A Comparison of Currently Available and Investigational Fecal Microbiota Transplant Products for Recurrent Clostridioides difficile Infection
Abstract
:1. Introduction
2. The Human Gut Microbiome and CDI
3. History of Fecal Microbiota Transplant in Clinical Practice
4. Live Biotherapeutic Products
4.1. Rebyota (RBX 2660)
4.2. Vowst (SER-109)
4.3. VE303
4.4. RBX7455
4.5. CP101
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
References
- Burke, K.E.; Lamont, J.T. Clostridium difficile Infection: A Worldwide Disease. Gut Liver 2014, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Guh, A.Y.; Mu, Y.; Winston, L.G.; Johnston, H.; Olson, D.; Farley, M.M.; Wilson, L.E.; Holzbauer, S.M.; Phipps, E.C.; Dumyati, G.K.; et al. Trends in US Burden of Clostridioides difficile Infection and Outcomes. N. Engl. J. Med. 2020, 382, 1320–1330. [Google Scholar] [CrossRef] [PubMed]
- Nanwa, N.; Kendzerska, T.; Krahn, M.; Kwong, J.C.; Daneman, N.; Witteman, W.; Mittmann, N.; Cadarette, S.M.; Rosella, L.; Sander, B. The Economic Impact of Clostridium difficile Infection: A Systematic Review. Am. J. Gastroenterol. 2015, 110, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Abad, C.L.R.; Safdar, N. A Review of Clostridioides difficile Infection and Antibiotic-Associated Diarrhea. Gastroenterol. Clin. N. Am. 2021, 50, 323–340. [Google Scholar] [CrossRef] [PubMed]
- Leffler, D.A.; Lamont, J.T. Clostridium difficile Infection. N. Engl. J. Med. 2015, 372, 1539–1548. [Google Scholar] [CrossRef]
- Bouza, E. Consequences of Clostridium difficile infection: Understanding the healthcare burden. Clin. Microbiol. Infect. 2012, 18, 5–12. [Google Scholar] [CrossRef]
- Fu, Y.; Luo, Y.; Grinspan, A.M. Epidemiology of community-acquired and recurrent Clostridioides difficile infection. Ther. Adv. Gastroenterol. 2021, 14, 17562848211016248. [Google Scholar] [CrossRef]
- Johnson, S.; Lavergne, V.; Skinner, A.M.; Gonzales-Luna, A.J.; Garey, K.W.; Kelly, C.P.; Wilcox, M.H. Clinical Practice Guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 Focused Update Guidelines on Management of Clostridioides difficile Infection in Adults. Clin. Infect. Dis. 2021, 73, e1029–e1044. [Google Scholar] [CrossRef]
- Song, J.H.; Kim, Y.S. Recurrent Clostridium difficile Infection: Risk Factors, Treatment, and Prevention. Gut Liver 2019, 13, 16–24. [Google Scholar] [CrossRef]
- Kelly, C. Can we identify patients at high risk of recurrent Clostridium difficile infection? Clin. Microbiol. Infect. 2012, 18, 21–27. [Google Scholar] [CrossRef]
- Louie, T.J.; Miller, M.A.; Mullane, K.M.; Weiss, K.; Lentnek, A.; Golan, Y.; Gorbach, S.; Sears, P.; Shue, Y.-K. Fidaxomicin versus Vancomycin for Clostridium difficile Infection. N. Engl. J. Med. 2011, 364, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.X.; Appaneal, H.J.; Vicent, M.L.; Vyas, A.; LaPlante, K.L. Path of least recurrence: A systematic review and meta-analysis of fidaxomicin versus vancomycin for Clostridioides difficile infection. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2022, 42, 810–827. [Google Scholar] [CrossRef] [PubMed]
- Peery, A.F.; Kelly, C.R.; Kao, D.; Vaughn, B.P.; Lebwohl, B.; Singh, S.; Imdad, A.; Altayar, O. AGA Clinical Practice Guideline on Fecal Microbiota–Based Therapies for Select Gastrointestinal Diseases. Gastroenterology 2024, 166, 409–434. [Google Scholar] [CrossRef] [PubMed]
- Mullish, B.H.; Quraishi, M.N.; Segal, J.P.; McCune, V.L.; Baxter, M.; Marsden, G.L.; Moore, D.J.; Colville, A.; Bhala, N.; Iqbal, T.H.; et al. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridium difficile infection and other potential indications: Joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut 2018, 67, 1920–1941. [Google Scholar] [CrossRef] [PubMed]
- Iizumi, T.; Battaglia, T.; Ruiz, V.; Perez Perez, G.I. Gut Microbiome and Antibiotics. Arch. Med. Res. 2017, 48, 727–734. [Google Scholar] [CrossRef]
