium with their apolar tail [16].

Synthesis of nucleic acids

Quinolones (ciprofloxacin, nalidixic acid): they inhibit the action of two enzymes belonging to
the class of topoisomerases (the DNA gyrase enzyme and topoisomerase IV), thus inhibiting

DNA synthesis [17].
Rifamycins (rifampicin): they bind to the essential enzyme required for copying RNA from

DNA, bacterial DNA-dependent RNA polymerase, preventing the start of RNA transcription,
thereby stopping the synthesis of proteins required for bacterial development and

propagation [18].
Nitroimidazoles (metronidazole): they disrupt DNA synthesis in anaerobic bacteria and

certain protozoa, leading to bacterial death [19].

Folic acid metabolism Sulfonamides (sulfamethoxazole): they inhibit folate synthesis, which is essential for bacterial
growth and replication [20].

Protein synthesis

Aminoglycosides (gentamicin and tobramycin): they exert their function by binding to the
30S subunit, blocking the formation of the ribosome–mRNA complex [21].

Tetracyclines (doxycycline and minocycline): they can diffuse passively into the bacterial cell
through pore channels and bind to the 30S subunit of the bacterial ribosome, inhibiting

protein synthesis [22].
Oxazolidinones (linezolid): they inhibit protein synthesis by binding to the ribosomal 50S

subunit [23].
Macrolides (erythromycin, azithromycin, and clarithromycin): these antibiotics inhibit protein

synthesis by binding to the 50S subunit [24].

2.2. The Development of Antibiotic Resistance

Shortly after penicillin was introduced in the early 1940s, the first cases of antibiotic
resistance were documented, since scientists noticed that certain bacterial strains were no
longer susceptible to the antibiotic challenge. However, even before antibiotics were widely
used, Nobel laureate Alexander Fleming had foreseen the possibility of antibiotic resistance,
and during his 1945 Nobel Prize acceptance speech, he mentioned that antibiotic misuse
could result in resistance [25].
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Microorganisms exhibit the fundamental ability to adapt over time, with their main
goals being replication, survival, and spreading as quickly as possible. They adapt to the
environment and evolve in ways that ensure their survival. The occurrence of random
mutations during replications may allow some bacterial populations to survive in the case
of exposure to an antibiotic, at the expense of the other antibiotic-sensitive populations.
This is the natural process through which bacterial resistance develops [26].

There are two primary forms of antibiotic resistance: intrinsic and acquired. Intrinsic
resistance is innate in organisms [27]. For instance, mycoplasmas lack a cell wall, so they
are naturally resistant to antibiotics that act to lyse the bacterial cell wall [28]. On the
other hand, acquired resistance derives from the selection of bacterial strains whose genetic
changes enabled them to survive in the presence of a specific antibiotic [29]. Moreover,
drug-resistant bacteria can transmit a copy of their genes to other non-resistant strains;
resistance genes can be carried on plasmids or other types of mobile elements, which can
spread to bacteria of different genera and species. This is called horizontal resistance and
is one of the main causes of antibiotic resistance [30]. This kind of resistance is achieved
through the mutation of the drug targets, the production of enzymes that inactivate the
antibiotics, reduced permeability, and/or the active efflux of drugs via pumps. Table 2
summarizes the main mechanisms of resistance [31–33].

Table 2. Mechanisms of resistance to antibiotics developed by bacteria.

Mechanism Main Examples

Limitation of drug
absorption

It is a common mechanism in Gram-negative bacteria, which have an outer membrane (consisting of
lipopolysaccharides (LPSs)) that protects the cytoplasmic membrane and prevents the entry of large polar

molecules into the cell, while small polar molecules, such as antibiotics, penetrate through porins, which are
transmembrane proteins. When porin channels undergo modifications or are not expressed at all, they can

slow down or even block the entry of the antibiotic into the cell. If the outer membrane is changed or
damaged, the antibiotic may have difficulty penetrating the cell, making it less effective [6].

Drug efflux

Efflux pumps are used by bacteria to transport toxic molecules out of the cell without modifying or
degrading them. This mechanism using pumps has been detected in both Gram-negative and Gram-positive
bacteria. Many antibiotics are actively transported out of the cell by bacterial efflux pumps, which could be

specific to a particular antibiotic or different classes of antibiotics [34].

Changes in drug
target

The alteration of the target leads to the loss of or decrease in the affinity of the drug for its target. It is
sufficient to replace an amino acid with another to cause resistance, so-called point mutations. The target site
can also be protected by removing the antibiotic from the binding site or by producing specific proteins that
can compete for the same binding site as the antibiotic molecule, allowing for the survival of the bacterium.

