Survival Strategies of Staphylococcus aureus: Adaptive Regulation of the Anti-Restriction Gene ardA-H1 Under Stress Conditions
Abstract
:1. Introduction
2. Results
2.1. ArdA-H1 Expression Markedly Increases During Stationary Growth Phase
2.2. Effect of Agr in ardA-H1 Expression
2.3. Acidic Stress Drives ardA-H1 Expression in Strain BMB9393, While Temperature Shifts Show No Notable Effect
2.4. Iron-Depletion Stress Had an Important Positive Impact on ardA-H1 Expression in Strain BMB9393
2.5. Biofilm Growth and Stressed Caused by Vancomycin Also Impacted ardA-H1 Expression
3. Discussion
4. Study Limitation
5. Materials and Methods
5.1. Bacterial Strains
5.2. Expression of ardA-H1 at Exponential and Stationary Phases
5.3. Role of Agr in ardA-H1 Regulation
5.4. Effect of Acidic pH on ardA-H1 Expression
5.5. Role of Iron Deprivation in ardA-H1 Expression
5.6. Bacterial Growth Under Biofilm Condition
5.7. The Effect of Vancomycin on ardA-H1 Expression
5.8. RNA Preparation
5.9. Real Time qRT-PCR
5.10. Statistical Analyses
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.; Zhang, G. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. Environ. Res. 2022, 212, 113267. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Beltrán, J.; DelaFuente, J.; León-Sampedro, R.; MacLean, R.C.; San Millán, Á. Beyond horizontal gene transfer: The role of plasmids in bacterial evolution. Nat. Rev. Microbiol. 2021, 19, 347–359. [Google Scholar] [CrossRef] [PubMed]
- von Wintersdorff, C.J.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.; Wolffs, P.F. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhang, C.; Han, R.; Li, S.; Peng, H.; Zhou, X.; Huang, L.; Xu, Y. Oxytetracycline and heavy metals promote the migration of resistance genes in the intestinal microbiome by plasmid transfer. ISME J. 2023, 17, 2003–2013. [Google Scholar] [CrossRef]
- Su, Z.; Wen, D.; Gu, A.Z.; Zheng, Y.; Tang, Y.; Chen, L. Industrial effluents boosted antibiotic resistome risk in coastal environments. Environ. Int. 2023, 171, 107714. [Google Scholar] [CrossRef]
- Michaelis, C.; Grohmann, E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef]
- Beaber, J.W.; Hochhut, B.; Waldor, M.K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004, 427, 72–74. [Google Scholar] [CrossRef]
- Mohanraj, R.S.; Mandal, J. Azithromycin can induce SOS response and horizontal gene transfer of SXT element in Vibrio cholerae. Mol. Biol. Rep. 2022, 49, 4737–4748. [Google Scholar] [CrossRef]
- Charpentier, X.; Polard, P.; Claverys, J.P. Induction of competence for genetic transformation by antibiotics: Convergent evolution of stress responses in distant bacterial species lacking SOS? Curr. Opin. Microbiol. 2012, 15, 570–576. [Google Scholar] [CrossRef]
- Chen, X.; Yin, H.; Li, G.; Wang, W.; Wong, P.K.; Zhao, H.; An, T. Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression. Water Res. 2019, 149, 282–291. [Google Scholar] [CrossRef]
- Al-Gashgari, B.; Mantilla-Calderon, D.; Wang, T.; de los Angeles Gomez, M.; Baasher, F.; Daffonchio, D.; Laleg-Kirati, T.-M.; Hong, P.-Y. Impact of chemicals and physical stressors on horizontal gene transfer via natural transformation. Nat. Water 2023, 1, 635–648. [Google Scholar] [CrossRef]
- Loenen, W.A.; Dryden, D.T.; Raleigh, E.A.; Wilson, G.G. Type I restriction enzymes and their relatives. Nucleic Acids Res. 2014, 42, 20–44. [Google Scholar] [CrossRef] [PubMed]
- Meselson, M.; Yuan, R.; Heywood, J. Restriction and modification of DNA. Annu. Rev. Biochem. 1972, 41, 447–466. [Google Scholar] [CrossRef]
