A Comparison of Causative Pathogens in Bone and Prosthetic Joint Infections: Implications for Antimicrobial Therapy †
Abstract
:1. Introduction
2. Results
Prosthetic Material Compared to No Prosthetic Material
3. Discussion
3.1. Polymicrobial Infections
3.2. Local Antibiotic Treatment Implications
3.3. Limitations
4. Materials and Methods
4.1. Recruitment and Inclusion Criteria
4.2. Microbial Sampling
4.3. Data Collection
4.4. Data Management and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carter, K.J.; Yeager, M.T.; Rutz, R.W.; Benson, E.M.; Gross, E.G.; Campbell, C.; Johnson, J.P.; Spitler, C.A. Lower Extremity Amputation in Fracture Related Infection. J. Orthop. Trauma 2022, 38, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, N.R.; Mechlenburg, I.; Søballe, K.; Lange, J. Patient-reported quality of life and hip function after 2-stage revision of chronic periprosthetic hip joint infection: A cross-sectional study. Hip Int. 2018, 28, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, K.; Clauss, M.; Joeris, A.; Kates, S.; Morgenstern, M. Health-related quality of life and mental health in patients with major bone and joint infections. Bone Jt. Open 2024, 5, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Metsemakers, W.; Kuehl, R.; Moriarty, T.; Richards, R.; Verhofstad, M.; Borens, O.; Kates, S.; Morgenstern, M. Infection after fracture fixation: Current surgical and microbiological concepts. Injury 2018, 49, 511–522. [Google Scholar] [CrossRef]
- Ahmed, S.; Haddad, F. Prosthetic joint infection. Bone Jt. Res. 2019, 8, 570–572. [Google Scholar] [CrossRef]
- Dudareva, M.; Kümin, M.; Vach, W.; Kaier, K.; Ferguson, J.; McNally, M.; Scarborough, M. Short or Long Antibiotic Regimes in Orthopaedics (SOLARIO): A randomised controlled open-label non-inferiority trial of duration of systemic antibiotics in adults with orthopaedic infection treated operatively with local antibiotic therapy. Trials 2019, 20, 693. [Google Scholar] [CrossRef]
- Rupp, M.; Walter, N.; Popp, D.; Hitzenbichler, F.; Heyd, R.; Geis, S.; Kandulski, M.; Thurn, S.; Betz, T.; Brochhausen, C. Multidisciplinary treatment of fracture-related infection has a positive impact on clinical outcome—A retrospective case control study at a tertiary referral center. Antibiotics 2023, 12, 230. [Google Scholar] [CrossRef] [PubMed]
- Bezstarosti, H.; Van Lieshout, E.; Voskamp, L.; Kortram, K.; Obremskey, W.; McNally, M.; Metsemakers, W.-J.; Verhofstad, M. Insights into treatment and outcome of fracture-related infection: A systematic literature review. Arch. Orthop. Trauma Surg. 2019, 139, 61–72. [Google Scholar] [CrossRef]
- Australian Commission on Safety and Quality in Healthcare. What Are Antibiograms? Australian Commission on Safety and Quality in Healthcare: Sydney, Australia, 2021. [Google Scholar]
- Corrigan, R.A.; Sliepen, J.; Dudareva, M.; IJpma, F.F.; Govaert, G.; Atkins, B.L.; Rentenaar, R.; Wouthuyzen-Bakker, M.; McNally, M. Causative pathogens do not differ between early, delayed or late fracture-related infections. Antibiotics 2022, 11, 943. [Google Scholar] [CrossRef]