The function of the target site can also be performed vicariously by other sites of the protein, or another
protein can even perform functions similar to those of the antibiotic target. These new structures have the
benefit of not being sensitive to the administered antibiotic and, consequently, the bacterium survives and

thrives [35].

Drug inactivation

Bacteria inactivate antibiotics by either chemically modifying them or destroying them. Bacteria generate
enzymes that can bind to various chemical groups in the drug itself. This prevents the antibiotic from

binding to the target in the bacterial cell. In general, acetylations and phosphorylations occur. The
destruction of the drug concerns, for example, penicillins. Penicillin-resistant bacteria produce a particular
enzyme, β-lactamase, which hydrolyzes the β-lactam ring of penicillins, inactivating them. The production

of enzymes that inactivate antibiotics is one of the most common mechanisms of resistance [36].

Antibiotic resistance in bacterial strains is classified according to its extent as monore-
sistance, multidrug resistance (MDR), or total drug resistance (also defined as extensive
drug resistance, XDR). Initially, this classification referred exclusively to acquired, rather
than intrinsic, resistance. However, establishing consistent terminology remains chal-
lenging, as multiple factors must be considered. These definitions were initially applied
primarily to characterize resistance patterns in Mycobacterium tuberculosis strains to
ensure effective treatment for tuberculosis (TB) patients. In this context, monoresistant
strains were defined as those resistant to only one first-line anti-TB drug, while MDR
strains demonstrated resistance to at least both isoniazid and rifampicin. XDR strains
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exhibited MDR with additional resistance to any fluoroquinolone and at least one of the
three second-line injectable drugs (capreomycin, kanamycin, or amikacin) [37]. Today,
this classification framework has broader applications, including S. aureus. Methicillin-
resistant S. aureus (MRSA) serves as an important paradigm of common multidrug-resistant
organisms (MDROs), demonstrating resistance not only to methicillin but also typically
to aminoglycosides, macrolides, tetracyclines, chloramphenicol, and lincosamides [38].
For accurate categorization, an isolate should be tested against a comprehensive panel of
antimicrobials tailored to the specific bacterial species [39].

The natural and acquired mechanisms used by bacteria to survive are not the only
factors responsible for antibiotic resistance. Several causes have led to an increase in drug-
resistant strains: (1) the inaccurate or inappropriate diagnosis of an infection; (2) the onset
of healthcare-associated infections (HAIs) [40]; (3) antibiotic environmental contamination;
(4) the human-to-human transmission of resistant bacteria; and (5) the overuse of antibiotics
in agricultural and farming practices [41].

During the diagnostic process, healthcare providers may prematurely resort to broad-
spectrum antibiotics as a precautionary measure rather than opting for narrow-spectrum
antibiotics better suited to the specific type of infection. Moreover, without adequate
laboratory testing, it is challenging to determine whether an infection is bacterial or viral.
Prescribing antibiotics for a viral infection is futile, as they do not affect viruses and may
foster resistance. For instance, seasonal fevers are typically viral; using antibiotics to treat
them could exacerbate the patient’s condition.

3. Natural Antibacterial Products: A Viable Alternative

Natural products are a promising source for drug discovery and development because
of their remarkable chemical diversity and range of biological effects. The plant kingdom
deserves special attention as it offers numerous compounds with antibacterial properties
that have demonstrated efficacy in treating bacterial infections [42,43].

Several factors support the viability of natural compounds as alternatives to syn-
thetic substances. Most of them can act through multiple pathways simultaneously and
exhibit synergistic effects when used in combination with conventional antibiotics [44] or
in mixtures, resulting in enhanced antibacterial activity compared to individual compo-
nents [42,45]. An indication of the importance of these compounds can be inferred from
the observations made by Newman and Cragg (2007). Specifically, in exploring the role of
natural products as a source of new drugs over 25 years (1981–2006), it was observed that,
in the antibacterial field, of the 109 new chemical entities (NCEs) approved by the FDA, 64
were derived from natural products [46].

The antibacterial efficacy of plants can be attributed to various constituents and their
specific concentrations. Notable among these are classes of phytochemicals such as phenols,
polyphenols, terpenoids, essential oils, alkaloids, sulfur-containing compounds, and their
combinations (Figure 2) [42,47].