- Bernet, M.F.; Brassart, D.; Neeser, J.R.; Servin, A.L. Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 1994, 35, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.H.; Perini, F. Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Infect. Immun. 1988, 56, 2610–2614. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F.; Nombela, C. The microbiome as a human organ. Clin. Microbiol. Infect. 2012, 18, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, M.; Macfarlane, G. Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J. Med. Microbiol. 2002, 51, 448–454. [Google Scholar] [CrossRef]
- Skraban, J.; Dzeroski, S.; Zenko, B.; Mongus, D.; Gangl, S.; Rupnik, M. Gut Microbiota Patterns Associated with Colonization of Different Clostridium difficile Ribotypes. PLoS ONE 2013, 8, e58005. [Google Scholar] [CrossRef]
- Chang, J.Y.; Antonopoulos, D.A.; Kalra, A.; Tonelli, A.; Khalife, W.T.; Schmidt, T.M.; Young, V.B. Decreased Diversity of the Fecal Microbiome in Recurrent Clostridium difficile Associated Diarrhea. J. Infect. Dis. 2008, 197, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Baunwall, S.M.D.; Lee, M.M.; Eriksen, M.K.; Mullish, B.H.; Marchesi, J.R.; Dahlerup, J.F.; Hvas, C.L. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: An updated systematic review and meta-analysis. eClinicalMedicine 2020, 29–30, 100642. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jia, H.; Cai, X.; Zhong, H.; Feng, Q.; Sunagawa, S.; Arumugam, M.; Kultima, J.R.; Prifti, E.; Nielsen, T.; et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 2014, 32, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Hugon, P.; Dufour, J.-C.; Colson, P.; Fournier, P.-E.; Sallah, K.; Raoult, D. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect. Dis. 2015, 15, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Avalos, J.A.; Arrevillaga-Boni, G.; González-López, L.; García-Carvajal, Z.Y.; González-Avila, M. Classical methods and perspectives for manipulating the human gut microbial ecosystem. Crit. Rev. Food Sci. Nutr. 2021, 61, 234–258. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Antharam, V.C.; Li, E.C.; Ishmael, A.; Sharma, A.; Mai, V.; Rand, K.H.; Wang, G.P. Intestinal Dysbiosis and Depletion of Butyrogenic Bacteria in Clostridium difficile Infection and Nosocomial Diarrhea. J. Clin. Microbiol. 2013, 51, 2884–2892. [Google Scholar] [CrossRef] [PubMed]
- Tudela, H.; Claus, S.P.; Saleh, M. Next Generation Microbiome Research: Identification of Keystone Species in the Metabolic Regulation of Host-Gut Microbiota Interplay. Front. Cell Dev. Biol. 2021, 9, 719072. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef]
- Trosvik, P.; de Muinck, E.J. Ecology of bacteria in the human gastrointestinal tract—Identification of keystone and foundation taxa. Microbiome 2015, 3, 44. [Google Scholar] [CrossRef]
- Herrera, G.; Vega, L.; Patarroyo, M.A.; Ramírez, J.D.; Muñoz, M. Gut microbiota composition in health-care facility-and community-onset diarrheic patients with Clostridioides difficile infection. Sci. Rep. 2021, 11, 10849. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Varela, L.; Hernández-Barranco, A.M.; Ruas-Madiedo, P.; Gueimonde, M. Effect of Bifidobacterium upon Clostridium difficile Growth and Toxicity When Co-cultured in Different Prebiotic Substrates. Front. Microbiol. 2016, 7, 738. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Yang, S.; Zhang, Y.; Qian, K.; Zhang, Z.; Liu, Y.; Wang, Y.; Bai, Y.; Fan, H.; Zhao, X.; et al. Bacteroides fragilis Prevents Clostridium difficile Infection in a Mouse Model by Restoring Gut Barrier and Microbiome Regulation. Front. Microbiol. 2018, 9, 2976. [Google Scholar] [CrossRef] [PubMed]
- Hoces, D.; Greter, G.; Arnoldini, M.; Stäubli, M.L.; Moresi, C.; Sintsova, A.; Berent, S.; Kolinko, I.; Bansept, F.; Woller, A.; et al. Fitness advantage of Bacteroides thetaiotaomicron capsular polysaccharide in the mouse gut depends on the resident microbiota. eLife 2023, 12, e81212. [Google Scholar] [CrossRef] [PubMed]