- Sigmund, I.K.; McNally, M.A. Diagnosis of bone and joint infections. Orthop. Trauma 2019, 33, 144–152. [Google Scholar] [CrossRef]
- Peel, T.N.; Dylla, B.L.; Hughes, J.G.; Lynch, D.T.; Greenwood-Quaintance, K.E.; Cheng, A.C.; Mandrekar, J.N.; Patel, R. Improved diagnosis of prosthetic joint infection by culturing periprosthetic tissue specimens in blood culture bottles. MBio 2016, 7, e01776. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, E.J.; Stephens-Shields, A.J.; Newcomb, C.W.; Silibovsky, R.; Nelson, C.L.; O’Donnell, J.A.; Glaser, L.J.; Hsieh, E.; Hanberg, J.S.; Tate, J.P. Incidence, microbiological studies, and factors associated with prosthetic joint infection after total knee arthroplasty. JAMA Netw. Open 2023, 6, e2340457. [Google Scholar] [CrossRef] [PubMed]
- Masters, E.A.; Ricciardi, B.F.; Bentley, K.L.d.M.; Moriarty, T.F.; Schwarz, E.M.; Muthukrishnan, G. Skeletal infections: Microbial pathogenesis, immunity and clinical management. Nat. Rev. Microbiol. 2022, 20, 385–400. [Google Scholar] [CrossRef]
- Depypere, M.; Kuehl, R.; Metsemakers, W.-J.; Senneville, E.; McNally, M.A.; Obremskey, W.T.; Zimmerli, W.; Atkins, B.L.; Trampuz, A. Recommendations for systemic antimicrobial therapy in fracture-related infection: A consensus from an international expert group. J. Orthop. Trauma 2020, 34, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Tai, D.B.G.; Patel, R.; Abdel, M.P.; Berbari, E.F.; Tande, A.J. Microbiology of hip and knee periprosthetic joint infections: A database study. Clin. Microbiol. Infect. 2022, 28, 255–259. [Google Scholar] [CrossRef]
- Depypere, M.; Sliepen, J.; Onsea, J.; Debaveye, Y.; Govaert, G.A.; IJpma, F.F.; Zimmerli, W.; Metsemakers, W.-J. The microbiological etiology of fracture-related infection. Front. Cell. Infect. Microbiol. 2022, 12, 934485. [Google Scholar] [CrossRef]
- Li, H.-K.; Rombach, I.; Zambellas, R.; Walker, A.S.; McNally, M.A.; Atkins, B.L.; Lipsky, B.A.; Hughes, H.C.; Bose, D.; Kümin, M. Oral versus intravenous antibiotics for bone and joint infection. N. Engl. J. Med. 2019, 380, 425–436. [Google Scholar] [CrossRef]
- Conterno, L.O.; Turchi, M.D. Antibiotics for treating chronic osteomyelitis in adults. Cochrane Database Syst. Rev. 2013, 9, CD004439. [Google Scholar] [CrossRef] [PubMed]
- Bernard, L.; Arvieux, C.; Brunschweiler, B.; Touchais, S.; Ansart, S.; Bru, J.-P.; Oziol, E.; Boeri, C.; Gras, G.; Druon, J. Antibiotic therapy for 6 or 12 weeks for prosthetic joint infection. N. Engl. J. Med. 2021, 384, 1991–2001. [Google Scholar] [CrossRef]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Reinecke, P.; Morovic, P.; Niemann, M.; Renz, N.; Perka, C.; Trampuz, A.; Meller, S. Adverse Events Associated with Prolonged Antibiotic Therapy for Periprosthetic Joint Infections—A Prospective Study with a Special Focus on Rifampin. Antibiotics 2023, 12, 1560. [Google Scholar] [CrossRef] [PubMed]