Phenolic compounds serve as secondary metabolites in plants, playing roles in defense,
adaptation mechanisms, and pigmentation. These compounds offer health benefits and
have shown efficacy against various diseases like cardiovascular disease, cancer, and dia-
betes [48]. Due to the structural diversity within this class, their antibacterial mechanisms
are multifaceted, involving membrane permeability or instability and the inhibition of ex-
tracellular enzymes [49–53]. Plant phenolic compounds provide a promising alternative to
combat antibiotic resistance due to their distinct mechanisms of action compared to conven-
tional antibiotics [54]. Phenolic compounds’ antibacterial effects have been demonstrated
in vitro. For instance, in a study targeting periodontitis-causing bacteria, two phenolic
compounds, pyrogallol and pyrocatechol, displayed efficacy with minimum inhibitory con-
centration (MIC) values ranging from 2 to 2500 µg/mL for pyrogallol and 4 to 312 µg/mL
for pyrocatechol [55]. Further studies on both Gram-positive and Gram-negative bacteria
have identified pyrogallol as the most potent of the phenolic compounds tested, highlight-
ing the significance of hydroxyl groups in their antibacterial activity [56]. The interaction of
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phenolic compounds with bacterial proteins or cell walls and modifications to the synthesis
processes of macromolecules (nucleic acids) or energy production are some of the diverse
mechanisms of action. Furthermore, some properties of polyphenols appear to increase
their effectiveness. Indeed, the planar structure and hydrophobicity of these molecules
allows them to interact with the DNA, interfering with the processes of replication and
repair. Also, the presence of hydroxyl groups results in the creation of hydrogen bonds
with the nitrogenous bases [57].
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Among phenolic and polyphenolic compounds, there is a large class of molecules
named flavonoids. Isoflavones, flavonols, anthocyanins, and flavanones are a part of this
large class of compounds. In particular, anthocyanins demonstrate antibacterial properties,
and thus, the plausible mechanisms by which these effects are exerted have been evaluated.
Studies on the antibacterial properties of anthocyanins using S. aureus bacteria as a model
revealed that anthocyanin treatment not only prevented the growth of the bacterial colonies
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but also slowed down the growth and activity of the bacterial biofilm, with stronger effects
at higher concentrations. In addition, anthocyanins have been able to cause a massive efflux
of K+, which inhibits the Na-K ATPase and consequently causes the death of the bacterial
cells. Finally, anthocyanins can inhibit protein synthesis, halting the process of bacterial
colony growth [58]. Catechins are compounds found in some types of tea (such as green
tea) and belong to the flavan-3-ol family. Over the past few decades, they have been shown
to inhibit the in vitro growth of certain bacterial strains. Specifically, epigallocatechin
gallate was able to inhibit by 90% the bacterial growth of Helicobacter pylori colonies
(including strains resistant to metronidazole and clarithromycin) when administered at
a concentration of 100 µg/mL. However, this effect was not observed in Escherichia coli
colonies when administered at 25 µg/mL. In this case, some virulence factors were reduced,
such as biofilm formation or bacterial motility [59].

Within the stilbene family of polyphenols, resveratrol is well known for its immune
system- and neurodegenerative system-protective capacities as well as its antioxidant
activity [60]. Plants such as grapevines, pines, bananas, beans, and even pomegranates,
peanuts, soybeans, and others contain significant amounts of resveratrol. Additionally,
significant quantities of this molecule are found in red wine, which typically contains
about 1.9 mg/L of resveratrol in its trans configuration [61]. Numerous investigations
have exhibited its ability to reduce the formation of biofilms in a range of bacterial species,
including Vibrio cholerae [62], E. coli [63], and S. aureus [64]. Additionally, it has been shown
to interfere with quorum sensing [65], a crucial mechanism for bacterial cell communication,
as well as the synthesis of microbial toxins [66], which are known to have a substantial
impact on the virulence of the bacterium. Moreover, resveratrol can inhibit ATP synthase
in E. coli bacteria and fragment their DNA. Most notably, resveratrol inhibits the ftsZ gene,
which is responsible for bacterial cell division, thus preventing colony growth [67]. In
addition to its pleiotropic beneficial effects in the case of neurodegenerative diseases [68],
the polyphenol curcumin (extracted from Curcuma longa) showed antibacterial activity in
in vitro studies conducted on S. aureus, E. coli, Enterococcus faecalis, and P. aeruginosa [69].
The underlined mechanisms seem to be linked to the ability to inhibit bacterial adhesion
and growth [69]. Detailed studies conducted by Rai and colleagues (2008) have shown
that curcumin was capable of affecting the assembly and stability of FtsZ protofilaments,
which play a crucial role in cytokinesis. Disruption in these protofilaments is lethal for
bacteria [70].