- Murray, N.E. Type I restriction systems: Sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol. Mol. Biol. Rev. 2000, 64, 412–434. [Google Scholar] [CrossRef]
- Goryanin, I.I.; Kudryavtseva, A.A.; Balabanov, V.P.; Biryukova, V.S.; Manukhov, I.V.; Zavilgelsky, G.B. Anti-restriction activities of KlcA (RP4) and ArdB (R64) proteins. FEMS Microbiol. Lett. 2018, 365, fny227. [Google Scholar] [CrossRef]
- Kudryavtseva, A.A.; Cséfalvay, E.; Gnuchikh, E.Y.; Yanovskaya, D.D.; Skutel, M.A.; Isaev, A.B.; Bazhenov, S.V.; Utkina, A.A.; Manukhov, I.V. Broadness and specificity: ArdB, ArdA, and Ocr against various restriction-modification systems. Front. Microbiol. 2023, 14, 1133144. [Google Scholar] [CrossRef]
- Liang, W.; Xie, Y.; Xiong, W.; Tang, Y.; Li, G.; Jiang, X.; Lu, Y. Anti-restriction protein, KlcAHS, promotes dissemination of carbapenem resistance. Front. Cell. Infect. Microbiol. 2017, 27, 150. [Google Scholar] [CrossRef]
- Zavilgelsky, G.B.; Kotova, V.Y.; Rastorguev, S.M. Comparative analysis of anti-restriction activities of ArdA (ColIb-P9) and Ocr (T7) proteins. Biochemistry 2008, 73, 906–911. [Google Scholar] [CrossRef]
- Silva, D.N.S.; Beltrame, C.O.; Botelho, A.M.N.; Martini, C.L.; Esteves, M.A.C.; Guedes, I.A.; Dardenne, L.E.; Figueiredo, A.M.S. Anti-Restriction gene homologs are highly represented in methicillin-resistant and multidrug-resistant Staphylococcus aureus ST239 and ST398: Implications for resistance gene acquisitions. Antibiotics 2022, 11, 1217. [Google Scholar] [CrossRef]
- Gladysheva-Azgari, M.V.; Sharko, F.S.; Evteeva, M.A.; Kuvyrchenkova, A.P.; Boulygina, E.S.; Tsygankova, S.V.; Slobodova, N.V.; Pustovoit, K.S.; Melkina, O.E.; Nedoluzhko, A.V.; et al. ArdA genes from pKM101 and from B. bifidum chromosome have a different range of regulated genes. Heliyon 2023, 9, e22986. [Google Scholar] [CrossRef]
- Horton, J.S.; Taylor, T.B. Mutation bias and adaptation in bacteria. Microbiology 2023, 169, 001404. [Google Scholar] [CrossRef] [PubMed]
- Sazykin, I.S.; Sazykina, M.A. The role of oxidative stress in genome destabilization and adaptive evolution of bacteria. Gene 2023, 857, 147170. [Google Scholar] [CrossRef] [PubMed]
- Novick, R.P.; Ross, H.F.; Figueiredo, A.M.S.; Abramochkin, G.; Muir, T. Activation and inhibition of the staphylococcal agr system. Science 2000, 287, 391. [Google Scholar] [CrossRef]
- Barraza, I.; Pajon, C.; Diaz-Tang, G.; Marin Meneses, E.; Abu-Rumman, F.; García-Diéguez, L.; Castro, V.; Lopatkin, A.J.; Smith, R.P. Disturbing the spatial organization of biofilm communities affects expression of agr-regulated virulence factors in Staphylococcus aureus. Appl. Environ. Microbiol. 2023, 89, e0193222. [Google Scholar] [CrossRef]
- Ji, G.; Beavis, R.; Novick, R.P. Bacterial interference caused by autoinducing peptide variants. Science 1997, 276, 2027–2030. [Google Scholar] [CrossRef]
- Weinrick, B.; Dunman, P.M.; McAleese, F.; Murphy, E.; Projan, S.J.; Fang, Y.; Novick, R.P. Effect of mild acid on gene expression in Staphylococcus aureus. J. Bacteriol. 2004, 186, 8407–8423. [Google Scholar] [CrossRef]
- Podkowik, M.; Perault, A.I.; Putzel, G.; Pountain, A.; Kim, J.; Dumont, A.; Zwack, E.; Ulrich, R.J.; Karagounis, T.K.; Zhou, C.; et al. Quorum-sensing agr system of Staphylococcus aureus primes gene expression for protection from lethal oxidative stress. eLife 2024, 12, RP89098. [Google Scholar] [CrossRef]
- Rallu, F.; Gruss, A.; Maguin, E. Lactococcus lactis and stress. Antonie Van Leeuwenhoek 1996, 70, 243–251. [Google Scholar] [CrossRef]