- Schindler, M.; Bernard, L.; Belaieff, W.; Gamulin, A.; Racloz, G.; Emonet, S.; Lew, D.; Hoffmeyer, P.; Uçkay, I. Epidemiology of adverse events and Clostridium difficile-associated diarrhea during long-term antibiotic therapy for osteoarticular infections. J. Infect. 2013, 67, 433–438. [Google Scholar] [CrossRef]
- Shah, N.B.; Hersh, B.L.; Kreger, A.; Sayeed, A.; Bullock, A.G.; Rothenberger, S.D.; Klatt, B.; Hamlin, B.; Urish, K.L. Benefits and adverse events associated with extended antibiotic use in total knee arthroplasty periprosthetic joint infection. Clin. Infect. Dis. 2020, 70, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Moran, E.; Masters, S.; Berendt, A.; McLardy-Smith, P.; Byren, I.; Atkins, B. Guiding empirical antibiotic therapy in orthopaedics: The microbiology of prosthetic joint infection managed by debridement, irrigation and prosthesis retention. J. Infect. 2007, 55, 1–7. [Google Scholar] [CrossRef]
- Patel, K.H.; Gill, L.I.; Tissingh, E.K.; Galanis, A.; Hadjihannas, I.; Iliadis, A.D.; Heidari, N.; Cherian, B.; Rosmarin, C.; Vris, A. Microbiological profile of fracture related infection at a UK Major Trauma Centre. Antibiotics 2023, 12, 1358. [Google Scholar] [CrossRef] [PubMed]
- Rupp, M.; Baertl, S.; Walter, N.; Hitzenbichler, F.; Ehrenschwender, M.; Alt, V. Is there a difference in microbiological epidemiology and effective empiric antimicrobial therapy comparing fracture-related infection and periprosthetic joint infection? A retrospective comparative study. Antibiotics 2021, 10, 921. [Google Scholar] [CrossRef]
- Dudareva, M.; Barrett, L.; Morgenstern, M.; Atkins, B.; Brent, A.; McNally, M. Providing an evidence base for tissue sampling and culture interpretation in suspected fracture-related infection. JBJS 2021, 103, 977–983. [Google Scholar] [CrossRef]
- Dudareva, M.; Hotchen, A.J.; Ferguson, J.; Hodgson, S.; Scarborough, M.; Atkins, B.L.; McNally, M.A. The microbiology of chronic osteomyelitis: Changes over ten years. J. Infect. 2019, 79, 189–198. [Google Scholar] [CrossRef]
- Triffault-Fillit, C.; Ferry, T.; Laurent, F.; Pradat, P.; Dupieux, C.; Conrad, A.; Becker, A.; Lustig, S.; Fessy, M.-H.; Chidiac, C. Microbiologic epidemiology depending on time to occurrence of prosthetic joint infection: A prospective cohort study. Clin. Microbiol. Infect. 2019, 25, 353–358. [Google Scholar] [CrossRef]
- Lemaignen, A.; Bernard, L.; Marmor, S.; Ferry, T.; Grammatico-Guillon, L.; Astagneau, P. Epidemiology of complex bone and joint infections in France using a national registry: The CRIOAc network. J. Infect. 2021, 82, 199–206. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0. 2024. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 4 October 2024).