Another subgroup, phenolic acids, including caffeic acid, gallic acid, and ferulic acid,
exhibit notable antibacterial activity. Comparative studies have shown caffeic acid’s su-
perior activity against S. aureus and E. coli compared to ampicillin [71]. Gallic acid, a
polyphenol, displays significant antibacterial activity, particularly against Campylobacter
species, attributed to its disruptive effect on the cell wall structure [72]. Some natural sub-
stances, such as ferulic acid, can amplify the effects of certain antibiotics. This compound,
found in rice, wheat, oats, artichokes, peanuts, and nuts [73], has been shown to exhibit
antibacterial activity against both Gram-positive and Gram-negative bacteria. Ferulic
acid may boost the antibacterial effects of quinolones by producing ROS. In fact, there is
evidence of a combined effect when ferulic acid is used alongside ciprofloxacin or gemi-
floxacin. It has been demonstrated that when used as a co-treatment with ciprofloxacin and
gemifloxacin against A. baumannii, ferulic acid induces a higher production of superoxide
anion, which decreases glutathione levels, thus inducing cell death [74].

Terpenoids, comprising a diverse group of hydrocarbons, including monoterpenes,
sesquiterpenes, diterpenes, and triterpenes, have demonstrated antibacterial activity [75]
through mechanisms such as affecting oxygen absorption and oxidative phosphorylation,
thereby disrupting cellular respiration [76]. Monoterpenes like carvacrol, thymol, menthol,
and geraniol exhibit antibacterial effects against both Gram-positive and Gram-negative
bacteria [77]. Geraniol, unique among monoterpenes, shows efficacy against Gram-negative
MDR bacteria by inhibiting efflux pumps [78]. Sesquiterpenes, exemplified by farnesol,
display potent antibacterial activity, with studies indicating synergistic effects when com-
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bined with antibiotics against various bacterial strains [79,80]. Moreover, a recent study
by Ivanova et al. (2022) also demonstrated the positive effects of a nanoformulation of
farnesol in preventing the development of drug resistance in S. aureus [81]. Diterpenes,
such as salvipisone and aethiopinone extracted from the hairy roots of Salvia sclarea, ex-
hibit bactericidal or bacteriostatic effects against methicillin-resistant S. aureus (MRSA) and
Staphylococcus epidermidis (MRSE) [82]. Triterpenes, including oleanolic acid, betulinic
acid, and amyrin, demonstrate antibacterial activity against resistant strains of S. aureus,
often enhancing the activity of conventional antibiotics [83].

Essential oils, volatile substances produced by plants, possess antibacterial properties
attributed to constituents like terpenes and phenylpropanoids [84–86]. A study by Sakkas
and colleagues (2018) tested the efficacy of essential oils (made from basil, chamomile, tea
tree, and thyme) against Gram-positive bacteria, revealing that commercially available
formulations from origanum had the best antimicrobial activity, followed by thyme, tea
tree, basil oil, and chamomile [87].

Alkaloids, a diverse group with over 18,000 representatives, exert antibacterial ef-
fects through various mechanisms, including the inhibition of cell division, respiration,
bacterial enzymes, membrane damage, and the modulation of virulent genes [88]. Ex-
amples include pergularinins, thylophorinidines, ugeremine, and alkyl methyl quinolone
(highly strong and selective against H. pylori [89]). Natural alkaloids can act in different
modes of action [45], demonstrating them to be a valuable resource against antibiotic
resistance. Berberine, an isoquinoline quaternary alkaloid, is a secondary metabolite in
Berberis species plants and was demonstrated to inhibit the growth of MRSA isolated from
patients with bloodstream infections, damaging the cell wall and membranes [90]. The
action of sanguinarine (extracted from Macleaya cordata) was revealed to be specific against
S. aureus, in which it induces oxidative damage and interferes with the permeability and
integrity of the membrane [91]. Also, piperine, found in black pepper, has been tested for
its antimicrobial activity, demonstrating a minimum inhibitory concentration (MIC) below
100 µg/mL against S. aureus and Salmonella spp. [92]. Capsaicin possesses a multitude
of health-related properties, including anti-inflammatory, analgesic, and cardioprotective
effects. Additionally, it can exhibit both bacteriostatic and bactericidal effects against both
Gram-positive and Gram-negative bacteria. Further effects of capsaicin involve the reduc-
tion in toxin release and the inhibition of biofilm formation [93]. This latter property is
particularly significant as bacterial biofilms, in fact, made up of proteins, carbohydrates,
extracellular DNA, and lipids, create a protective and viscous matrix around bacteria and
act as a barrier [94], enhancing the already acquired resistance of bacteria [95].

