Inhibition of Candida albicans Biofilm Formation and Attenuation of Its Virulence by Liriope muscari
Abstract
:1. Introduction
2. Results
2.1. Anti-biofilm effect of L. muscari
2.2. L. muscari Extract Increased the Susceptibility of Commercial Antibiotics to C. albicans
2.3. Inhibitory Activity of L. muscari on C. albicans Dimorphic Transition from Yeast to Hyphae
2.4. Suppression of the Gene Expression Related to Biofilm Formation Regulatory Proteins after L. muscari Treatment
2.5. L. muscari Had No Effect on Sum of Fungal Growth
3. Discussion
4. Materials and Methods
4.1. Strains
4.2. Sample Preparation
4.3. Inhibition of Biofilm Formation
4.4. Combined Antifungal Effect of L. muscari Extract and Antifungal Agent
4.5. Morphological Transition Using RPMI 1640 and 10% FBS YPD Liquid Medium
4.6. Quantitative RT-PCR Analysis
4.7. C. albicans Growth Test
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atriwal, T.; Chawla, M.; Hussain, A.; Alajmi, M.F.; Abid, M. Reactive oxygen mediated apoptosis as a therapeutic approach against opportunistic Candida albicans. Adv. Protein Chem. Struct. Biol. 2021, 155, 25–49. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef] [PubMed]
- Chandra, J.; Kuhn, D.M.; Mukherjee, P.K.; Hoyer, L.L.; McCormick, T.; Ghannoum, M.A. Biofilm formation by the fungal pathogen Candida albicans: Development, architecture, and drug resistance. J. Bacteriol. 2001, 183, 5385–5394. [Google Scholar] [CrossRef] [PubMed]
- Benedict, K.; Jackson, B.R.; Chiller, T.; Beer, K.D. Estimation of direct healthcare costs of fungal diseases in the United States. Clin. Infect. Dis. 2019, 68, 1791–1797. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.; Allan, R.N.; Howlin, R.P.; Stoodley, P.; Hall-Stoodley, L. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017, 15, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Woappi, Y.; Gabani, P.; Singh, A.; Singh, O.V. Antibiotrophs: The complexity of antibiotic-subsisting and antibiotic-resistant microorganisms. Crit. Rev. Microbiol. 2016, 42, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Costa-Orlandi, C.B.; Sardi, J.C.O.; Pitangui, N.S.; de Oliveira, H.C.; Scorzoni, L.; Galeane, M.C.; Medina-Alarcón, K.P.; Melo, W.C.M.A.; Marcelino, M.Y.; Braz, J.D.; et al. Fungal Biofilms and Polymicrobial Diseases. J. Fungi 2017, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Fanning, S.; Mitchell, A.P. Fungal biofilms. PLoS Pathog. 2012, 8, e1002585. [Google Scholar] [CrossRef] [PubMed]
- Mowat, E.; Butcher, J.; Lang, S.; Williams, C.; Ramage, G. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J. Med. Microbiol. 2007, 56, 1205–1212. [Google Scholar] [CrossRef]
- Blankenship, J.R.; Mitchell, A.P. How to build a biofilm: A fungal perspective. Curr. Opin. Microbiol. 2006, 9, 588–594. [Google Scholar] [CrossRef]