- Unsworth, A.; Young, B.; Ferguson, J.; Scarborough, M.; McNally, M. Local Antimicrobial Therapy with Combined Aminoglycoside and Vancomycin Compared to Aminoglycoside Monotherapy in the Surgical Management of Osteomyelitis and Fracture-Related Infection. Antibiotics 2024, 13, 703. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.; Bourget-Murray, J.; Hotchen, A.J.; Stubbs, D.; McNally, M. A comparison of clinical and radiological outcomes between two different biodegradable local antibiotic carriers used in the single-stage surgical management of long bone osteomyelitis. Bone Jt. Res. 2023, 12, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Govaert, G.A.; Kuehl, R.; Atkins, B.L.; Trampuz, A.; Morgenstern, M.; Obremskey, W.T.; Verhofstad, M.H.; McNally, M.A.; Metsemakers, W.-J. Diagnosing fracture-related infection: Current concepts and recommendations. J. Orthop. Trauma 2020, 34, 8–17. [Google Scholar] [CrossRef] [PubMed]
- McNally, M.; Sousa, R.; Wouthuyzen-Bakker, M.; Chen, A.F.; Soriano, A.; Vogely, H.C.; Clauss, M.; Higuera, C.A.; Trebše, R. The EBJIS definition of periprosthetic joint infection: A practical guide for clinicians. Bone Jt. J. 2021, 103, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Sandbakken, E.T.; Witsø, E.; Sporsheim, B.; Egeberg, K.W.; Foss, O.A.; Hoang, L.; Bjerkan, G.; Løseth, K.; Bergh, K. Highly variable effect of sonication to dislodge biofilm-embedded Staphylococcus epidermidis directly quantified by epifluorescence microscopy: An in vitro model study. J. Orthop. Surg. Res. 2020, 15, 522. [Google Scholar] [CrossRef]
- Young, B.C.; Dudareva, M.; Vicentine, M.P.; Hotchen, A.J.; Ferguson, J.; McNally, M. Microbial persistence, replacement and local antimicrobial therapy in recurrent bone and joint infection. Antibiotics 2023, 12, 708. [Google Scholar] [CrossRef]
- Morgenstern, M.; Athanasou, N.A.; Ferguson, J.Y.; Metsemakers, W.-J.; Atkins, B.L.; McNally, M.A. The value of quantitative histology in the diagnosis of fracture-related infection. Bone Jt. J. 2018, 100, 966–972. [Google Scholar] [CrossRef]
- Sigmund, I.K.; Yeghiazaryan, L.; Luger, M.; Windhager, R.; Sulzbacher, I.; McNally, M.A. Three to six tissue specimens for histopathological analysis are most accurate for diagnosing periprosthetic joint infection. Bone Jt. J. 2023, 105, 158–165. [Google Scholar] [CrossRef]
- Minassian, A.M.; Newnham, R.; Kalimeris, E.; Bejon, P.; Atkins, B.L.; Bowler, I.C. Use of an automated blood culture system (BD BACTEC™) for diagnosis of prosthetic joint infections: Easy and fast. BMC Infect. Dis. 2014, 14, 233. [Google Scholar] [CrossRef]
- Michel, J.-P.; Klopfenstein, C.; Hoffmeyer, P.; Stern, R.; Grab, B. Hip fracture surgery: Is the pre-operative American Society of Anesthesiologists (ASA) score a predictor of functional outcome? Aging Clin. Exp. Res. 2002, 14, 389–394. [Google Scholar] [CrossRef]
- Hotchen, A.J.; Wismayer, M.G.; Robertson-Waters, E.; McDonnell, S.M.; Kendrick, B.; Taylor, A.; Alvand, A.; McNally, M. The Joint-Specific BACH classification: A predictor of outcome in prosthetic joint infection. EClinicalMedicine 2021, 42, 101192. [Google Scholar] [CrossRef] [PubMed]
