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Abstract: Background: The burden of bacterial bloodstream infections (BSIs) is rapidly increasing
in Africa including Rwanda. Methods: This is a retrospective study that investigates the diversity,
distribution, and antimicrobial susceptibility profiles of BSI bacteria in three tertiary referral hospitals
in Rwanda between 2020 and 2022. Results: A total of 1532 blood culture tests were performed
for visiting patients. Overall, the proportions of Gram-negative and Gram-positive bacteria were
48.2% and 51.8, respectively. Staphylococcus aureus was the predominant species accounting for 25%
of all Gram-positive BSI species, and Klebsiella species represented 41% of all Gram-negative BSI
species. Antimicrobial susceptibility testing revealed that Amikacin exhibited the highest activity
against Enterobacter spp., Serratia spp., and Escherichia coli in >92% of cases and Klebsiella spp. in
75.7%. Meropenem and Imipenem were highly efficacious to Salmonella spp. (100% susceptibility),
Enterobacter spp. (96.2% and 91.7%, respectively), and Escherichia coli (94.7% and 95.5%, respectively).
The susceptibility of Enterococcus spp., S. aureus, and Streptococcus spp. to Vancomycin was 100%,
99.5%, and 97.1%, respectively. Klebsiella spp. was highly sensitive to Colistin (98.7%), Polymyxin B
(85.6%), Imipenem (84.9%), and Meropenem (78.5%). Conclusions: We recommend strengthening
the implementation of integrated transdisciplinary and multisectoral One Health including AMR
stewardship for the surveillance, prevention, and control of AMR in Rwanda.

Keywords: prescription and use of antibiotics; integrated one health policy for antimicrobial
resistance control; AMR stewardship; Gram-negative bacteria; Gram-positive bacteria; health
facility-acquired infection

1. Introduction

Antimicrobial resistance (AMR) is a rapidly growing global and public health issue
that threatens human and animal health throughout the world [1,2]. Considering that some
bacterial infections are fatal for humans and animals, therefore, antibiotics are life-saving
drugs, and we need to maintain their effectiveness, particularly since developing novel,
safe, and effective antibiotics takes years and costs a lot of resources. Therefore, the growing
burden of AMR is severely affecting case management and control of bacterial and fungal
infections leading to substantial morbidity, mortality, disability, and socioeconomic burdens
worldwide [3–6]. According to the World Health Organization (WHO), AMR is one of the
top ten threats to global public health with alarmingly high levels of bacterial resistance
observed in pathogens responsible for bloodstream infections (BSIs) [1,2,7]. Low- and
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middle-income countries (LMICs) are struggling the most with the control of antimicrobial-
resistant bacterial pathogens involved in BSIs [1,8].

BSIs are associated with high morbidity and mortality rates worldwide, with regional
and national variations in both the spectrum of causative pathogens and their resistance to
available antimicrobial drugs [1,2]. For example, in China, Escherichia coli and Staphylococcus
aureus were the most prevalent Gram-negative and Gram-positive bacteria responsible for
BSIs, respectively [8,9]. Similarly, European surveillance networks, such as the European
Antimicrobial Resistance Surveillance Network (EARS-Net), have identified E. coli and
Staphylococcus aureus as the predominant pathogens involved in BSIs [9]. Other regions
exhibit distinct trends such as in South Korea mainly reporting Streptococcus spp. and
Klebsiella spp. alongside E. coli and Staphylococcus aureus [10] as predominant, while in
Japan, Streptococcus spp. and Klebsiella spp. are reported as prominent BSI pathogens [11].
In Malawi, a 19-year cohort study revealed non-typhoidal Salmonella, Salmonella typhi, and
Streptococcus pneumoniae as the leading of BSIs [12]. A recent Global Burden of Disease
(GBD) study has estimated that 1.05 million deaths were associated with AMR in Africa
in 2019, with 5.3% of them associated with BSIs [1]. Sub-Saharan Africa (SSA) bears the
brunt of AMR mortality, with a rate of 23.5 deaths per 100,000 persons in 2019 [1,13].
Eastern Africa ranked second following SSA, with a rate of 21.4 deaths per 100,000. Several
factors contribute to this disproportionate burden of AMR in SSA, including poverty, self-
medication, inadequate regulation or stewardship of antimicrobial use, and limited access
to effective alternatives when resistance is identified [14].