- Finkel, J.S.; Mitchell, A.P. Genetic control of Candida albicans biofilm development. Nat. Rev. Microbiol. 2011, 9, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ribot, J.L. Candida albicans biofilms: More than filamentation. Curr. Biol. 2005, 15, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Tobudic, S.; Kratzer, C.; Lassnigg, A.; Presterl, E. Antifungal susceptibility of Candida albicans in biofilms. Mycoses 2012, 55, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Inigo, M.; Peman, J.; Del, P.J. Antifungal activity against Candida biofilms. Int. J. Artif. Organs. 2012, 35, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Kim, J.; Kim, K.Y. Anti-Candida Potential of Sclareol in Inhibiting Growth, Biofilm Formation, and Yeast–Hyphal Transition. J. Fungi 2023, 9, 98. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.W.; Sahl, H.-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006, 24, 1551–1557. [Google Scholar] [CrossRef]
- Fox, J.L. Antimicrobial peptides stage a comeback. Nat. Biotechnol. 2013, 31, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Nuijens, J.H.; van Berkel, P.H.; Schanbacher, F.L. Structure and biological actions of lactoferrin. J. Mammary Gland. Biol. Neoplasia 1996, 1, 285–295. [Google Scholar] [CrossRef]
- Harvey, A.L. Natural products in drug discovery. Drug Discov. Today 2008, 13, 894–901. [Google Scholar] [CrossRef]
- Shang, Z.P.; Wang, F.; Zhang, J.Y.; Wang, Z.J.; Lu, J.Q.; Wang, H.Y.; Li, N. The genus Liriope: Phytochemistry and pharmacology. Chin. J. Nat. Med. 2017, 15, 801–815. [Google Scholar] [CrossRef]
- Li, W.J.; Cheng, X.L.; Liu, J.; Lin, R.C.; Wang, G.L.; Du, S.S.; Liu, Z.L. Phenolic compounds and antioxidant activities of Liriope muscari. Molecules 2012, 17, 1797–1808. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Ma, S.; Lin, B.; Kou, J.; Yu, B. Anti-thrombotic activity of DT-13, a saponin isolated from the root tuber of Liripo muscrai. India J. Pharmacol. 2013, 45, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Kou, J.; Yu, B. Safety evaluation of steroidal saponin DT-13 isolated from the tuber of Liriope muscari (Decne.) Baily. Food Chem. Toxicol. 2011, 49, 2243–2251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Liu, J.H.; Kou, J.P.; Yu, J.; Yu, B.Y. DT-13, a steroidal saponin from Liriope muscari LH Bailey, suppresses A549 cells adhesion and invasion by inhibiting MMP-2/9. Chin. J. Nat. Med. 2012, 10, 436–440. [Google Scholar] [CrossRef]
- Biswas, S.; Van Dijck, P.; Datta, A. Environmental Sensing and Signal Transduction Pathways Regulating Morphopathogenic Determinants of Candida albicans. Microbiol. Mol. Biol. Rev. 2007, 71, 348–376. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, A.K.; Bhan, A.; Jangid, P.; Patil, R.; Gade, W.; Karuppayil, S.M. Modulation of Genes Involved in Yeast to Hyphal form Signal Transduction in Candida albicans by Indole and Isatin. Curr. Signal Transduct. Ther. 2017, 12, 116–123. [Google Scholar] [CrossRef]
- Sun, L.; Liao, K.; Wang, D. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLoS ONE 2015, 10, e0117695. [Google Scholar] [CrossRef]
- Wu, J.; Wu, D.; Zhao, Y.; Si, Y.; Mei, L.; Shao, J.; Wang, C. Sodium new houttuyfonate inhibits Candida albicans biofilm formation by inhibiting the Ras1-cAMP-Efg1 pathway revealed by RNA-seq. Front. Microbiol. 2020, 11, 2075. [Google Scholar] [CrossRef]
- Douglas, L.J. Candida biofilms and their role in infection. Trends Microbiol. 2003, 11, 30–36. [Google Scholar] [CrossRef]
