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Abstract: Silybin, a flavonolignan extracted from the seeds of the plant species Silybum marianum (L.)
Gaertn., has a variety of pharmacological activities, including antimicrobial activity against several
microorganisms of clinical interest. This review analyzes the existing studies on silybin’s antimicrobial
activity and possible mechanisms of action. Silybin has been shown to inhibit the growth of Gram-
positive and Gram-negative bacteria, as well as some fungi, viruses, and protozoa. In general, possible
mechanisms of antimicrobial action include the inhibition of efflux pumps, prevention of biofilm
formation, reduction of the expression of virulence factors, induction of apoptosis-like effects, and
plasma membrane damage, as well as the inhibition of nucleic acid and protein synthesis. Silybin has
been shown to have synergistic effects when combined with conventional antibiotics against both
drug-sensitive and drug-resistant microorganisms. However, the low bioavailability observed for this
flavonolignan has been a challenge to its clinical use. In this context, nanotechnology has been used
to increase silybin’s bioavailability while enhancing its antimicrobial activity. Furthermore, certain
structural modifications have been able to enhance its antimicrobial activity in comparison to that of
the natural molecule. Overall, this review provides insights into the scientific understanding of the
mechanism of action of silybin and its desired properties for the effective treatment of infections.

Keywords: silybin; antibacterial; antifungal; antiviral; antiparasitic; antimicrobial resistance

1. Introduction

Antimicrobial resistance is a global threat to human health, and its environmental
spread has been documented [1]. The emergence of multidrug-resistant microorganisms
has increased the need to develop new strategies to solve the problem of drug resistance [2].
Multidrug resistance (MDR) in microorganisms of clinical interest (bacteria, fungi, viruses,
and protozoa) has become a major problem worldwide because of the continued misuse of
antimicrobials [3–5].

In this context, products of natural origin, including phenolic compounds (e.g.,
flavonoids) obtained from plants, have received renewed attention due to their diverse
chemical structures and bioactive characteristics that may present different mechanisms
of action against microbial pathogens, as well as contribute to the reduction of resistance
when combined with conventional antibiotics; therefore, they are potential sources of new
therapeutic strategies to combat resistant microorganisms [6–8].

Flavonoids are phenolic secondary metabolites found in plants and fungi. They usually
have beneficial biological effects, such as antioxidant, antimutagenic, and anti-inflammatory
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activities. Flavonolignans form a small subclass of flavonoids, which are mainly isolated
from silymarin (an extract from the seeds of milk thistle Silybum marianum) [9].

Silybin, a bioactive phenolic compound present in the extract of the seeds of the plant
species Silybum marianum (L.) Gaertn., popularly known as milk thistle, has received con-
siderable attention because of its wide range of pharmacological activities, including anti-
inflammatory, anticancer, antioxidant, antimicrobial, and hepatoprotective activity [10–13].
Previous studies have also demonstrated the high potential of silybin to inhibit the growth
and viability of several microorganisms, including Gram-negative bacteria [9,14], Gram-
positive bacteria [14,15], fungi [11], viruses [16], and protozoa [17]. Thus, its effects as an
antimicrobial agent offer new perspectives for the development of alternative therapies
against infectious diseases, especially considering the growing emergence of new strains of
microorganisms resistant to the traditional antibiotics used in therapy [2].

The increasing number of studies on the antimicrobial effects of silybin calls for a
thorough analysis to consolidate the current understanding, emphasize key findings, and
pinpoint areas requiring further exploration. Our aim was to scrutinize and contextualize
the scientific literature concerning silybin’s antimicrobial capabilities, focusing particularly
on understanding its modes of action and assessing its viability as a potential treatment.

To perform this review, a comprehensive search was conducted in several databases,
including PubMed, Web of Science, Google Scholar, and Scopus, to identify original studies
that provided information on the antimicrobial activities of silybin against bacteria, fungi,
viruses, and protozoa. The review of the literature spanned from 1968 to 2024, offering
a thorough examination of both historical and contemporary perspectives. To identify
relevant publications, specific search terms were employed: “Antimicrobial activity AND
silybin”, “Silybin AND antibacterial”, “Silybin AND antifungal”, “Silybin AND antiviral”,
“Silybin AND protozoa”, and “Silybin AND drug resistance”. To enhance the comprehen-
siveness of the review, references cited in the initially identified publications were also
gathered. The review process excluded certain types of content, including editorial letters,
non-original research, conference papers lacking sufficient detail, non-English articles, and
studies without access to the full text. This methodological approach was designed to
concentrate on pertinent, detailed, and peer-reviewed research in this field.

2. Chemical Characteristics of Silybin

Silybin, also known as silibinin, flavobin, and silymarin I, is the primary flavonolignan
found in the silymarin complex extracted from S. marianum [10,18]. The initial descrip-
tion and naming of silybin occurred in a pioneering study by Pelter and Hansel in 1968,
employing detailed examination of 1H-Nuclear Magnetic Resonance (NMR) (100 MHz,
DMSO-d6) and Mass Spectrometry (MS) data [19]. However, the absolute configuration
of silybin, particularly at the C-2 and C-3 positions, was not determined until 1975, when
the same researchers employed the degradative approach methodology [20]. The chemical
structure of silybin is (2R,3R)-3,5,7-trihydroxy-2-[(2R,3R)-3-(4-hydroxy-3-methoxyphenyl)-
2-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]-2,3-dihydrochromen-4-one, with a
molecular weight of 482.441 g/mol and molecular formula of C25H22O10. The compound
comprises two main components connected by a 1,4-dioxane ring: one derived from taxi-
folin, a flavonol-type flavonoid, and the other from a phenylpropanoid unit, specifically
coniferyl alcohol [21].

Silybin exhibits high stability in acidic environments, including Brønsted acids, but it
is less stable under basic conditions or when exposed to Lewis acids. When heated above
100 ◦C for extended periods, the structure of the compound breaks down. Although silybin
demonstrates good resistance to reduction, it readily oxidizes to 2,3-dehydrosilybin when
exposed to O2 molecules. In neutral pH aqueous solutions, silybin behaves as a weak acid,
with pKa values of 6.63 for the 5-OH group, 7.7–7.95 for the 7-OH group, and 11.0 for the
20-OH group [18].