- Hotchen, A.J.; Dudareva, M.; Ferguson, J.Y.; Sendi, P.; McNally, M.A. The BACH classification of long bone osteomyelitis. Bone Jt. Res. 2019, 8, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, D.N.; Chambers, H.F.; Saag, M.S.; Pavia, A.T.; Boucher, H.W.; Black, D.; Freedman, D.O.; Kim, K.; Schwart, B.S. The Sanford Guide to Antimicrobial Therapy 2023; Antimicrobial Therapy, Inc.: Sperryville, VA, USA, 2023. [Google Scholar]
Characteristic | Osteomyelitis (n = 163) | Fracture-Related Infection (n = 115) | Prosthetic Joint Infection (n = 162) | |||
---|---|---|---|---|---|---|
Median | IQR * | Median | IQR * | Median | IQR * | |
Age (years) | 56 | 37–66 | 56 | 41–64 | 70 | 60–78 |
ASA * | 2 | 1–3 | 2 | 1–3 | 3 | 2–3 |
BMI * | 26 | 22–31 | 27 | 24–31 | 30 | 25–36 |
n | % | n | % | n | % | |
Sex (Male) | 125 | 76.7 | 75 | 65.2 | 72 | 44.4 |
Site of Infection | ||||||
Long Bone | 135 | 82.8 | 91 | 79.1 | 0 | 0 |
Hand and wrist | 5 | 3.1 | 1 | 0.9 | 1 | 0.6 |
Foot and ankle | 16 | 9.8 | 10 | 8.7 | 2 | 1.2 |
Hip | 2 | 1.2 | 0 | 0 | 79 | 48.8 |
Knee | 1 | 0.6 | 1 | 0.9 | 75 | 46.3 |
Spine | 3 | 1.8 | 12 | 10.4 | 0 | 0 |
Elbow | 0 | 0 | 0 | 0 | 3 | 1.9 |
Shoulder | 1 | 0.6 | 0 | 0 | 2 | 1.2 |
Characteristic | Osteomyelitis (n = 163) | Fracture-Related Infection (n = 115) | Prosthetic Joint Infection (n = 162) | |||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
JS-BACH * | ||||||
Uncomplicated | 57 | 35.0 | 40 | 34.8 | 27 | 16.7 |
Complex | 104 | 63.8 | 72 | 62.6 | 124 | 76.5 |
Limited Options | 2 | 1.2 | 3 | 2.6 | 11 | 6.8 |
Duration of Infection | ||||||
<4 weeks | 3 | 1.8 | 21 | 18.3 | 45 | 27.8 |
4–12 weeks | 2 | 1.2 | 11 | 9.6 | 10 | 6.2 |
>12 weeks | 158 | 96.9 | 83 | 72.2 | 107 | 66 |
Characteristic | Osteomyelitis (n (%)) | Fracture-Related Infection (n (%)) | Prosthetic Joint Infection (n, (%)) | p Value |
---|---|---|---|---|
Organism classification | ||||
Staphylococcus aureus | 102 (62.6) | 60 (52.2) | 76 (46.9) | 0.016 |
Coagulase-negative staphylococcus | 26 (16.0) | 23 (20.0) | 34 (21.0) | 0.479 |
Streptococcus species | 19 (11.7) | 9 (7.8) | 28 (17.3) | 0.058 |
Enterococcus species | 10 (6.1) | 11 (9.6) | 14 (8.6) | 0.046 |
Pseudomonas species | 13 (8.0) | 8 (7) | 8 (4.9) | 0.537 |
Other Gram negatives | 37 (22.7) | 27 (23.5) | 27 (16.7) | 0.282 |
Other Gram positives | 28 (17.2) | 15 (13.0) | 13 (8.0) | 0.537 |
Candida species | 0 | 1 (0.9) | 1 (0.6) | 0.530 |
Gram-positive organisms only | 118 (72.4) | 77 (67.0) | 126 (77.8) | 0.134 |
Gram-negative organisms only | 12 (7.4) | 9 (7.8) | 16 (9.9) | 0.694 |
Polymicrobial infection | 59 (36.2) | 37 (32.2) | 35 (21.6) | 0.013 |
Osteomyelitis (n (%), 95% CI) | Fracture-Related Infection (n (%), 95% CI) | Prosthetic Joint Infection (n, (%), 95% CI) | p Value | |
---|---|---|---|---|
Resistance | ||||
Confirmed gentamicin resistance | 14 (8.6), 4.3–13.5 | 13 (11.3), 6.1–17.4 | 16 (9.9), 5.6–14.8 | 0.754 |
Presumed gentamicin resistance | 2 (17.8), 12.3–24.5 | 25 (21.7), 13.9–29.6 | 20 (12.3), 7.4–17.3 | 0.110 |
Confirmed vancomycin resistance | 4 (2.5), 0.6–4.9 | 3 (2.6), 0–6.1 | 0 | 0.126 |
Presumed vancomycin resistance | 44 (27.0), 20.2–33.7 | 34 (29.6), 21.7–38.3 | 31 (19.1), 13–25.9 | 0.100 |