- Gurwith, M.J.; Rabin, H.R.; Love, K. Cooperative Antibiotic Diarrhea Study Group Diarrhea Associated with Clindamycin and Ampicillin Therapy: Preliminary Results of a Cooperative Study. J. Infect. Dis. 1977, 135, S104–S110. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A.; Pasupuleti, V.; Thota, P.; Pant, C.; Rolston, D.D.K.; Sferra, T.J.; Hernandez, A.V.; Donskey, C.J. Community-associated Clostridium difficile infection and antibiotics: A meta-analysis. J. Antimicrob. Chemother. 2013, 68, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.A.; Khanafer, N.; Daneman, N.; Fisman, D.N. Meta-Analysis of Antibiotics and the Risk of Community-Associated Clostridium difficile Infection. Antimicrob. Agents Chemother. 2013, 57, 2326–2332. [Google Scholar] [CrossRef] [PubMed]
- Jernberg, C.; Löfmark, S.; Edlund, C.; Jansson, J.K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007, 1, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Daquigan, N.; Seekatz, A.M.; Greathouse, K.L.; Young, V.B.; White, J.R. High-resolution profiling of the gut microbiome reveals the extent of Clostridium difficile burden. Npj Biofilms Microbiomes 2017, 3, 35. [Google Scholar] [CrossRef]
- Schubert, A.M.; Rogers, M.A.M.; Ring, C.; Mogle, J.; Petrosino, J.P.; Young, V.B.; Aronoff, D.M.; Schloss, P.D. Microbiome Data Distinguish Patients with Clostridium difficile Infection and Non-C. difficile-Associated Diarrhea from Healthy Controls. mBio 2014, 5, e01021-14. [Google Scholar] [CrossRef]
- Carman, R.J.; Simon, M.A.; Petzold, H.E.; Wimmer, R.F.; Batra, M.R.; Fernández, A.H.; Miller, M.A.; Bartholomew, M. Antibiotics in the human food chain: Establishing no effect levels of tetracycline, neomycin, and erythromycin using a chemostat model of the human colonic microflora. Regul. Toxicol. Pharmacol. 2005, 43, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Giel, J.L.; Sorg, J.A.; Sonenshein, A.L.; Zhu, J. Metabolism of Bile Salts in Mice Influences Spore Germination in Clostridium difficile. PLoS ONE 2010, 5, e8740. [Google Scholar] [CrossRef] [PubMed]
- Kuno, T.; Hirayama-Kurogi, M.; Ito, S.; Ohtsuki, S. Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Sci. Rep. 2018, 8, 1253. [Google Scholar] [CrossRef] [PubMed]
- Thanissery, R.; Winston, J.A.; Theriot, C.M. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 2017, 45, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Winston, J.A.; Theriot, C.M. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe 2016, 41, 44–50. [Google Scholar] [CrossRef]
- Allegretti, J.R.; Kearney, S.; Li, N.; Bogart, E.; Bullock, K.; Gerber, G.K.; Bry, L.; Clish, C.B.; Alm, E.; Korzenik, J.R. Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles. Aliment. Pharmacol. Ther. 2016, 43, 1142–1153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Luo, W.; Shi, Y.; Fan, Z.; Ji, G. Should We Standardize the 1,700-Year-Old Fecal Microbiota Transplantation? Am. J. Gastroenterol. 2012, 107, 1755. [Google Scholar] [CrossRef] [PubMed]
- Eiseman, B.; Silen, W.; Bascom, G.S.; Kauvar, A.J. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 1958, 44, 854–859. [Google Scholar] [PubMed]
- George, R.H.; Symonds, J.M.; Dimock, F.; Brown, J.D.; Arabi, Y.; Shinagawa, N.; Keighley, M.R.; Alexander-Williams, J.; Burdon, D.W. Identification of Clostridium difficile as a cause of pseudomembranous colitis. BMJ 1978, 1, 695. [Google Scholar] [CrossRef]
- Ser, H.-L.; Letchumanan, V.; Goh, B.-H.; Wong, S.H.; Lee, L.-H. The Use of Fecal Microbiome Transplant in Treating Human Diseases: Too Early for Poop? Front. Microbiol. 2021, 12, 519836. [Google Scholar] [CrossRef]