Recently, other molecules have emerged that show pronounced antibacterial qualities,
such as the secoiridoids found in olive oil. Oleocanthal and oleacein, for example, are
two polyphenols belonging to the secoiridoid class, produced during the malaxation and
production phases of extra virgin olive oil (EVOO), which seem to play an important role in
counteracting bacterial growth or biofilm production. Specifically, oleocanthal and oleacein,
as well as polyphenolic extracts from EVOO enriched with these two polyphenols, appear to
be capable of inhibiting the growth of Chlamydia trachomatis at very low concentrations [96].

Furthermore, the antimicrobial activity of these polyphenols also seems to be effective
against numerous bacterial strains resistant to various antibiotics, both Gram-positive and
Gram-negative. In particular, polyphenolic extracts from EVOO enriched with oleocanthal
and oleacein show the highest antibacterial activity against various clinical strains of S.
aureus, while purified oleacein is more effective against several clinical strains of E. coli, P.
aeruginosa, and K. pneumoniae [97].

Finally, it has been recently demonstrated that a mixture of oleocanthal and oleacein
at a concentration of 2.5 mM each is able to inhibit the growth and adhesion of P. aeruginosa
biofilms. The same effect is obtained when these substances are administered individually
but at a higher concentration (5 mM) [98]. On the contrary, other polyphenols present in
EVOO, such as tyrosol and hydroxytyrosol, derived from the degradation of oleocanthal
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and oleacein, respectively, show only a mild antimicrobial effect, suggesting the importance
of the dialdehyde function to exert these effects [99].

In addition to the prominent classes mentioned earlier, the antibacterial efficacy of
the following compounds has been thoroughly studied and documented: polyamines,
isothiocyanates, glucosides, and thiosulfinates. Polyamines, as observed by Kwon and Lu,
possess the intriguing property of augmenting the sensitivity of P. aeruginosa to various
antibiotics such as chloramphenicol, nalidixic acid, and erythromycin, among others [100].
Among the isothiocyanates, sulforaphane, a well-known representative, has demonstrated
antibacterial effects against H. pylori both in vitro and in vivo [101,102]. In terms of gluco-
sides’ antibacterial potential, research conducted by Soulef investigated the effectiveness
of an extract from the root of Glycyrrhiza glabra against three bacterial strains (E. coli,
P. aeruginosa, and S. aureus), obtaining results only against E. coli [103]. Thiosulfinates, on
the other hand, exhibit both bacteriostatic and bactericidal effects. The diallylthiosulfinate
compound allicin is primarily responsible for the broad-spectrum antimicrobial properties
of garlic (Allium sativum). It acts by binding to thiol groups and deactivating essential
bacterial enzymes. Allicin exerts its activity at micromolar concentrations against Gram-
positive and Gram-negative bacteria, including antibiotic-resistant strains [104–106]. The
effectiveness of garlic was also tested in comparison to the antibiotic metronidazole in
the treatment of bacterial vaginosis, proving to be a valid alternative especially for those
patients who cannot tolerate conventional treatments [107].

The main compound classes discussed in the text, along with their sources and primary
activities, are summarized in Table 3.

Table 3. Summary of the main compound classes discussed in the text.

Class Compounds Main Source Activity

Phenols Pyrogallol, Pyrocatechol Various plants, especially found in
medicinal herbs

Effective against periodontitis-causing
bacteria, Gram-positive, and
Gram-negative bacteria [55].

Polyphenols

Resveratrol
Grapevines, pines, bananas, beans,
and even pomegranates, peanuts,

and soybeans

Inhibits biofilm formation, quorum
sensing, and toxin synthesis; affects ATP

synthase and cell division genes.
Effective against V. cholerae, E. coli, and S.

aureus [62–64,66,67].

Curcuminoids Turmeric
(Curcuma longa)

Inhibit bacterial adhesion and growth;
disrupt FtsZ protofilament assembly

essential for cytokinesis. Effective against
S. aureus, E. coli, Enterococcus faecalis, and

P. aeruginosa [69,70].

Flavonoids
Anthocyanins, Catechins

(e.g.,
Epigallocatechin Gallate)

Berries (anthocyanins), green tea
(catechins)

Bacterial growth inhibition and biofilm
activity interference; disruption of Na-K

ATPase and protein synthesis [58].
Effective against S. aureus and H. pylori

(resistant strains) [59].

Terpenoids

Carvacrol, Thymol,
Geraniol, Farnesol,

Salvipisone, Aethiopinone,
Oleanolic Acid, Betulinic

Acid, and Amyrin

Oregano, thyme, geraniums (Salvia
sclarea for salvipisone), olive leaves

(for oleic acid), birch trees (for
betulinic acid), and Brazilian copal

tree (for amyrin)

Inhibition of respiration; efflux pump
disruption; show

bactericidal/bacteriostatic effects.
Effective against MRSA, S. epidermidis,

Gram-positive, and Gram-negative
bacteria [75–77,79,80,83].