The molecule contains five hydroxyl groups that are the primary targets for derivati-
zation: 3-OH, 5-OH, 7-OH, 20-OH, and 23-OH. Among these, the 5-OH, 7-OH, and 20-OH
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groups exhibit phenolic properties. The 7-OH group is more reactive than the 20-OH
group because of reduced steric hindrance and the presence of hydrogen bonds. The
5-OH group uniquely forms strong hydrogen bonds with the adjacent oxo group, which
is conjugated to an aromatic ring and acts as a free-electron donor. The 23-OH group is
susceptible to oxidation and esterification with carboxylic acids. As previously mentioned,
the 3-OH group readily oxidizes to a ketone upon exposure to atmospheric O2 to form
2,3-dehydrosilybine. Silybin has poor solubility in polar protic solvents, such as MeOH and
EtOH, and is insoluble in nonpolar solvents like chloroform and petroleum ether. However,
it dissolves well in polar aprotic solvents, such as DMF, acetone, THF, and DMSO [22].

Silybin, as found in nature, exists as an equal mixture of two diastereoisomers: silybin
A and silybin B, with their chemical structure shown in Figure 1. These isomers have nearly
identical 1H and 13C NMR spectra and lack distinctive signals for individual identification.
High-resolution 13C NMR spectra of natural silybin reveal two sets of similar signals, and
assigning them to specific diastereoisomers is not feasible without authentic standards [23].
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High-performance liquid chromatography (HPLC) is the preferred method for sepa-
rating diastereoisomers. This technique differentiates molecules based on their retention
time [21]. HPLC, along with co-chromatography using authentic standards, effectively
distinguished silybin A and B [23]. Silybin A, composed of 11R, 10R, 3R, and 2R isomers,
has the IUPAC name (2 R,3 R)-2-[(2R,3R)-2,3-dihydro-3-(4-hydroxy-3- methoxyphenyl)-2-
(hydroxymethyl)-1,4-benzodioxin-6-yl]-2,3-dihydro-3,5,7-trihydro-4H-1-benzopyran-4-one.
Conversely, silybin B, with a configuration of 11S and 10S, 3S, and 2S, and its IUPAC
name is (2R,3R)-2-[(2S,3S)-2,3-dihydro3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-
1,4-benzodioxin-6-yl]-2,3-dihydro-3,5,7-trihydroxy4H-1-benzopyran-4-one [18]. The di-
astereoisomers exhibited distinct optical rotations; silybin A showed [α]23

D + 20.0◦ (c 0.21,
acetone), whereas silybin B displayed [α]23

D − 1.07◦ (c 0.28, acetone) [21]. In addition,
their crystallization properties differ. Silybin A forms flat yellow crystals when crystallized
from MeOH–H2O, with a melting point of 162–163 ◦C. In contrast, silybin B crystallizes as
granular yellow crystals in the same solvent and melts at 158–160 ◦C [18,21].

3. Antibacterial Activity

The antibacterial activity of secondary metabolites extracted from plants has been
extensively studied over the last few years, as they are a natural source of molecules with
varied and complex chemical structures that have a broad spectrum of action against
various human pathogens that can serve as prototypes for the development of new antimi-
crobial agents [24,25].

Silybin is a flavonolignan with antibacterial activity against a wide range of pathogens
involved mainly in mucosal, skin, gastrointestinal, and respiratory infections [12,14,26].
Regarding studies on the antibacterial activity of silybin, it was found that this compound
has better activity against Gram-positive bacteria, with strains of S. aureus [9,14,27–32] and
methicillin-resistant S. aureus (MRSA) being the main representatives [15,26,27,33,34]. The
studies describing the antibacterial activity of silybin are summarized in Table 1.
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Table 1. Antibacterial activity of silybin.

Species * Method Activity ** Location References

Gram-negative bacteria

Acinetobacter baumannii Microdilution MIC: 8–64 µg/mL Turkey [28]

Aggregatibacter
actinomycetemcomitans

Microdilution
Checkerboard
Time kill curve

MIC: 1.6 µg/mL Republic of Korea [35]

Escherichia coli

Microdilution
Checkerboard MIC: 20 µg/mL Republic of Korea [27]

Microdilution MIC: 8–64 µg/mL Turkey [28]

Microdilution
Checkerboard MIC: 64 µg/mL Brazil [14]

Microdilution
Time kill MIC: 40 µg/mL Republic of Korea [36]

Microdilution MIC: >512 µg/mL Pakistan [29]

Microdilution MIC: 1.25 µM Iran [31]

Microdilution
Disc diffusion

MIC: 1–10 µg/mL
IZ: 7–8 mm India [32]

Microdilution MIC: 5.6 µg/mL Argentina [37]

Microdilution
Disc diffusion

MIC: 1.55–3.12 µg/mL
IZ: 8–12 mm India [38]

Microdilution
Checkerboard MIC: 128–512 µg/mL Iran [39]

Fusobacterium nucleatum
Microdilution
Checkerboard
Time kill curve

MIC: 3.2 µg/mL Republic of Korea [35]

Helicobacter pylori Microdilution MIC: 256 µg/mL Brazil [12]

Klebsiella oxytoca,
Klebsiella pneumoniae

Microdilution MIC: 8–64 µg/mL Turkey [28]

Microdilution
Biofilm formation MIC: 100–500 mg/mL Iraq [40]

Microdilution
Disc diffusion

MIC: 1.55–6.25 µg/mL
IZ: 10–15 mm India [38]

Porphyromonas gingivalis
Microdilution
Checkerboard
Time kill curve

MIC: 0.4 µg/mL Republic of Korea [35]

Prevotella intermedia
Microdilution
Checkerboard
Time kill curve

MIC: 1.6 µg/mL Republic of Korea [35]

Proteus mirabilis Microdilution MIC: 8–64 µg/mL Turkey [28]

Pseudomonas aeruginosa

Microdilution
Checkerboard MIC: 10–20 µg/mL Republic of Korea [27]

Microdilution MIC: 4–32 µg/mL Turkey [28]

Microdilution
Checkerboard MIC: 1.024 µg/mL Brazil [14]

Microdilution MIC: >512 µg/mL Pakistan [29]

Microdilution MIC: 0.625 µg/mL Iran [31]

Microdilution MIC: 11.2 µg/mL Argentina [37]

Biofilm formation Active in
concentrations < 10 µM Czech Republic [9]

Microdilution
Disc diffusion

MIC: 1.55–6.25 µg/mL
IZ: 11–15 mm India [38]

Salmonella typhi Microdilution MIC: 0.312 µg/mL Iran [31]

Vibrio campbellii Quorum Sensing
Inhibition

Active in
concentrations < 10 µM Czech Republic [9]
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Table 1. Cont.