Rwanda has witnessed a concerning rise in the prevalence of AMR among bacterial
infections. A recent study conducted in Rwandan referral hospitals revealed high resistance
rates to commonly prescribed antibiotics for BSIs [15]. Rates of resistance in Gram-negative
isolates to Penicillin, Trimethoprim/Sulfamethoxazole, Ampicillin, and Ceftriaxone were
about 92%, 83%, 82%, and 76%, respectively. These high resistance rates were associated
with factors such as prior attendance to multiple healthcare facilities, recent surgery or
antibiotic exposure, and hospital-acquired infection [15].

However, data on BSIs and their profiles of resistance/susceptibility to antibiotics in
Rwanda and the surrounding region remain largely limited. This severe lack of up-to-date
evidence is hindering policymaking, strategic planning, and the implementation of cost-
effective interventions to prevent and control AMR, particularly among BSIs. Therefore,
this study aims to fill this gap in knowledge by investigating retrospective records in
major national hospitals in Rwanda to shed some light on the issue of AMR among BSIs in
the country.

2. Results

A record of 1532 blood cultures and their results from three major national hospitals
were available for this analysis (Figure 1). Data were extracted from hospital records in the
King Faisal Hospital (KFH), which had the highest number of positive cultures with 822
(54%), followed by the University Teaching Hospital of Kigali (CHUK) with 539 (35%), and
the University Teaching Hospital of Butare (CHUB) with 171 (11%) (Figure 1 and Table 1).

Annual distribution of the BSIs was almost stable throughout the three years of the
study around an average of 510 ± 50 cases with a slight increase in 2021. Investigating the
distribution of bacterial pathogens through the three main study sites/healthcare facilities
revealed significant variation (Table 1). Significant variation was observed in the distribu-
tion of Gram-negative bacteria; Klebsiella spp. was the most prevalent bacterial infection
across the three hospitals resulting in about 41% of the overall reported infections. It was
responsible for 32% of infections reported from KFH, followed by E. coli and Acinetobacter
spp. each accounting for about 14% of the infections (Table 1), while, in CHUK, Klebsiella
spp. was involved in almost half (46%) of the reported infections, followed by E. coli and
Acinetobacter spp. contributing about 24% and 16% in the incidence of bacterial infections,
respectively. On the other hand, CHUB reported 45% Klebsiella spp., 17% Acinetobacter spp.,
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and only 11% E. coli. Meanwhile, Salmonella spp. was a main issue in CHUB reporting 14%
prevalence, and Serratia spp. was only reported from KFH (6%) (Table 1).
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this study was implemented.

A similar significant variation was observed in the distribution of the Gram-positive
bacteria pathogens where Staphylococcus aureus (50%) and coagulase-negative Staphylococci
(CNS) (35.6%) were the most common causative agents (Table 1). However, most bacterial
infections in KFH were caused by CNS (50%) followed by S. aureus (33%%). In contrast,
the majority of infections in CHUK were caused by S. aureus (94%). In CHUB, over half
of the bacterial infections were caused by S. aureus (56%), 28% were caused by CNS, and
interestingly, 15% were due to Streptococcus spp. infections (Table 1).

To identify patients or population groups at high risk of BSIs, we further analyzed the
distribution of different BSI pathogens by the medical department where the patients were
presented and requested the blood culture test. Most of the Gram-negative bacteria were
from pediatric (23%), ICU (20%), and internal medicine (16%) departments (Table 2). For
Gram-positive bacteria, the majority were from emergency (23%), pediatric (18%), internal
medicine (17%), and ICU (17%) departments (Table 2).

Klebsiella and Acinetobacter ssp. showed predominantly high resistance with less than
30% of the isolates susceptible to various antibiotics including Amoxicillin, Ampicillin,
Aztreonam, Cefepime, Cefixime, Cefotaxime, and Ceftazidime, as well as Ceftriaxone,
Cefuroxime, Cotrimoxazole, Gentamicin, and Piperacillin (Figure 2). E. coli and Kleb-
siella exhibited high susceptibility towards Colistin, Amikacin, Polymyxin B. Meropenem,
and Imipinem, ranging around 90% and 80%, respectively, while Acinetobacter was less
susceptible for Imipinem (67%) and for Meropenem (45%) (Figure 2).
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Table 1. The diversity and distribution of Gram-negative and -positive bacterial pathogens by hospital
between 2020 and 2022.