Essential Oils Basil, Thyme, Chamomile,
Tea Tree Basil, thyme, chamomile, tea tree

Antimicrobial effects against
Gram-positive bacteria; highest activity

from oregano and thyme
essential oils [87].
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Table 3. Cont.

Class Compounds Main Source Activity

Alkaloids Berberine, Sanguinarine,
Piperine, Capsaicin

Berberis species (berberine),
Macleaya cordata (sanguinarine),

black pepper (piperine), chili
peppers (capsaicin)

Inhibit cell division, respiration, and
enzymes; disrupt membranes and
biofilms. Effective against MRSA,

S. aureus, and Salmonella spp. [90–95].

Phenolic Acids Caffeic Acid, Gallic Acid,
Ferulic Acid

Coffee beans (caffeic acid), oak galls
(gallic acid), rice, wheat, oats,

peanuts (ferulic acid)

Disrupt cell wall; enhance antibiotic
effects (e.g., quinolones); induce ROS.
Effective against S. aureus, E. coli, and

A. baumannii [71–74].

Secoiridoids Oleocanthal, Oleacein Extra virgin olive oil

Inhibit biofilms and reduce bacterial
growth and adhesion. Effective against P.
aeruginosa, Chlamydia trachomatis, E. coli,

S. aureus, and K. pneumoniae [97,99].

Polyamines Various plant and animal sources Increase sensitivity of P. aeruginosa to
various antibiotics [100].

Isothiocyanates Sulforaphane Broccoli, cabbage, kale Antibacterial against H. pylori in vitro
and in vivo [101].

Glucosides Glycyrrhizin Licorice root (Glycyrrhiza glabra) Effective against E. coli [103].

Thiosulfinates Allicin Garlic (Allium sativum)

Broad spectrum; disrupts bacterial
enzymes by binding thiol groups.

Effective against Gram-positive and
Gram-negative bacteria, including

resistant strains [104].

According to the findings, results from in vitro and in vivo analyses and studies
demonstrate the great potential of these compounds. However, beyond efficacy, a crucial
step is assessing such preparations’ safety. Recently, a study investigated the safety of
a cocktail of natural products which in vitro showed the ability to counteract biofilm
formation by resistant bacteria with a promising safety profile. Specifically, this was a
Phase I clinical trial, including 109 volunteers, which assessed the safety of the preparation
when applied to healthy skin, supporting further investigation into its clinical potential
for treating wound infections [108]. Other recent clinical trials with promising results
include evaluations of the antibacterial potential of a gel formulation derived from Nigella
sativa L. seeds against acne-causing bacteria and the antibacterial efficacy of α-viniferin
against S. aureus [109,110]. The first study demonstrated encouraging results regarding
the stability of the tested formulations and their ability to inhibit the growth of S. aureus
and P. acnes [109]. The second study confirmed the safety profile of α-viniferin as a topical
agent and its effectiveness in reducing S. aureus levels in the nasal passage while preserving
the nasal flora [110].

4. Approaches to Counteract Antibiotic Resistance

The World Health Organization (WHO) has considered antibiotic resistance one of the
three most important threats to public health in the 21st century, along with climate change
and the tendency to refuse vaccines. Antibiotic resistance is an emerging problem as there
is a rapid loss of efficacy from an increasingly large number of drugs and the reduced
development of new antibiotic molecules.

Environmental contamination plays a crucial role in this problem, since antibiotics can
leach into water bodies and subsequently into the soil through human and pharmaceutical
industry waste. This exposure induces resistance in environmental bacteria, which can
then be transmitted to the bacteria that inhabit humans [111]. In the 1960s, the excessive
use of antibiotics in livestock also led to resistance in bacteria residing within farm animals.
These bacteria were transmitted to humans via zoonotic pathways through direct contact
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or food consumption. Finally, human-to-human transmission can occur within healthcare
facilities, with direct or indirect contact [112,113]. The misuse of antibiotics, deriving from
improper use or incorrect dosages, further contributes to the development of resistance.
Non-adherence to prescribed treatment regimens can promote resistance. Efforts are being
made towards antimicrobial stewardship to optimize antibiotic use and avoid unnecessary
applications. In agriculture and livestock farming, there has historically been an excessive
and unnecessary use of antibiotics [114]. Often, multiple antibiotics are administered
simultaneously in the hope that one will be effective, thereby increasing the selective
pressure on bacteria and promoting the emergence and proliferation of resistant strains.
Additionally, inadequate hygiene in preventive practices and the lack of diagnostic testing
that could guide precise prescribing exacerbate antibiotic resistance.