Species * Method Activity ** Location References

Gram-positive bacteria

Bacillus subtilis
Microdilution IC50: 11.8 µg/mL Republic of Korea [41]

Microdilution MIC:16 µg/mL Pakistan [29]

Corynebacterium xerosis Microdilution MIC: 1.25 µg/mL Iran [31]

Enterococcus faecalis,
Enterococcus faecium

Microdilution
Checkerboard MIC: >20 µg/mL Republic of Korea [27]

Microdilution MIC: 2–64 µg/mL Turkey [28]

Microdilution
Disc diffusion

MIC: 1.55 µg/mL
IZ: 7–22 mm India [38]

Mycobacterium tuberculosis
Microdilution

Colony forming unit
assay

MIC: 50–400 µM Mexico [42]

Staphylococcus aureus,
Staphylococcus epidermidis,

MRSA, MSSA

Microdilution MIC: 1.25 µg/mL United States of
America [33]

Microdilution IC50: 15.7 µg/mL Korea [41]

Microdilution
Checkerboard MIC: 1.25–10 µg/mL Republic of Korea [27]

Microdilution
Checkerboard
Time kill curve

MIC: 2–8 µg/mL South Korea [43]

Microdilution MIC: 2–64 µg/mL Turkey [28]

Microdilution
Checkerboard MIC: 1.024 µg/mL Brazil [14]

Microdilution MIC: 32 µg/mL Pakistan [29]

Colony forming unit
assay

Active in
concentrations of 400

µM
China [30]

Microdilution MIC: 0.312 µg/mL Iran [31]

Microdilution
Disc diffusion

MIC: 1–10 µg/mL
IZ: 7–8 mm India [32]

Double dilution MIC: 32 µg/mL China [26]

Microdilution
Checkerboard MIC: 62.5–250 µg/mL Saudi Arabia [15]

Efflux pump inhibition
Quorum Sensing

Inhibition
MIC: 5–40 µM Czech Republic [34]

Biofilm inhibition Active in
concentrations < 10 µM Czech Republic [9]

Streptococcus anginosus,
Streptococcus criceti,

Streptococcus gordonii,
Streptococcus mutans,

Streptococcus ratti,
Streptococcus sanguinis,
Streptococcus sobrinus,

Streptococcus suis

Microdilution
Checkerboard

Time kill curve
MIC: 0.1–0.8 µg/mL Republic of Korea [35]

Microdilution MIC: >1.024 µg/mL China [44]

* MRSA: Methicillin-resistant Staphylococcus aureus; MSSA: Methicillin-susceptible Staphylococcus aureus. ** IZ:
Inhibition Zone; MIC: Minimum Inhibitory Concentration; IC50: half maximal inhibitory concentration.

In general, pure compounds are more effective against Gram-positive bacteria than
Gram-negative bacteria [45]. This is due to the outer lipopolysaccharide membrane present
in the constitution of Gram-negative bacteria. This outer membrane restricts the diffusion
of compounds through the covering layer of lipopolysaccharides. In gram-positive bacteria,
the compound exerts its effects after direct contact with phospholipids. This effect takes
place through the rise in ion diffusion or the leakage of the cell’s vital components [45].
In the study carried out by Lee et al. [35], the antibacterial activity of silybin was veri-
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fied against eleven oral pathogens with minimum inhibitory concentration (MIC) values
ranging from 0.1 to 3.2 µg/mL, including the following: A. actinomycetemcomitans, F. nu-
cleatum, P. gingivalis, P. intermedia, S. anginosus, S. criceti, S. gordonii, S. mutans, S. ratti, S.
sanguinis, and S. sobrinus. Silybin also exhibits antibacterial activity against some Gram-
positive pathogens, such as S. aureus [9,14,27–32,35], MRSA [15,26,27,33,34,43], Methicillin-
sensitive S. aureus (MSSA) [15], B. subtilis [28,29,41], S. epidermidis [41], E. faecium [27], E.
faecalis [28,38], and C. xerosis [31]. In addition, silybin has also been shown to exert an
inhibitory effect against Gram-negative bacteria, such as E. coli [14,27–29,31,32,36–39], P.
aeruginosa [9,14,27–29,31,37,38], K. pneumoniae [28,38], A. baumannii [28], S. typhi [31], V.
campbellii [9], and P. mirabilis [28] with an MIC value ranging from 0.312 to 1.024 µg/mL.
Furthermore, silybin exhibits inhibitory activity against the resistant strain of K. oxytoca;
however, this has an MIC too high to be considered relevant for this pathogen, correspond-
ing to 500 mg/mL [40]. In addition to these pathogens, silybin also inhibits H. pylori with
an MIC value of 256 µg/mL [12]. Chronic H. pylori infections are associated with the
development of several diseases of the gastrointestinal tract, such as gastric cancer, gastric
ulcers, biliary tract cancer, and mucosa-associated lymphoid tissue lymphoma [12].

Silybin is also effective against M. tuberculosis, the main pathogen that causes tubercu-
losis, with an MIC value between 50 and 400 µM [42]. Although tuberculosis treatment
has been available for over 60 years, it requires the use of four antibiotics for a prolonged
period of at least six months. Anti-tuberculosis treatment carries a risk of developing side
effects (including gastric, neurological, and hematological alterations) and is potentially
hepatotoxic [42]. It has been reported that silybin has hepatoprotective activity [13,46];
therefore, this compound has promising therapeutic potential for research to consolidate
its action as an anti-tuberculosis agent, since it also guarantees hepatoprotective action.

4. Antifungal Activity

Despite several studies on the antibacterial activity of silybin against human pathogenic
microorganisms, the antifungal activity of this compound has rarely been reported. Previ-
ously published studies indicate that silybin has anti-C. albicans activity, with MIC values
ranging from 4 to 1.024 µg/mL [14,28,29].