Pathogen Species King Faisal
Hospital (KFH)

Kigali University
Teaching Hospital

(CHUK)

Butare University
Teaching Hospital

(CHUB)
Total

Gram-negative n % n % n % n % p-value

Escherichia coli 38 13.7 78 23.8 15 11.4 131 17.8

<0.001

Klebsiella spp. 89 32.0 152 46.3 59 44.7 300 40.7
Acinetobacter spp. 38 13.7 51 15.6 22 16.7 111 15.0
Pseudomonas spp. 28 10.1 12 3.7 8 6.1 48 6.5
Enterobacter spp. 33 11.9 9 2.7 5 3.8 47 6.4
Salmonella spp. 6 2.2 18 5.5 18 13.6 42 5.7
Serratia spp. 17 6.1 0 0.0 0 0.0 17 2.3
* Other spp. 29 10.4 8 2.4 5 3.8 42 5.7
Total 278 100 328 100 132 100 738 100

Gram-positive n % n % n % n % p-value

Staphylococcus aureus 177 32.5 198 93.8 22 56.4 397 50.0

<0.001

Staphylococcus (CNS) 269 49.5 3 1.4 11 28.2 283 35.6
Enterococcus spp. 32 5.9 4 1.9 0 0.0 36 4.5
Streptococcus spp. 24 4.4 6 2.8 6 15.4 36 4.5
** Other spp. 42 7.7 0 0.0 0 0.0 42 5.3
Total 544 100 211 100 39 100 794 100

* Other spp.: Proteus spp. (9), Coccobacilli (8), Citrobacter spp. (4), Providencia spp. (4), Neisseria spp. (4), Morganella
spp. (3), Cocci (3), Micrococcus spp. (1), Stenotrophomonas spp. (1), Rods (1), Anaerobic coccobacilli (1), Haemophilus
haemolyticus (1), and Moraxella spp. (1). ** Other spp.: Cocci (41) and Coccobacilli (1).
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Table 2. The distribution of the detected Gram-negative and -positive species of bacterial bloodstream infection pathogens by hospital department.

Pathogen Species OPD Internal
Medicine Surgery Emergency ICU Pediatrics Gynecology Neonatology NICU Total

Gram − n % n % n % n % n % n % n % n % n % n % p-value

Escherichia coli 11 24.4 36 30.0 7 24.1 19 22.6 15 10.2 27 16.0 9 81.8 6 7.1 1 3.6 131 17.8

<0.001

Klebsiella spp. 7 15.6 36 30.0 12 41.4 31 36.9 56 38.1 82 48.5 1 9.1 54 64.3 15 53.6 300 40.7
Acinetobacter spp. 10 22.2 13 10.8 5 17.2 9 10.7 32 21.8 23 13.6 0 0.0 11 13.1 1 3.6 111 15.0
Pseudomonas spp. 3 6.7 8 6.7 4 13.8 4 4.8 10 6.8 12 7.1 0 0.0 4 4.8 1 3.6 48 6.5
Enterobacter spp. 2 4.4 13 10.8 0 0.0 4 4.8 13 8.8 6 3.6 0 0.0 4 4.8 2 7.1 47 6.4
Salmonella spp. 9 20.0 8 6.7 0 0.0 9 10.7 0 0.0 15 8.9 1 9.1 0 0.0 0 0.0 42 5.7
Serratia spp. 2 4.4 0 0.0 0 0.0 3 3.6 5 3.4 0 0.0 0 0.0 0 0.0 5 17.9 17 2.3
Other spp. 1 2.2 6 5.0 1 3.5 5 6.0 16 10.9 4 2.4 0 0.0 5 6.0 3 10.7 42 5.7
Total 45 100 120 100 29 100 84 100 147 100 169 100 11 100 84 100 28 100 738 100

Gram + n % n % n % n % n % n % n % n % n % n % p-value

Staphylococcus aureus 30 60.0 76 55.5 16 59.3 98 53.0 46 34.3 82 58.6 6 40.0 26 78.8 10 23.3 397 50.0