The WHO has established a Global Action Plan that is based on five fundamental
strategic objectives: (1) to increase the knowledge of antibiotic resistance through education
and communication; (2) to strengthen surveillance and research; (3) to reduce infections
through effective health, hygiene, and prevention measures; (4) to optimize the use of
antimicrobials in human and animal medicine; and (5) to increase investment in new
drugs, diagnostic tools, and vaccines to prevent and treat infectious diseases with safer and
longer-lasting drugs [115].

The SARS-CoV-2 pandemic has exacerbated the resistance of bacteria to antibiotics,
as there has been inappropriate use of the drugs themselves. As many as 70% of COVID-
19 patients were treated with at least one antibiotic for therapeutic purposes [116,117].
During the pandemic, the WHO discouraged the use of antibiotics for mild cases while
recommending them for severe cases. This inappropriate use of drugs during COVID-19
has aggravated the threat of antimicrobial resistance. A systematic review by Langford and
colleagues (2022) showed the role of the pandemic in accelerating the development and
spread of antibiotic resistance, especially among Gram-negative bacteria in hospitals [118].

The challenge of antibiotic resistance is global and within each territory, there is the
involvement of a wide range of sectors. This approach is known as “One Health”, based on
the integration of different disciplines, aimed at the design and implementation of programs,
policies, and research aimed at achieving better levels of global health. The one health
healthcare model also believes that the health of humans, animals, and the environment
are interconnected. The areas of work in which this approach is relevant include food
safety and zoonosis control. In Italy, the National Plan for Combating Antibiotic Resistance
(PNCAR) 2022–2025 was developed to provide strategic guidelines to address the problem
in the coming years, referring to a multidisciplinary approach [119] (Figure 3).

New Strategies

As concerns about antibiotic resistance continue to grow, new strategies for treating
antibacterial infections are needed. Several new small antibiotic molecules are in preclinical
testing and development phases. Antimicrobial stewardship, new antibiotic molecules,
and delivery mechanisms must be integrated and combined into treatments that combat
infection, prevent resistance, and maintain normal microbiota. One of the most promis-
ing methods is the system of administering a multidrug cocktail to counteract antibiotic
resistance. The combination of antibiotics with adjuvants represents the main approach to
addressing the problem. Among the groups recognized as antibiotic adjuvants are tran-
quilizers, antihistamines, anti-inflammatory drugs, etc. A combination of drugs may at the
same time encourage the development of drug resistance despite an initial appearance of
bypassing resistance mechanisms. In addition, there is growing promotion of the study of
innovative approaches, such as the development of vaccines. Research on vaccines directed
against antibiotic-resistant bacteria is being encouraged to prevent infection, transmission,
and disease specifically, without having to resort to antibiotics [120].
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In this regard, in addition to representing a viable alternative, natural compounds
could represent a platform for the development of effective new drugs, as proposed by
Rossiter et al. (2017). They indicated synthetic methodologies aimed at reengineering
natural products into potent antibiotic agents. These strategies included combinatorial
chemistry, which typically produces mainly sp2-hybridized molecules, approaches to create
diverse libraries with complex molecular frameworks, and modifications to previously
identified antibiotic compounds [121].

More and more attention is being paid to possible alternative targets. Many advantages
of using bacteriophage therapy over chemotherapy have been claimed and it seems to be
a potential treatment to replace antibiotics [122]. During this procedure, phages transfer
genes that encode for antimicrobials or harmful antimicrobials into the target bacteria.
The first step in the infection by the lytic phage is the adsorption to specific receptors
on the surface of the bacterial host. These receptors can be found on Gram-positive or
Gram-negative cell walls, on polysaccharide capsules, and even on appendages such as pili
and flagella. After adsorption, the virus will introduce its genetic material into the host
from the capside.

The CRISPR-Cas system is known as one of the recent methods to combat antibiotic-
resistant strains [123]. The programmable nuclease Cas of this system, if used against
bacterial genomic sequences, can be lethal or contribute to reducing antimicrobial resis-
tance in bacteria. In this context, various approaches can be used, as is well explained in the
review by Kadkhoda et al. [124]. Gene- or pathogen-focused approaches target either the
resistance gene (typically located on an episomal plasmid) or specific regions of the bacterial
genetic material, ultimately leading to the death of the pathogenic strain [124]. However,
there are several limitations to the use of CRISPR-Cas approaches, such as bacteria develop-
ing resistance mechanisms mediated by anti-CRISPR (Acr) genes. Certain Acr genes were
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first discovered in virulent P. aeruginosa strains and can be transmitted to other P. aeruginosa
strains through conjugation, effectively inhibiting CRISPR-Cas antibacterial action [125].
These same genes can be utilized to suppress bacterial immune responses. This novel
approach is known as phage therapy: phages with Acrs can be engineered to target specific
bacteria [124]. This allows for a modular strategy in which Acr activities are customized to
various bacterial defenses. For example, the use of engineered bacteriophages (EATPs) for
treating MDR bacteria was recently investigated in a study by Qin and colleagues (2022).
The results demonstrated EATPs’ effectiveness in suppressing the growth of clinical isolates
of MDR P. aeruginosa both in vitro, using human embryonic kidney 293 (HEK293T) cells,
and in vivo, utilizing mouse respiratory infection models [126].