Silybin also inhibited (8 µg/mL) C. parapsilosis strains [28]. Similarly, Yun and Lee [47]
reported antifungal activity against C. parapsilosis. Silybin also had inhibitory activity
against other non-albicans Candida species (NAC) such as strains of C. glabrata [29], C.
krusei [14], and C. tropicalis [14,29,48]. Additionally, in addition to species of the genus
Candida, this compound has an inhibitory effect against other fungal pathogens, such as A.
flavus, M. furfur [47,48], and T. beigelii [47]. The studies describing silybin antifungal activity
are summarized in Table 2.

Table 2. Antifungal activity of silybin.

Gender Species Method Activity * Location References

Aspergillus A. flavus Double dilution MIC: 20 µM Republic of Korea [47]

Candida

C. albicans,
C. glabrata,
C. krusei,

C. parapsilosis,
C. tropicalis

Microdilution MIC: 4–8 µg/mL Turkey [28]

Microdilution
Checkerboard MIC: 1.024 µg/mL Brazil [14]

Double dilution MIC: 20–40 µM Republic of Korea [47]

Microdilution MIC: 64–512 µg/mL Pakistan [29]

Biofilm formation Active in concentrations
above 100 µM Republic of Korea [11]

Disc diffusion Active in concentrations
of 15, 20, 25 mg/mL India [48]
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Table 2. Cont.

Gender Species Method Activity * Location References

Malassezia M. furfur Double dilution

MIC: 40 µM Republic of Korea [47]

Active in concentrations
of 15, 20, 25 mg/mL India [48]

Trichosporon T. beigelii Double dilution MIC: 20–40 µM Republic of Korea [47]

* MIC: Minimum Inhibitory Concentration.

5. Antiviral Activity

Silybin was shown to present significant antiviral activity in recently published studies.
The results indicate that silybin and its derivatives have a wide range of activity against
different types of viruses, such as hepatitis B (HBV) [49], hepatitis C (HCV) [28,50–70],
human immunodeficiency virus (HIV) [52,60,63,71,72], influenza A virus (IAV) [73], Chikun-
gunya virus [74], and human enterovirus 68 (EV68) [75]. Silybin was also found to exert
antiviral activity against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
virus [16,76–79].

6. Antiparasitic Activity

The antiparasitic activity of silybin is still under studied compared to its antibacterial,
antifungal, and antiviral activities. Studies describing its antiparasitic activities are sum-
marized in Table 3. A promising activity of silybin against some parasites was described,
mainly those belonging to the genera Tryfpumps and porins in uropathogen [80,81] and Leish-
mania [82–84]. Silybin also inhibited the growth of T. cruzi epimastigotes (at an IC50 of
25 µM) and amastigotes (at an IC50 of 79.81 µM). However, silybin monotherapy was not
effective in controlling parasitemia or mortality of infected animals in the benznidazole
control group [81].

Table 3. Antiparasitic activity of silybin.

Protozoan Identification Forms of
Development Main Conclusions Location References

Trypanosoma
brucei STIB 900

Trypomastigote
forms of the
bloodstream

(i) potent and non-competitive
inhibition of TbAT1 mediated
adenosine transport in yeast;

(ii) inhibition of melarsen-induced
lysis of bloodstream trypanosomes

with IC50 ± SEM de 6.0 ± 0.0 × 102.

USA [80]

Leishmania
tropica DNM-R150 Promastigotes

silybin and, mainly, its oxidized and
prenylated derivatives show high

binding affinity to the recombinant
cytosolic domain of the Leishmania

Pgp-like transporter and reverse the
MDR of a L. tropica strain that
overexpresses the transporter.

Spain [82]

Leishmania
donovani

MHOM/IN/
80/Dd8 Promastigotes

reduction in parasite load, increase in
Th1-type immune responses and

normalization of several biochemical
parameters occurred in animals

treated with cisplatin in combination
with silybin.

India [83]
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Table 3. Cont.

Protozoan Identification Forms of
Development Main Conclusions Location References

Mesocestoides
vogae - -

silybin and its derivative
2,3-dehydrosilybin suppressed

mitochondrial functions and energy
stores, inducing a physiological

imbalance, while 2,3-dehydrosilybin
exhibited a direct larvicidal effect due

to damage to the tegument and
complete disruption of larval
physiology and metabolism.

Czech Republic [85]

Leishmania
infantum

Li UCM9
(M/CAN/ES/
2001/UCM9)

Promastigotes

silybin did not cause any inhibition of
Leishmania promastigotes; however,

its derivative dehydrosilybin A
significantly inhibited Li

promastigotes with an approximate
IC50 of 90.23 µM.

Spain [84]

Leishmania
donovani

(MHOM/SD/
43/124) Promastigotes there was a reduction of more than

≥30% (120 µM). Spain [84]

Trypanosoma
cruzi Strain Y Epimastigotes inhibition of parasite growth (25 µM). Brazil [81]

Trypanosoma
cruzi Strain Y Amastigotes

(i) silybin presented IC50 and
selectivity index of 79.81 µM and 3.13,

respectively;
(ii) the combination of silybin +

benznidazole presented inhibition
of 91.44%;

(iii) monotherapy with silybin was
not able to control

parasitemia/mortality of the animals.

Brazil [81]

Naegleria fowleri ATCC 30215 Trophozoites activity with IC50 ± SD < 25 µM with
selectivity index equal to 4.13 µM.

Republic of
Korea [17]

Acanthamoeba
castellanii ATCC 30868 Trophozoites activity with IC50 ± SD < 26 µM with

selectivity index equal to 4.08 µM.
Republic of

Korea [17]

Acanthamoeba
polyphaga ATCC 30461 Trophozoites activity with IC50 ± SD < 16 µM with

selectivity index equal to 6.31 µM.
Republic of

Korea [17]

ATCC: American Type Culture Collection; MDR: multidrug resistance.

In leishmaniasis, it was observed that silybin and its oxidized and prenylated deriva-
tives have binding affinities to the recombinant cytosolic domain of the Pgp-like transporter
of Leishmania. These compounds were able to reverse drug resistance in a L. tropica strain
that overexpressed this transporter. Furthermore, treatment with cisplatin in combination
with silybin reduced parasite load and increased Th1-type immune responses in animals
infected with L. donovani [83].