<0.001

Staphylococcus (CNS) 19 38.0 43 31.4 4 14.8 62 33.5 64 47.8 38 27.1 8 53.3 5 15.2 19 44.2 283 35.6
Enterococcus spp. 0 0.0 5 3.7 2 7.4 10 5.4 15 11.2 1 0.7 0 0.0 0 0.0 3 7.0 36 4.5
Streptococcus spp. 0 0.0 6 4.4 3 11.1 6 3.2 3 2.2 11 7.9 0 0.0 1 3.0 4 9.3 36 4.5
Other spp. 1 2.0 7 5.1 2 7.4 9 4.9 6 4.5 8 5.7 1 6.7 1 3.0 7 16.3 42 5.3
Total 50 100 137 100 27 100 185 100 134 100 140 100 15 100 33 100 43 100 794 100

Abbreviation: OPD = Outpatient Department, ICU = Intensive Care Unit, and NICU = Neonatal Intensive Care Unit.
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Despite the increased susceptibility toward Colistin, Polymyxin B, Imipinem, Amikacin,
and Meropenem among Gram-negative bacteria causing BSIs, a trend in the development
of resistance against Colistin was observed. This was indicated by the gradually decreasing
susceptibility from 96% (48/50) in 2020 and 95% (97/102) in 2021 to 87.5% (35/40) in 2022
(Figure 3). Similar trends were observed for Polymyxin B where susceptibility declined
from 93.4% in 2020 and 88.9% in 2021 to 64.1% in 2022 (Figure 3).
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Overall, Vancomycin and Chloramphenicol were the two most effective antibiotics
over the 3-year period against Gram-positive bacteria with a sensitivity of over 90% and
70–80%, respectively (Figure 4).

Vancomycin was the only antibiotic that exhibited a nearly full susceptibility followed
by Chloramphenicol, which showed a susceptibility level between 70% and 80% for S.
aureus (Figure 5). The effectiveness of other antibiotics including Gentamicin, Cephalexin,
and Clindamycin on S. aureus was in the range between 60 and 70% (Figure 5).
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3. Discussion

AMR is a major threat to the effectiveness of antibiotics, which are crucial for treat-
ing many potentially fatal infections including BSIs, TB, and lower respiratory infec-
tions [1,2,6,16]. This issue is particularly pressing in LMICs including Rwanda, where
limited treatment options are available for the case management of bacterial and fungal
infections [1,15]. This research highlights the diversity of pathogens involved in BSIs in
Rwanda between 2020 and 2022, their distribution among patients treated for different
medical conditions, and their susceptibility to the main antibiotics. We observed a high
diversity of pathogens involved in the development of bacterial BSIs among patients
hospitalized in three major hospitals in Rwanda, with over 20 species of Gram-negative
bacteria and around 10 species of Gram-positive bacteria isolated. S. aureus, Klebsiella spp.,
and Staphylococcus (CNS) were the most prevalent pathogens (65%), contributing to 26%,
20%, and 19% of the infections, respectively. These findings align with regional studies,
highlighting S. aureus and Klebsiella spp. as leading causes of BSIs in the WHO African
region [13]. However, Staphylococcus (CNS) also known as coagulase-negative Staphylococcus
is commonly understudied because it is considered part of the commensal flora or micro-
biome of the skin [17]. Nevertheless, it is reported as among the top prevalent causes of
BSIs in high-income countries [18]. It has recently been reported to constitute about 34%
of the BSIs in Morocco [17]. However, this might be attributed to poor management of
wounds that resulted in opportunistic infections.

The majority of positive cultures were from pediatric, ICU, and internal medicine de-
partments, suggesting a wider exposure among the local population to bacterial pathogens.
This concurs with previous findings from Rwanda, Ethiopia, and Ghana [7,15,19]. How-
ever, the high prevalence among children could be attributed to the fact that children and,
in particular, neonates are more prone to BSIs mainly due to their weak immunity [20].
Also, in LMICs, children are more affected by infections because of poor sanitation and
other environmental factors associated with low socioeconomic living conditions. On
the other hand, the prevalence (15%) of BSIs among patients in the ICU might be due to
the delay in seeking healthcare resulting in high admission rates to the ICU because of a
severe bacterial infection or a health-facility-acquired infection due to poor implementation
of effective infection prevention and control [21,22],. Nevertheless, further research is
needed to investigate the actual burden of BSIs among patients arriving in the ICU and
the risk factors associated with BSIs in ICU wards. Meanwhile, internal medicine wards
are mostly occupied by old patients who struggle with comorbidities or live in settings
with inadequate hygiene and sanitation increasing their risk and vulnerability to acquiring
BSIs [23,24].