- Hasan, F.; Xess, I.; Wang, X.; Jain, N.; Fries, B.C. Biofilm formation in clinical Candida isolates and its association with virulence. Microbes Infect. 2009, 11, 753–761. [Google Scholar] [CrossRef]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef] [PubMed]
- Viudes, A.; Peman, J.; Canton, E.; Ubeda, P.; Lopez-Ribot, J.L.; Gobernado, M. Candidemia at a tertiary-care hospital: Epidemiology, treatment, clinical outcome and risk factors for death. Eur. J. Clin. Microbiol. Infect. Dis. 2002, 21, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Ellington, M.J. The emergence of antibiotic resistance by mutation. Clin. Microbiol. Infect. 2007, 13, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Ramage, G.; VandeWalle, K.; Lopez-Ribot, J.L.; Wickes, B.L. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol. Lett. 2002, 214, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Leberer, E.; Harcus, D.; Dignard, D.; Johnson, L.; Ushinsky, S.; Thomas, D.Y. Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol. Microbiol. 2001, 42, 673–687. [Google Scholar] [CrossRef] [PubMed]
- Tronchin, G.; Pihet, M.; Lopes-Bezerra, L.M.; Bouchara, J.-P. Adherence mechanisms in human pathogenic fungi. Med. Mycol. 2008, 46, 749–772. [Google Scholar] [CrossRef] [PubMed]
- Staab, J.F.; Bradway, S.D.; Fidel, P.L.; Sundstrom, P. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 1999, 283, 1535–1538. [Google Scholar] [CrossRef]
- Nobile, C.J.; Nett, J.E.; Andes, D.R.; Mitchell, A.P. Function of Candida albicans adhesin hwp1 in biofilm formation. Eukaryot. Cell 2006, 5, 1604–1610. [Google Scholar] [CrossRef] [PubMed]
- Hogan, D.A.; Sundstrom, P. The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future Microbiol. 2009, 4, 1263–1270. [Google Scholar] [CrossRef]
- Lane, S.; Zhou, S.; Pan, T.; Dai, Q.; Liu, H. The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1. Mol. Cell. Biol. 2001, 21, 6418–6428. [Google Scholar] [CrossRef]
- Al Fattani, M.A.; Douglas, L.J. Biofilm matrix of Candida albicans and Candida tropicalis: Chemical composition and role in drug resistance. J. Med. Microbiol. 2006, 55, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Taff, H.T.; Nett, J.E.; Zarnowski, R.; Ross, K.M.; Sanchez, H.; Cain, M.T. A Candida Biofilm-Induced Pathway for Matrix Glucan Delivery: Implications for Drug Resistance. PLoS Pathog. 2012, 8, e1002848. [Google Scholar] [CrossRef] [PubMed]
- Nobile, C.J.; Nett, J.E.; Hernday, A.D.; Homann, O.R.; Deneault, J.S.; Nantel, A. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol. 2009, 7, e1000133. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Kil, M.; Jung, J.H.; Kim, J. Roles of zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic yeast Candida albicans. J. Microbiol. Biotechnol. 2008, 18, 242–247. [Google Scholar] [PubMed]
- Wang, Z. Antioxidant Activities of Extracts from Ophiopogon japonicus. Food Ferment Ind. 2007, 33, 57. [Google Scholar]
- Li, Y.W.; Qi, J.; Zhang, Y.Y.; Huang, Z.; Kou, J.P.; Zhou, S.P.; Yu, B.Y. Novel cytotoxic steroidal glycosides from the roots of Liriope muscari. Chin. J. Nat. Med. 2015, 13, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.P. Candida albicans: A major fungal pathogen of humans. Pathogens 2022, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- Hazen, K.C. Influence of DMSO on antifungal activity during susceptibility testing in vitro. Diagn. Microbiol. Infect. Dis. 2013, 75, 60–63. [Google Scholar] [CrossRef]