The studies also demonstrated the antiparasitic activity of silybin and its deriva-
tives against other important protozoa, such as N. fowleri and different species of Acan-
thamoeba [17]. These compounds showed activity with an IC50 below 25 µM and favorable
selectivity indices, indicating their therapeutic potential against infections by these organ-
isms [17].

7. Mechanism of Antibacterial Activity

The putative mechanisms by which silybin inhibits bacterial growth have been recently
described. These mechanisms include the inhibition of efflux pumps, nucleic acid, protein
synthesis, and biofilm formation, the reduction of virulence factors, and the induction of
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death, similar to apoptosis [9,26,27,33,34,36,38–41]. Furthermore, most of these studies
mainly involved species of Gram-positive bacteria, with a predominance of MRSA. The
main mechanisms of action of silybin are shown in Table 4.

Table 4. Antibacterial mechanism of silybin.

Mechanism of Action Name of the Bacteria Detailed Mechanisms of Action References

Inhibition of efflux pump

MRSA It acts by inhibiting the NorA efflux pump. [33]

MRSA It acts by inhibiting the ABC efflux pump. [27]

MRSA
Reduced expression of the quinolone resistance protein

NorA (norA) and quaternary ammonium resistance
protein A/B (qacA/B) efflux genes.

[26]

MRSA

Antibiotic-induced reduction of gene expression of
representative efflux pumps belonging to the major

facilitator (MFS), multiple and toxic compound
extrusion (MATE), and ATP-binding cassette

(ABC) families.

[34]

Escherichia coli

Downregulation of the efflux pump genes AcrAB-TolC
and upregulation of the porin genes ompC and ompF in

combination with ciprofloxacin at the
transcriptional level.

[39]

Inhibition of nucleic acid
and protein synthesis

Bacillus subtilis,
Staphylococcus epidermidis It acts by inhibiting the synthesis of RNA and proteins. [41]

Escherichia coli It acts on DNA fragmentation. [36]

Biofilm inhibition and
quorum sensing

MRSA
Reduction of virulence factors, namely bacterial

communication between cells and cell adhesion to
the surface.

[34]

Staphylococcus aureus,
Pseudomonas aeruginosa,

Vibrio campbellii

Reduction of virulence factors, namely cell adhesion to
the surface and communication between bacteria.

Prevention of biofilm formation.
[9]

Klebsiella oxytoca Reduction of virulence factors. [40]

Escherichia coli,
Pseudomonas aeruginosa

Prevention of biofilm formation and inhibition of
formed biofilm. [38]

Escherichia coli Notable reduction in bacterial growth and biofilm
formation in ciprofloxacin-resistant isolates. [39]

Induction of
apoptosis-like death Escherichia coli

Induction of apoptosis-like cell death mediated by
membrane depolarization with Ca2+ signaling.

Apoptosis induced by exposure to phosphatidylserine
and activation of caspase-like proteins.

[36]

MRSA: Methicillin-resistant Staphylococcus aureus.

7.1. Inhibition of Efflux Pumps

Efflux pumps are protein complexes present in bacterial membranes that are respon-
sible for conferring resistance, as they function by expelling antimicrobial agents from
the cell [26]. The quicker the efflux pump system expels the antibacterial agents cross-
ing the membrane, the less direct contact there is between the bacteria and these agents.
This reduces the bactericidal effect of distinct antimicrobials and contributes to pathogen
resistance at the membrane level [86]. This is concerning because this mechanism can
contribute to drug resistance in bacteria through the active removal of distinct classes of
antibiotics [39].

Silybin acts as an inhibitor of efflux pumps in bacterial cells. Several studies have
shown that the quinolone resistance protein NorA (norA) and quaternary ammonium
resistance protein A/B (qacA/B) systems are the main efflux pumps of MRSA [26,27,33,34].
Silybin at a concentration of 1.25 µg/mL inhibited NorA, an efflux pump present in the



Antibiotics 2024, 13, 1091 10 of 21

MRSA membrane [33]. Similarly, in a study by Wang et al. [26], silybin reduced the
expression of two NorA and AB pump efflux genes in MRSA. Corroborating these findings,
Jung and Lee [27] also evidenced that silybin diminishes the activity of ABC pumps in
S. aureus. Holasová et al. [34] demonstrated that flavolignanas such as silybin modulate
the resistance to antibiotics and the virulence of S. aureus, affecting the corresponding
efflux pumps such as ABC, MATE, and MFS. Recently, a study by Fekri Kohan et al. [39]
showed that silybin reduces the expression of the AcrABZ-TolC efflux pump system in
uropathogenic E. coli.

7.2. Inhibition of Nucleic Acids and Protein Synthesis

Bacterial nucleic acids, consisting of DNA and RNA, play essential roles in the main-
tenance and reproduction of bacterial cells. DNA molecules are responsible for storing,
copying, and transmitting genetic information. RNA molecules, in turn, function as mes-
sengers to ensure adequate protein synthesis [86]. Lee et al. [41] found that silybin has
inhibitory activity on nucleic acids, such as RNA, and on protein synthesis in B. subtilis
and S. epidermidis. In addition, a recent study demonstrated that silybin can affect the
fragmentation of DNA molecules in E. coli [36].

7.3. Inhibition of Biofilm Formation and Reduction of Virulence Factor Expression

Biofilm formation is a fully organized multistep process in which bacteria constantly
communicate with each other. Furthermore, bacterial communication plays an essential
role in bacterial life, since bacterial cells can detect and respond to autoinducers or other
molecules, and accordingly adjust the production of virulence factors, bioluminescence,
biofilm formation, and other factors. Thus, compounds able to interfere with bacterial
communication have promising therapeutic potential in the field of bacterial virulence
regulation [9,34]. Silybin affects pathways involved in bacterial quorum sensing; therefore,
this compound is capable of preventing bacteria from adhering to the target tissue [34]. In
the study by Holasová et al. [34], silybin was able to reduce bacterial communication and,
in addition, was also able to inhibit the surface colonization of S. aureus. Hurtová et al. [9]
proved that silybin A and silybin B are able to disrupt biofilm formation in S. aureus and P.
aeruginosa, with an IC50 value of less than 100 µM. Furthermore, for the first time in the
literature, these authors developed halogenated derivatives of silybin and found that they
presented a superior inhibitory effect compared with the original compound, with an IC50
value below 10 µM. Despite presenting good activity against biofilm formation, none of the
tested compounds were able to disrupt mature biofilms.