Confirmed gentamicin and vancomycin resistance | 4 (2.5), 0.6–4.9 | 2 (1.7), 0–4.3 | 0 | 0.150 |
Presumed gentamicin and vancomycin resistance | 18 (11.0), 6.1–16.6 | 13 (11.3), 6.1–17.4 | 17 (10.5), 6.2–15.4 | 0.975 |
Characteristic | Osteomyelitis (n (%)) | Metalwork In Situ (PJI + FRI with Metalwork) | p Value |
---|---|---|---|
Organism Classification | |||
Staphylococcus aureus | 102 (62.6) | 136 (49.1) | 0.006 |
Coagulase-negative staphylococcus | 26 (16.0) | 57 (20.6) | 0.231 |
Streptococcus species | 19 (11.7) | 37 (13.4) | 0.605 |
Enterococcus species | 10 (6.1) | 25 (9.0) | 0.279 |
Pseudomonas species | 13 (8.0) | 16 (5.8) | 0.369 |
Other Gram negatives | 37 (22.7) | 54 (19.5) | 0.423 |
Other Gram positives | 28 (17.2) | 28 (10.1) | 0.537 |
Candida species | 0 | 2 (0.7) | 0.396 * |
Polymicrobial infection | 59 (36.2) | 72 (26.0) | 0.024 |
Confirmed vancomycin + Gentamicin resistance | 4 (2.5) | 2 (0.7) | 0.139 * |
Comparison Site | This Study n = 162 2024, UK | Rupp et al. [27] n = 81 2021, Germany | Triffaut-Fillit et al. [30] n = 567 2019, France |
---|---|---|---|
Staphylococcus aureus | 46.9 | 27.9 | 28.9 |
Coagulase-negative Staphylococci | 21.0 | 23.3 | 28.6 |
Streptococcus spp. | 17.3 | 10.5 | 13.1 |
Gram negatives | 21.6 | 10.5 | Not reported |
Polymicrobial infection | 21.6 | 17.3 | 18.2 |
Combined gentamicin and vancomycin resistance | 10.5 | 9.9 | Not reported |
Comparison Site | This Study n = 115 2024, UK | Patel et al. [26] n = 294 2023, UK | Rupp et al. [27] n = 86 2021, Germany | Depypere et al. [17] n = 191 2022, Belgium |
---|---|---|---|---|
Staphylococcus aureus | 52.2 | 24.4 | 37.4 | 31.4 |
Coagulase-negative Staphylococci | 20 | 14.0 | 16.9 | 25.8 |
Streptococcus spp. | 7.8 | 4.5 | 7.2 | ‘rarely detected’ |
Gram negatives | 30.4 | 39.7 | 10.5 | 27.8 |
Polymicrobial infection | 32.2 | 34.2 | 10.5 | 25.3 |
Combined gentamicin and vancomycin resistance | 11.3 | 5.8 | 6.8 | Not reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unsworth, A.; Young, B.; Scarborough, M.; McNally, M. A Comparison of Causative Pathogens in Bone and Prosthetic Joint Infections: Implications for Antimicrobial Therapy. Antibiotics 2024, 13, 1125. https://doi.org/10.3390/antibiotics13121125
Unsworth A, Young B, Scarborough M, McNally M. A Comparison of Causative Pathogens in Bone and Prosthetic Joint Infections: Implications for Antimicrobial Therapy. Antibiotics. 2024; 13(12):1125. https://doi.org/10.3390/antibiotics13121125
Chicago/Turabian StyleUnsworth, Annalise, Bernadette Young, Matthew Scarborough, and Martin McNally. 2024. "A Comparison of Causative Pathogens in Bone and Prosthetic Joint Infections: Implications for Antimicrobial Therapy" Antibiotics 13, no. 12: 1125. https://doi.org/10.3390/antibiotics13121125
APA StyleUnsworth, A., Young, B., Scarborough, M., & McNally, M. (2024). A Comparison of Causative Pathogens in Bone and Prosthetic Joint Infections: Implications for Antimicrobial Therapy. Antibiotics, 13(12), 1125. https://doi.org/10.3390/antibiotics13121125