- Mandsberg, L.F.; Ciofu, O.; Kirkby, N.; Christiansen, L.E.; Poulsen, H.E.; Høiby, N. Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob. Agents Chemother. 2009, 53, 2483–2491. [Google Scholar] [CrossRef]
- Nandy, P. The role of sigma factor competition in bacterial adaptation under prolonged starvation. Microbiology 2022, 168, 001195. [Google Scholar] [CrossRef]
- Lagage, V.; Chen, V.; Uphoff, S. Adaptation delay causes a burst of mutations in bacteria responding to oxidative stress. EMBO Rep. 2023, 24, e55640. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jaiswal, A.; Costliow, Z.; Herbst, P.; Creasey, E.A.; Oshiro-Rapley, N.; Daly, M.J.; Carey, K.L.; Graham, D.B.; Xavier, R.J. pH sensing controls tissue inflammation by modulating cellular metabolism and endo-lysosomal function of immune cells. Nat. Immunol. 2022, 23, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Cockayne, A.; Morrissey, J.A. Iron-regulated biofilm formation in Staphylococcus aureus Newman requires ica and the secreted protein. Emp. Infect. Immun. 2008, 76, 1756–1765. [Google Scholar] [CrossRef]
- Allard, M.; Moisan, H.; Brouillette, E.; Gervais, A.L.; Jacques, M.; Lacasse, P.; Diarra, M.S.; Malouin, F. Transcriptional modulation of some Staphylococcus aureus iron-regulated genes during growth in vitro and in a tissue cage model in vivo. Microbes Infect. 2006, 8, 1679–1690. [Google Scholar] [CrossRef]
- Johnson, M.; Sengupta, M.; Purves, J.; Tarrant, E.; Williams, P.H.; Cockayne, A.; Muthaiyan, A.; Stephenson, R.; Ledala, N.; Wilkinson, B.J.; et al. Fur is required for the activation of virulence gene expression through the induction of the sae regulatory system in Staphylococcus aureus. Int. J. Med. Microbiol. 2011, 301, 44–52. [Google Scholar] [CrossRef]
- Ghssein, G.; Ezzeddine, Z. The key element role of metallophores in the pathogenicity and virulence of Staphylococcus aureus: A review. Biology 2022, 11, 1525. [Google Scholar] [CrossRef]
- Gupta, P.; Sarkar, S.; Das, B.; Bhattacharjee, S.; Tribedi, P. Biofilm, pathogenesis and prevention—A journey to break the wall: A review. Arch. Microbiol. 2016, 198, 1–15. [Google Scholar] [CrossRef]
- Coelho, L.R.; Souza, R.R.; Ferreira, F.A.; Guimarães, M.A.; Ferreira-Carvalho, B.T.; Figueiredo, A.M.S. agr RNAIII divergently regulates glucose-induced biofilm formation in clinical isolates of Staphylococcus aureus. Microbiology 2008, 154, 3480–3490. [Google Scholar] [CrossRef]
- Maree, M.; Thi Nguyen, L.T.; Ohniwa, R.L.; Higashide, M.; Msadek, T.; Morikawa, K. Natural transformation allows transfer of SCCmec-mediated methicillin resistance in Staphylococcus aureus biofilms. Nat. Commun. 2022, 13, 2477. [Google Scholar] [CrossRef]
- Brothers, K.M.; Parker, D.M.; Taguchi, M.; Ma, D.; Mandell, J.B.; Thurlow, L.L.; Byrapogu, V.C.; Urish, K.L. Dose optimization in surgical prophylaxis: Sub-inhibitory dosing of vancomycin increases rates of biofilm formation and the rates of surgical site infection. Sci. Rep. 2023, 13, 4593. [Google Scholar] [CrossRef]
- Sakoulas, G.; Eliopoulos, G.M.; Fowler, V.G., Jr.; Moellering, R.C., Jr.; Novick, R.P.; Lucindo, N.; Yeaman, M.R.; Bayer, A.S. Reduced susceptibility of Staphylococcus aureus to vancomycin and platelet microbicidal protein correlates with defective autolysis and loss of accessory gene regulator (agr) function. Antimicrob. Agents Chemother. 2005, 49, 2687–2692. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.O.; Beltrame, C.O.; Ferreira, F.A.; Botelho, A.M.; Lima, N.C.; Souza, R.C.; de Almeida, L.G.; Vasconcelos, A.T.; Nicolás, M.F.; Figueiredo, A.M. Complete genome sequence of a variant of the methicillin-resistant Staphylococcus aureus ST239 lineage, strain BMB9393, displaying superior ability to accumulate ica-independent biofilm. Genome Announc. 2013, 1, e00576-13. [Google Scholar] [CrossRef] [PubMed]