Another study showed that silybin inhibits biofilm formation in resistant K. oxytoca
isolates through the reduction of some virulence factors, such as adhesins [40]. Omer
et al. [40] demonstrated that from 100 mg/mL silybin was able to reduce the expression of
the fimA and mrkA genes, which are responsible for bacterial adhesion and colonization
and can mediate adhesion and biofilm formation. These results are also in agreement with
those reported by Shen et al. [44] for Gram-positive isolates. Indeed, silybin was also able
to reduce the expression of virulence genes of S. suis serotype 2 [44]. Silybin’s effects on the
expression of virulence factors may be related to its effects on quorum sensing genes, which
play an important role in the regulation of other biological factors, such as pathogenicity,
biofilm, and secretion systems [9].

In a recent study, silybin was shown to downregulate the expression of the virulence
genes acrA, acrB, and tolC, which encode efflux pumps, and upregulate the expression of
genes encoding porins in uropathogenic E. coli. In this context, silybin upregulates the
expression of ompC and ompF genes encoding porins (proteins that facilitate the entry of
substances into the bacterial cell) [39]. In a more recent study, significant concentration-
dependent inhibition of biofilm formation against P. aeruginosa (70.21%) and K. pneumoniae
(71.02%) was reported for silybin at 30 µg/mL, and the greatest destruction of preformed
biofilm was observed at 100 µg/mL against P. aeruginosa (89.74%) and K. pneumoniae
(77.65%) in comparison with the individual bacterial control. Furthermore, a live/dead
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fluorescence assay for bacterial biofilms confirmed that 100 µg/mL silybin effectively
inhibits biofilm formation by these pathogens [38].

7.4. Induction of Apoptosis-Like Death

In recent studies, a new mechanism of prokaryotic cell death has been postulated,
which is similar to the apoptotic cell death of eukaryotes and is called bacterial apoptosis-
like death [87,88]. E. coli cells undergoing apoptosis-like death exhibit features of apoptosis,
such as caspase-like protein activation, membrane depolarization, and exposure to phos-
phatidyldyserine [88,89]. DNA fragmentation is characteristic of apoptosis-like death.
Although the exact mechanism has not been elucidated, it has been suggested that the RecA
protein acts as a caspase in E. coli and fragments DNA strands. In a study developed by
Lee and Lee [36], it was demonstrated that silybin caused the depolarization of the E. coli
membrane and increased intracellular Ca2+ levels, consistent with bacterial apoptosis. In
addition, cells treated with MIC and higher concentrations of silybin presented apoptotic
characteristics, such as DNA fragmentation, exposure to phosphatidylserine, and expres-
sion of caspase-like protein. The mechanisms underlying the antibacterial actions of silybin
are shown in Figure 2.
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Figure 2. Antibacterial mechanism of silybin. Silybin exerts its antibacterial action through different
mechanisms, including (a) inhibition of biofilm formation and biofilm formation, disrupting adherent
bacterial communities; (b) inhibition of the expression of efflux pump genes, such as NorA, ABC and
AcrABZ-TolC pumps, increasing the intracellular concentration of silybin; (c) inhibition of quorum
sensing, limiting bacterial communication; (d) reduction of virulence factors, such as adhesins that
are essential for the cell adhesion process; (e) DNA fragmentation, resulting in damage to the genetic
material; (f) inhibition of RNA and protein synthesis; and (g) apoptosis-like death, promoting DNA
fragmentation and cell death.

8. Mechanism of Antifungal Activity

The main mechanisms of silybin’s antifungal actions, including the inhibition of
biofilm formation and induction of apoptosis, have not yet been well elucidated and
explained in the scientific literature [11,47]. Recent studies describe different mechanisms
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by which silybin inhibits C. albicans, including from mitochondrial changes to plasma
membrane damage. These are shown in Table 5.

Table 5. Antifungal mechanism of silybin.

Fungus Name Mechanism of Action References

Candida albicans

Induction of yeast apoptosis mediated by mitochondrial Ca2+ signaling.

[47]
Mitochondrial dysfunction due to excess reactive oxygen species.

Induced apoptosis caused mitochondrial membrane depolarization, cytochrome C release,
caspase-like protein activation, phosphatidylserine exposure, and DNA damage.

Apoptosis via oxidative stress increased by 24.17% compared to untreated cells.

Damage to the plasma membrane occurs and inhibits biofilm development in its initial phase. [11]

Yun and Lee (2016) [47] demonstrated in a study that silybin has the potential to
induce cell apoptosis in C. albicans yeast, mainly through mitochondrial Ca2+ signaling.
In addition, it has been demonstrated that mitochondrial rupture generates the release of
cytochrome C into the cytosol, activating the expression of caspase-like proteins, which
trigger programmed cell death. The increase in reactive oxygen species in the mitochondria
and cytosol leads to phosphatidylserine exposure in the cell membrane and DNA damage.
To better understand the mechanisms involved in the inhibition of C. albicans, Yun and
Lee (2017) [11] also demonstrated that silybin triggers plasma membrane damage as well
as the inhibition of biofilm formation in its initial phase. Silybin also inhibits the hyphal
extension of C. albicans, thus negatively influencing the formation of the biofilm structure. In
preformed and mature biofilms, silybin showed almost no effects due to the strength of the
established structure. However, early-stage biofilm was affected by silybin concentrations
higher than 100 µg/mL; the biofilm did not actively proliferate, and its metabolic activity
decreased. The mechanisms underlying the antifungal actions of silybin are shown in
Figure 3.
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(b) damage to the plasma membrane, causing cell rupture; (c) mitochondrial alterations, generating
an increase in reactive oxygen species (ROS), intensifying oxidative stress; (d) DNA fragmenta-
tion, resulting in damage to the genetic material; and (e) induction of apoptosis, promoting cell
disintegration and death.