Wide variation was observed in the susceptibility of different BSI pathogens to different
antibiotics over the three-year period of the study. E. coli showed high sensitivity toward
Amikacin and Imipenem in 2020, while S. aureus remained predominantly sensitive to
Vancomycin throughout 2020–2022. However, in general, resistance to Meropenem and
Imipenem was noticed among Gram-negative bacteria; similar scenarios were reported in
North America and Asia [25]. Unfortunately, both antibiotics, Meropenem and Imipenem,
belong to the carbapenem class, which is considered the last resort for treating multidrug-
resistant pathogens [26,27]. Resistance to carbapenem antibiotics is of great concern as
there are limited alternative antibiotics that could be used against carbapenem-producing
Enterobacteriaceae [28]. Furthermore, resistance to Colistin and Polymyxin B was recorded,
and both antibiotics belong to the Polymyxin class, which targets the lipopolysaccharide
(LPS) membrane of Gram-negative bacteria resulting in death due to the destruction of LPS
and leakage of cellular content [29].

The temporal analyses of AMR show a rapid change in trends in pathogen-specific
drug resistance. Interestingly, this change in the antibiotic-resistance profiles of different
species of bacteria is not uni-directional. This suggests that through implementing proper
antimicrobial stewardship strategies and interventions, the effectiveness of some of these
drugs might be restored over time in the population of some pathogens due to the evolu-
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tionary heavy cost of maintaining resistance genes without continuous exposure [29]. For
instance, a concerning trend in rapidly growing and spreading resistance to commonly
used antibiotics was noticed, particularly among Klebsiella spp. and Acinetobacter ssp.;
unfortunately, both are associated with higher mortality rates. Drug-resistant S. aureus,
Klebsiella spp., and E. coli have been associated with high mortality rates owing to the com-
plexity involved in their clinical management and treatment [1,2,13]. This emphasizes the
critical need for the implementation of the Rwanda National Action Plan on Antimicrobial
Resistance (NAPAMR) to regulate antibiotic usage, prevent the spread of bacterial AMR,
and improve both case management and infection control in the country. Achieving these
objectives will necessitate a multi-sectoral collaboration led by health authorities from
various domains, including human, animal, and environmental health sectors.

This high diversity of bacterial pathogens involved in BSIs and the growing resistance
to currently available antibiotics are of significant public health importance. Therefore,
there is an urgent need to strengthen the surveillance, prevention, and control of AMR
in the country comprehensively through the implementation of a transdisciplinary multi-
sectoral integrated One Health strategy [30–33]. Advanced technology such as the use of
Artificial Intelligence (AI) might improve the cost-effectiveness of surveillance, prevention,
and control measures through early prediction, monitoring of population dynamics, and en-
hancement of the diagnostic capacity by integrating AI-powered diagnostic algorithms [34].
Furthermore, additional investment is needed to strengthen the implementation of the
guidelines of the World Health Organization (WHO) for infection prevention and control in
healthcare facilities to reduce the burden of healthcare facility-acquired infection [22,35,36].
Considering the high risk, restrictive measures and international guidelines must be fol-
lowed to investigate, prepare, prevent, and control multidrug-resistant (MDR), extensively
drug-resistant (XDR), and pandrug-resistant (PDR) bacteria in Rwanda and the surround-
ing region [37].

One major limitation of this study is that it relies on analyzing secondary program-
matic data that were collected through routine surveillance in three hospitals. Therefore,
variations in the diagnostic capacity, performance, and expertise of the attending microbi-
ologists and the protocol they followed might unintentionally introduce some bias in the
reported results. This is mainly indicated by the variation in the protocols for processing the
samples in the different hospitals. Nevertheless, the currently reported results correspond
with previous findings from the country suggesting the insignificance of this variation [38].
However, we recommend integrating the surveillance of AMR in the country into a single
robust standardized system to avoid such potential bias.