Microbiome-derived substances are an expanding class of non-traditional antibi-
otics under research and development, with promising applications in antimicrobial
therapy [127]. Microorganisms that inhabit the same environmental niches in human
microbiomes use distinct strategies to gain an advantage over competitors. The human mi-
crobiome produces many metabolites (lipids, oligosaccharides, amino acids, non-ribosomal
peptides, and ribosomal peptides) with antioxidant, cytotoxic, and immunomodulatory
effects. However, the human microbiome also contains numerous natural chemicals with
antibacterial properties from various bacterial phyla. Among these, ribosomally produced
peptides, also known as bacteriocins, were first described in 1925 [128]. Bacteriocins have
negligible toxicity in human cells, and bacteria are unlikely to acquire resistance to them.
Mulkern and colleagues (2022) have reported on the therapeutic potential of microbiome-
derived peptides against bacterial infections [129]. Antimicrobial peptides from the rumen
microbiome showed therapeutic promise against seven clinical strains of P. aeruginosa, with
low damage to human lung cells [129].

RNA therapy, particularly RNA interference (RNAi), offers a promising approach
to combating antibiotic resistance by targeting bacterial genes required for survival or
resistance processes [130]. RNAi works by silencing certain mRNA molecules, which
effectively prevents the creation of proteins that contribute to bacterial resistance. RNAi
can prevent bacteria from expressing resistance features like efflux pumps or changed
target sites, also decreasing the risk of off-target effects. Regarding bacterial infections,
the use of short interfering silencing RNAs (siRNAs) showed effectiveness by inactivating
bacterial invasion genes (such as SEC22A, Rab1B, and VPS33B) in Yersinia ruckeri [131], or
by interfering with inflammatory and colonization-related genes in H. pylori (such as ureB
and cagA) [132]. Concerning phenomena typically associated with antibiotic resistance, an
in vitro and in vivo study by Yanagihara and colleagues (2006) demonstrated the advantage
of using siRNA technology (targeting coagulase) to combat resistant S. aureus (MRSA) [133].

RNAi-based medicines are still in their early phases, but its focused method provides
a fresh alternative to standard antibiotics, to which bacteria are increasingly resistant.

Another novel strategy could involve nanotechnologies, exploiting nanoparticles
to deliver drugs directly to noxious bacteria. Nanoparticles, indeed, could represent a
useful tool to improve targeted antibiotic delivery, increasing the medication’s potency
and lowering the dosage needed [134]. The dimensions of nano-antibiotics may be below
100 nm, allowing them to penetrate bacterial cells more effectively compared to traditional
formulations [134].

Basic tools for creating optimal pharmacological strategies to address the growing
issue of antibiotic resistance have also been made available by bioinformatics, which
covers the investigation and comprehension of macromolecules and their interactions.
Machine learning could be helpful in the prediction of AMR and ABR, using whole-genome
sequencing data instead of time-consuming experimental protocols [135]. Recently, Wu and
colleagues (2023) proposed an Artificial Intelligence-powered strategy for the identification
of resistance genes (ARG), based on the processing of protein sequences and the generation
of vectors to represent each protein. These vectors can be used to develop models to identify
antibiotic resistance and generate resistance categories [136].



Antibiotics 2024, 13, 1071 14 of 19

5. Conclusions

Antibiotic resistance is a global emergency that can no longer be underestimated or
ignored, and it is a problem that requires the immediate intervention of all nations. It is
necessary to increase efforts in the field of research to ensure a future in which antibiotics
will still be useful to combat infectious diseases. The risk is indeed that of going into
a post-antibiotic era in which drugs will no longer be effective even for the most trivial
infections. It is therefore important to involve all sectors at a global level, together with
increasing the awareness of the population of the importance of antibiotics and their liability
due to the presence of resistant pathogens. New approaches such as the use of natural
polyphenols or biotechnological applications are encouraged to be developed in the fight
against antibiotic-resistant bacteria.
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