9. Mechanism of Antiviral Activity

The relevant experiments describing the mechanisms of the antiviral action of silybin
are presented in Table 6. The primary mechanism of its antiviral activity includes blocking
essential viral enzymes, such as RNA polymerase, proteases, and viral capsid protein
binding.

Table 6. Antiviral mechanism of silybin.

Virus Name Mechanism of Action Location References

Human enterovirus 68 (EV68) Inhibition of ataxia telangiectasia mutated (ATM)
and DNA-dependent protein kinase (DNA-PK). China [75]

Chikungunya virus Interference with viral replication inhibition of viral
attachment and entry and microneutralization. India [74]

Hepatitis B virus (HBV) Blockade of clathrin-mediated endocytosis. Japan [49]

Hepatitis C virus (HCV) Inhibition of the function of the RNA-dependent
RNA polymerase NS5B. France [51]

Hepatitis C virus (HCV)

Inhibited innate inflammatory and antiviral
signaling from NF-κB and IFN-κB promoters. USA [54]

Inhibited expression of tumor necrosis factor alpha
in human peripheral blood mononuclear cells

stimulated with anti-CD3 and NF-κB-dependent
transcription.

USA [56]

Inhibits the initial stages of infection by affecting the
endosomal trafficking of virions. France [57]

Inhibition of RNA replication silybin may target an
interaction between NS4B and NS3/4A. Germany [59]

Capsid protein binding. India [61]

Inhibition of oxidative stress. Taiwan [69]

Human immunodeficiency
virus type 1 (HIV-1)

Disruption of T cell metabolism in vitro; blockade of
T cell infection by HIV. USA [71]

Influenza A virus (IAV) S0 and S3 inhibited IAV replication and disrupted
Atg5-Atg12/Atg16L complex formation. China [73]

Severe acute respiratory
syndrome coronavirus 2 virus

(SARS-CoV-2)

Inhibition of STAT3 and RNA-dependent RNA
polymerase (RdRp). Spain [76]

Inhibition of spike protein and RNA-dependent
RNA polymerase. Italy [78]

inhibition of SARS-CoV-2 main protease (Mpro). Italy [77]

Inhibition of spike protein (S), major protease (Mpro),
RNA-dependent RNA polymerase (RdRp). United Arab Emirates [79]

Inhibition of viral entry, inhibition of viral
replication and regulation of the immune response. USA [16]

10. The Combined Use of Silybin with Other Antimicrobial Drugs

When used in combination with antibiotics, some phenolic compounds, including
silybin, are capable of enhancing their effects and, in some cases, reversing bacterial
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resistance to specific antibiotics [8]. Interestingly, under normal conditions, this type of
mechanism of action, usually synergistic, offers a great advantage because it is unlikely
to represent selective pressure for the development of resistance in microorganisms [8].
Furthermore, it is important to highlight that bioactive compounds can interact in different
ways, and these interactions can be classified as synergistic, additive, or antagonistic [90].

Considering the wide range of antimicrobial benefits of silybin, many studies have
shown it enhances the effects of other antimicrobial drugs. In Gram-negative bacteria,
silybin, when combined with antibiotics used in the clinics such as chloramphenicol,
kanamycin [27], amikacin, and ciprofloxacin [14], showed a synergistic effect in the inhi-
bition of P. aeruginosa strains. However, when combined with gentamicin and imipenem,
silybin demonstrated an antagonistic effect against P. aeruginosa [14]. Similarly, when com-
bined with gentamicin, it demonstrated a synergistic effect against E. coli [14]. In a recent
study, silybin also demonstrated a synergistic effect when combined with ciprofloxacin
against clinical isolates of uropathogenic E. coli [39].

Other studies have also revealed an interaction between silybin and antimicrobials
used against Gram-positive bacteria. Silybin demonstrated a synergistic effect when com-
bined with oxacillin and ampicillin against MRSA strains [43], as well as synergistic and
additive effects when combined with gentamicin and ampicillin against oral pathogens,
including S. mutans and P. gingivalis [35]. Furthermore, when combined with amikacin,
kanamycin, gentamicin, and imipenem, silybin showed synergistic effects against S. au-
reus [14,30]; it also showed synergistic effects with ampicillin against MRSA and MSSA [15].
Additionally, a recent study demonstrated that silybin demonstrated an antagonistic effect
when combined with nystatin and no effect when combined with mebendazole against C.
albicans, C. krusei, and C. tropicalis [14]. In addition to the combined treatment of silybin
with antimicrobials used against bacterial and fungal infections, some researchers have
demonstrated in their studies that treatment with cisplatin in combination with silybin
resulted in a reduction in parasite load and an increase in Th1-type immune responses in
animals infected with L. donovani [83].

11. Bioavailability of Silybin

Although silybin was reported to have significant antimicrobial activity, it possesses
relatively low oral bioavailability. Silybin has low solubility in water (less than 50 µg/mL)
due to its highly hydrophobic and non-ionizable chemical structure, which greatly influ-
ences its bioavailability. However, the solubility of this compound increases significantly
in the presence of certain organic solvents, such as transcutol (350.1 mg/mL), ethanol
(225.2 mg/mL), polysorbate 20 (131.3 mg/mL), and glycerin (33.2 mg/mL) [21]. This
stark contrast in solubility between aqueous and organic environments underscores the
importance of formulation strategies for improving silybin bioavailability.

When orally administered, silybin is rapidly absorbed, reaching its maximum plasma
concentration (tmax) at 2–4 h, with a half-life of 6 h. After administration, only 20–50% of
the silybin is absorbed from the gastrointestinal (GI) tract and metabolized in the liver [29].
It is reported that silybin B is absorbed more rapidly compared with silybin A after the in-
tragastric administration of each diastereoisomer of silybin in rats [91]. Human and animal
studies have suggested that the absorbed silybin undergoes rapid and extensive phase II
conjugative metabolism with primary biliary excretion, resulting in a short half-life and low
systemic exposure following oral administration [92–94]. The main metabolites detected
after the oral administration of silybin in human plasma are glucuronides (about 55%) and
sulfates (about 28%), which are catalyzed by the enzymes UDP-glucuronyltransferase and
sulfatransferase [95,96]. Interestingly, silybin metabolism exhibits stereoselectivity, adding
another layer of complexity to its pharmacokinetic profile. Studies in rats showed that
silybin B, a stereoisomer of silybin, is absorbed more rapidly than silybin A [91]. This
differential absorption rate between stereoisomers suggests that the spatial configuration
of the molecule plays a crucial role in its interaction with the absorption mechanisms in the
gastrointestinal tract. Consequently, the main challenges in the clinical use of silybin are its
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low bioavailability, rapid conjugation, and extensive biliary excretion. These factors have
hindered its application as a pharmaceutical product [97].