- Botelho, A.M.N.; Costa, M.O.C.; Beltrame, C.O.; Ferreira, F.A.; Côrtes, M.F.; Bandeira, P.T.; Lima, N.C.B.; Souza, R.C.; Almeida, L.G.P.; Vasconcelos, A.T.R.; et al. genome sequence of an agr-dysfunctional variant of the ST239 lineage of the methicillin-resistant Staphylococcus aureus strain GV69 from Brazil. Stand. Genom. Sci. 2016, 11, 34. [Google Scholar] [CrossRef]
- Rode, T.M.; Møretrø, T.; Langsrud, S.; Langsrud, O.; Vogt, G.; Holck, A. Responses of Staphylococcus aureus exposed to HCl and organic acid stress. Can. J. Microbiol. 2010, 56, 777–792. [Google Scholar] [CrossRef]
- Mesquita-Rodrigues, C.; Menna-Barreto, R.F.; Sabóia-Vahia, L.; Da-Silva, S.A.; de Souza, E.M.; Waghabi, M.C.; Cuervo, P.; De Jesus, J.B. Cellular growth and mitochondrial ultrastructure of leishmania (Viannia) braziliensis promastigotes are affected by the iron chelator 2,2-dipyridyl. PLoS Negl. Trop. Dis. 2013, 7, e2481. [Google Scholar] [CrossRef]
- Ferreira, F.A.; Souza, R.R.; Bonelli, R.R.; Américo, M.A.; Fracalanzza, S.E.; Figueiredo, A.M. Comparison of in vitro and in vivo systems to study ica-independent Staphylococcus aureus biofilms. J. Microbiol. Methods 2012, 88, 393–398. [Google Scholar] [CrossRef]
- Novais, J.S.; Carvalho, M.F.; Ramundo, M.S.; Beltrame, C.O.; Geraldo, R.B.; Jordão, A.K.; Ferreira, V.F.; Castro, H.C.; Figueiredo, A.M.S. Antibiofilm effects of N,O-acetals derived from 2-amino-1,4-naphthoquinone are associated with downregulation of important global virulence regulators in methicillin-resistant Staphylococcus aureus. Sci. Rep. 2020, 10, 19631. [Google Scholar] [CrossRef]
- Beltrame, C.O.; Côrtes, M.F.; Bandeira, P.T.; Figueiredo, A.M. Optimization of the RNeasy Mini Kit to obtain high-quality total RNA from sessile cells of Staphylococcus aureus. Braz. J. Med. Biol. Res. 2015, 48, 1071–1076. [Google Scholar] [CrossRef]
- Oliveira, D.C.; de Lencastre, H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 2155–2161. [Google Scholar] [CrossRef]
- Novick, R.P.; Ross, H.F.; Projan, S.J.; Kornblum, J.; Kreiswirth, B.; Moghazeh, S. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 1993, 12, 3967–3975. [Google Scholar] [CrossRef]
- Dienes, Z. Using Bayes to get the most out of non-significant results. Front. Psychol. 2014, 45, 781. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Andrade, F.C.C.; Carvalho, M.F.; Figueiredo, A.M.S. Survival Strategies of Staphylococcus aureus: Adaptive Regulation of the Anti-Restriction Gene ardA-H1 Under Stress Conditions. Antibiotics 2024, 13, 1131. https://doi.org/10.3390/antibiotics13121131
de Andrade FCC, Carvalho MF, Figueiredo AMS. Survival Strategies of Staphylococcus aureus: Adaptive Regulation of the Anti-Restriction Gene ardA-H1 Under Stress Conditions. Antibiotics. 2024; 13(12):1131. https://doi.org/10.3390/antibiotics13121131
Chicago/Turabian Stylede Andrade, Flavia Costa Carvalho, Mariana Fernandes Carvalho, and Agnes Marie Sá Figueiredo. 2024. "Survival Strategies of Staphylococcus aureus: Adaptive Regulation of the Anti-Restriction Gene ardA-H1 Under Stress Conditions" Antibiotics 13, no. 12: 1131. https://doi.org/10.3390/antibiotics13121131
APA Stylede Andrade, F. C. C., Carvalho, M. F., & Figueiredo, A. M. S. (2024). Survival Strategies of Staphylococcus aureus: Adaptive Regulation of the Anti-Restriction Gene ardA-H1 Under Stress Conditions. Antibiotics, 13(12), 1131. https://doi.org/10.3390/antibiotics13121131