- Dhale, R.P.; Ghorpade, M.V.; Dharmadhikari, C.A. Comparison of various methods used to detect biofilm production of Candida species. J. Clin. Diagn. Res. 2014, 8, DC18–DC20. [Google Scholar] [CrossRef]
- Kim, D.; Kim, K.Y. Adenophora triphylla var. japonica inhibits Candida biofilm formation, increases susceptibility to antifungal agents and reduces infection. Int. J. Mol. Sci. 2021, 22, 12523. [Google Scholar] [CrossRef]
- Toenjes, K.A.; Munsee, S.M.; Ibrahim, A.S.; Jeffrey, R.; Edwards, J.J. Small-molecule inhibitors of the budded-to-hyphal-form transition in the pathogenic yeast Candida albicans. Antimicrob. Agents Chemother. 2005, 49, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, K.Y. Hedera rhombea inhibits the biofilm formation of Candida, thereby increases the susceptibility to antifungal agent, and reduces infection. PLoS ONE 2021, 16, e0258108. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Bao, T.H.Q.; Shin, Y.K.; Kim, K.Y. Antifungal activity of magnoflorine against Candida strains. World J. Microbiol. Biotechnol. 2018, 34, 167. [Google Scholar] [CrossRef]
Primers | Primer Sequence | Gene Function |
---|---|---|
ACT 1 | F: TAGGTTTGGAAGCTGCTGG R: CCTGGGAACATGGTAGTAC | Control |
ALS 3 | F: GGTTATCGTCCATTTGTTG R: TTCTGTATCCAGTCCATCT | Hyphal-specific genes |
CYR 1 | F: GTTTCCCCCACCACTCA R: TTGCGGTAATGACACAACAG | Ras-cAMP-Efg1 pathway |
ECE 1 | F: ACAGTTTCCAGGACGCCAT R: ATTGTTGCTCGTGTTGCCA | Hyphal-specific genes |
EFG 1 | F: TTGAGATGTTGCGGCAGGAT R: ACTGGACAGACAGCAGGAC | Ras-cAMP-Efg1 pathway |
GSC 1 | F: CCCATTCTCTAGGCACGA R: ATCAACAACCACTTGCTTCG | Extracellular matrix |
HST 7 | F: GCCAGTATGGTCGGAGGAT R: ACATAGGCATCGTCTTCGTC | MAP kinases pathway |
HWP 1 | F: ACAGGTAGACGGTCAAGG R: GGGTAATCATCACATGGTTC | Ras-cAMP-Efg1 pathway |
RAS 1 | F: GAGGTGGTGGTGTTGGTA R: TCTTCTTGTCCAGCAGTATC | Cph2-Tec1 pathway |
TEC 1 | F: GCACTGGCTTCAAGCTCAAA R: GCTGCTGCACTCAAGTTCTG | Extracellular matrix |
ZAP 1 | F: ATCTGTCCAGTGTTGTTTGTA R: AGGTCTCTTTGAAAGTTGTG | Extracellular matrix |
ADH 5 | F: ACCTGCAAGGGCTCATTCTG R: CGGCTCTCAACTTCTCCATA | Extracellular matrix |
CSH 1 | F: CGTGAGGACGAGAGAGAAT R: CGAATGGACGACACAAAACA | Extracellular matrix |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Song, H.; Kim, K. Inhibition of Candida albicans Biofilm Formation and Attenuation of Its Virulence by Liriope muscari. Antibiotics 2024, 13, 434. https://doi.org/10.3390/antibiotics13050434
Lee J, Song H, Kim K. Inhibition of Candida albicans Biofilm Formation and Attenuation of Its Virulence by Liriope muscari. Antibiotics. 2024; 13(5):434. https://doi.org/10.3390/antibiotics13050434
Chicago/Turabian StyleLee, Jeonghoon, Hyunchan Song, and Kiyoung Kim. 2024. "Inhibition of Candida albicans Biofilm Formation and Attenuation of Its Virulence by Liriope muscari" Antibiotics 13, no. 5: 434. https://doi.org/10.3390/antibiotics13050434
APA StyleLee, J., Song, H., & Kim, K. (2024). Inhibition of Candida albicans Biofilm Formation and Attenuation of Its Virulence by Liriope muscari. Antibiotics, 13(5), 434. https://doi.org/10.3390/antibiotics13050434