In response to this growing threat, Rwanda through the Rwanda Biomedical Centre
(RBC) has invested in multidimensional strategic interventions to counteract AMR and the
associated reduction in antibiotic effectiveness. This includes the expansion of the inte-
grated surveillance and response system to be implemented throughout the country and
includes veterinary surveillance under a multisectoral “Rwanda National Antimicrobial Re-
sistance Surveillance Operational Plan 2024–2028”. Furthermore, RBC is currently piloting
the implementation of Wastewater-Based Epidemiology supported by genomic surveil-
lance to monitor and track the dynamic of infectious diseases and AMR at the community
level. Moreover, these strategic interventions will be supported by the establishment of a
Biotechnology Centre in the country to lead the innovation, development, and repurposing
of novel and existing drugs and vaccines. These strategies and interventions are mainly
tailored to low-resource settings like Rwanda and other African countries.

4. Materials and Methods
4.1. Study Design and Study Sites

This was a retrospective descriptive study of blood cultures processed in laboratories
of three main national tertiary referral hospitals in Rwanda from January 2020 to August
2022. These hospitals include CHUK, CHUB, and KFH, and they serve as the central
network for national AMR surveillance. CHUK is located in the Nyarugenge district of
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Kigali City and is the biggest referral hospital in Rwanda with a capacity of 519 beds, CHUB
is situated in the Huye District of the Southern Province with a capacity of 500 beds, and
KFH is located in Kigali City and is the largest private and university teaching hospital in
Rwanda with 160 beds (Figure 1).

4.2. Data Collection and Laboratory Methods

Blood culture isolates and corresponding antimicrobial susceptibility profiles were
collected from laboratory registers used in routine clinical care. These microbiological
data were linked to clinical data by serial numbers. Blood samples were obtained where
clinically indicated, using aseptic methods by trained healthcare staff, and inoculated to BD
BACTEC (Becton-Dickinson, Franklin Lakes, NJ, USA) bottles. Blood samples were sent to
the bacteriology laboratory and incubated in the BACTEC FX automated system for five
days as per the standard blood culture protocol. Gram staining was performed on blood
culture signaling positive growth. Subcultures onto blood agar (BA) and MacConkey agar
(MCA) were performed for Gram-positive and Gram-negative isolates, respectively, and
in accordance with standardized operating procedures, followed by biochemical testing
using Analytical Profile Indexing (API-20). At CHUK and KFH, Phoenix M50 (Becton-
Dickinson, Franklin Lakes, NJ, USA) was used for bacterial identification in accordance
with the manufacturer’s instructions. CHUB used the Kirby–Bauer disk diffusion method
for antibiotic susceptibility testing. Here, the turbidity of the normal saline bacterial
suspension was adjusted to match the 0.5 McFarland standards. Mueller–Hinton agar was
used and incubated aerobically at 37 ◦C for 16–18 h. Inhibition zones were measured and
interpreted as sensitive or resistant based on Clinical and Laboratory Standards Institute
(CLSI) breakpoints. For quality management, the following reference strains (ATCC25923,
25922, 27852, 49619, or 49247) were used as controls.

4.3. Data Management and Statistical Analysis

Data from laboratory records were entered into the Demography and Health Surveys
(DHS) platform and extracted into Microsoft Excel 2016. Descriptive statistics (frequency
and proportions of AMR) were computed using Stata software version 4.1.3 to investigate
the distribution of clinical and biological characteristics. The susceptibility level of isolated
pathogens was reported for all antibiotics while pathogens with less than 30 isolates were
excluded in the AMR analysis.

5. Conclusions

This study showed the bacterial pathogens associated with BSIs and their antimicrobial
susceptibility profiles at three national tertiary referral hospitals in Rwanda. K. pneumoniae,
E. coli, A. baumannii, and S. aureus were among the predominant pathogens associated with
BSIs. Antibiotic susceptibility testing results show that clinically relevant drug-resistant BSI
bacteria are prevalent in the studied population with resistance to carbapenem antibiotics
and Polymixin class antibiotics also noted, raising concerns about the limited alternatives for
treating multidrug-resistant pathogens. This underscores the urgent need for strengthening
antimicrobial stewardship programs and adopting a surveillance system to combat the
emergence of AMR.
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