12. Silybin and Nanotechnology

Nanotechnology can overcome some limitations regarding bioavailability, providing
favorable characteristics to promote the healing effect of therapeutic molecules of natural
origin, including silybin [97]. Therefore, through different approaches using nanotechnol-
ogy, studies have been carried out in order to increase the bioavailability of silybin and, at
the same time, enhance its antimicrobial therapeutic activity. Recently, it was reported that
silybin nanoparticles demonstrated higher antimicrobial activity against a wide range of
microorganisms of clinical interest, including bacterial strains (B. subtilis, S. aureus, E. coli,
K. pneumoniae, P. aeruginosa) [29,32,37–39], fungi (C. albicans, C. glabrata) [29] and viruses
(HCV) [69], surpassing its activity in the pure form. In the study developed by Sahibzada
et al. [29], nanoparticles prepared by antisolvent precipitation using the syringe pump
(APSP) and evaporative precipitation of nanosuspension (EPN) methods exhibited strong
antibacterial activity against B. subtilis and S. aureus. However, even at the highest concen-
trations tested, they did not show activity against Gram-negative bacteria such as E. coli
and P. aeruginosa. The antifungal action of these nanoparticles against strains of C. albicans
and C. glabrata was also demonstrated, with the EPN method showing greater inhibitory
activity. Islan et al. [37] developed silybin-functionalized gold nanoparticles (S-AuNPs) to
evaluate their activity against clinical pathogens related to nosocomial infections, including
E. coli and P. aeruginosa. The live/dead fluorescent assay confirmed that S-AuNPs could kill
bacteria with significant cell damage after only 30 min of exposure. Furthermore, trans-
mission electron microscopy (TEM) imaging demonstrated that S-AuNPs could strongly
interact with the surfaces of these bacteria, leading to cell lysis. In another study, Vimalraj
et al. [32] demonstrated that zinc–silybin complexes exhibited higher inhibitory activity
against S. aureus and E. coli when compared with pure silybin. In a recent study, silybin-
loaded chitosan-coated silver nanoparticles (S-C@AgNPs) were synthesized to evaluate
their antimicrobial potential against resistant nosocomial pathogens, including E. coli, P.
aeruginosa, K. pneumoniae, and E. faecalis [38]. It was demonstrated that silybin has potential
antibiofilm activity against K. pneumoniae and P. aeruginosa, preventing the formation of
biofilms at concentrations ≤ 100 µg/mL.

Fekri Kohan et al. [39] recently evaluated the effects of silybin loaded polymers (SPNs)
in combination with ciprofloxacin or meropenem in E. coli isolates and, through quantitative
analysis, suggested that silybin potentially increases antibiotic susceptibility in resistant
isolates through multiple mechanisms. These mechanisms include the downregulation of
efflux pump genes and upregulation of porins, culminating in increased antibiotic uptake
by bacterial cells, thereby enhancing antibiotic-mediated bacterial cell death. In addition to
studies on bacteria and fungi, it was also demonstrated that silybin nanoparticles based on
hydrolysable carriers have a stronger antiviral effect against HCV infection than those in
their pure form [69]. Additionally, other studies have already reported that the application
of nanotechnology favors an increase in the bioavailability and the hepatoprotective effect
of silybin [46]. Likewise, pretreatment with silybin NPs protects against drug-induced
hepatotoxicity [97,98].

13. Conclusions and Future Directions

Silybin has demonstrated good antimicrobial activities against various bacterial, fun-
gal, viral, and parasitic pathogens. However, the collective impact of some factors, such
as its poor water solubility, limited absorption, rapid metabolism, and extensive biliary
excretion, presents significant hurdles for the development of silybin as an effective phar-
maceutical product. These challenges require the development and implementation of
innovative strategies to overcome the low bioavailability of silybin. Potential approaches
may include the development of novel formulations to enhance solubility and absorption,
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the use of drug delivery systems to protect silybin from rapid metabolism, or the design of
prodrug forms that can bypass extensive first-pass metabolism.

Ongoing investigations focused on enhancing the solubility and bioavailability of
silybin have suggested its potential as a novel therapeutic agent for the prevention and
treatment of infectious diseases. More in vivo studies are essential to demonstrate its
effectiveness in animal models and assess its performance in clinical trials.

Further investigation into the potential synergistic effects of silybin with existing
antibiotics is needed to open new avenues for combination therapies, potentially enhancing
treatment efficacy while minimizing the development of antimicrobial resistance. This
approach could be particularly valuable in addressing the growing concern regarding
antibiotic-resistant pathogens, as combining silybin with conventional antibiotics may allow
for lower dosages of both compounds while maintaining or even improving therapeutic
outcomes. Such combinations could potentially reduce side effects associated with high
antibiotic doses and slow the emergence of resistant strains.

Additionally, exploring the structure–activity relationships of silybin derivatives may
lead to the development of more potent and targeted antimicrobial compounds. Elucida-
tion of the molecular mechanisms underlying the antimicrobial activities of silybin could
provide valuable insights into the design of novel therapeutic strategies against infectious
diseases. Understanding how silybin interacts with bacterial cells at the molecular level,
including its effects on cell membranes, metabolic pathways, or gene expression, could
reveal new targets for antimicrobial drug development. This knowledge can also help
predict potential resistance mechanisms and guide the design of compounds that can
overcome or circumvent these resistance pathways.

In addition, exploring the potential of silybin and its derivatives in treating biofilm-
associated infections could address a significant challenge in current antimicrobial therapy.
Many chronic and recurrent infections are associated with bacterial biofilms, which are
difficult to eradicate using conventional antibiotics. If silybin demonstrates antibiofilm
activities or the ability to penetrate existing biofilms, it could provide a valuable tool for
treating these persistent infections, potentially reducing the need for long-term antibiotic
use and decreasing the risk of antibiotic resistance development.
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