- Brandt, L.J. American Journal of Gastroenterology Lecture: Intestinal Microbiota and the Role of Fecal Microbiota Transplant (FMT) in Treatment of C. difficile Infection. Am. J. Gastroenterol. 2013, 108, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Khoruts, A.; Dicksved, J.; Jansson, J.K.; Sadowsky, M.J. Changes in the Composition of the Human Fecal Microbiome After Bacteriotherapy for Recurrent Clostridium difficile-associated Diarrhea. J. Clin. Gastroenterol. 2010, 44, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Grehan, M.J.; Borody, T.J.; Leis, S.M.; Campbell, J.; Mitchell, H.; Wettstein, A. Durable Alteration of the Colonic Microbiota by the Administration of Donor Fecal Flora. J. Clin. Gastroenterol. 2010, 44, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.J.; Weingarden, A.R.; Unno, T.; Khoruts, A.; Sadowsky, M.J. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes 2013, 4, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, S.M.; Hansen, M.M.; Erikstrup, C.; Dahlerup, J.F.; Hvas, C.L. Faecal microbiota transplantation: Establishment of a clinical application framework. Eur. J. Gastroenterol. Hepatol. 2017, 29, e36–e45. [Google Scholar] [CrossRef] [PubMed]
- Terveer, E.; van Beurden, Y.; Goorhuis, A.; Seegers, J.; Bauer, M.; van Nood, E.; Dijkgraaf, M.; Mulder, C.; Vandenbroucke-Grauls, C.; Verspaget, H.; et al. How to: Establish and run a stool bank. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2017, 23, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, G.; Ianiro, G.; Tilg, H.; Rajilić-Stojanović, M.; Kump, P.; Satokari, R.; Sokol, H.; Arkkila, P.; Pintus, C.; Hart, A.; et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut 2017, 66, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Bakken, J.S.; Borody, T.; Brandt, L.J.; Brill, J.V.; Demarco, D.C.; Franzos, M.A.; Kelly, C.; Khoruts, A.; Louie, T.; Martinelli, L.P.; et al. Treating Clostridium difficile Infection With Fecal Microbiota Transplantation. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2011, 9, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Staley, C.; Hamilton, M.J.; Vaughn, B.P.; Graiziger, C.T.; Newman, K.M.; Kabage, A.J.; Sadowsky, M.J.; Khoruts, A. Successful Resolution of Recurrent Clostridium difficile Infection using Freeze-Dried, Encapsulated Fecal Microbiota; Pragmatic Cohort Study. Am. J. Gastroenterol. 2017, 112, 940–947. [Google Scholar] [CrossRef]
- Jiang, Z.-D.; Jenq, R.R.; Ajami, N.J.; Petrosino, J.F.; Alexander, A.A.; Ke, S.; Iqbal, T.; DuPont, A.W.; Muldrew, K.; Shi, Y.; et al. Safety and preliminary efficacy of orally administered lyophilized fecal microbiota product compared with frozen product given by enema for recurrent Clostridium difficile infection: A randomized clinical trial. PLoS ONE 2018, 13, e0205064. [Google Scholar] [CrossRef]
- Kao, D.; Roach, B.; Silva, M.; Beck, P.; Rioux, K.; Kaplan, G.G.; Chang, H.-J.; Coward, S.; Goodman, K.J.; Xu, H.; et al. Effect of Oral Capsule- vs. Colonoscopy-Delivered Fecal Microbiota Transplantation on Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. JAMA 2017, 318, 1985–1993. [Google Scholar] [CrossRef] [PubMed]
- Youngster, I.; Mahabamunuge, J.; Systrom, H.K.; Sauk, J.; Khalili, H.; Levin, J.; Kaplan, J.L.; Hohmann, E.L. Oral, frozen fecal microbiota transplant (FMT) capsules for recurrent Clostridium difficile infection. BMC Med. 2016, 14, 134. [Google Scholar] [CrossRef] [PubMed]
- Hvas, C.L.; Dahl Jørgensen, S.M.; Jørgensen, S.P.; Storgaard, M.; Lemming, L.; Hansen, M.M.; Erikstrup, C.; Dahlerup, J.F. Fecal Microbiota Transplantation Is Superior to Fidaxomicin for Treatment of Recurrent Clostridium difficile Infection. Gastroenterology 2019, 156, 1324–1332.e3. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Steiner, T.; Petrof, E.O.; Smieja, M.; Roscoe, D.; Nematallah, A.; Weese, J.S.; Collins, S.; Moayyedi, P.; Crowther, M.; et al. Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients with Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. JAMA 2016, 315, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Gangwani, M.K.; Aziz, M.; Aziz, A.; Priyanka, F.; Weissman, S.; Phan, K.; Dahiya, D.S.; Ahmed, Z.; Sohail, A.H.; Lee-Smith, W.M.; et al. Fresh Versus Frozen Versus Lyophilized Fecal Microbiota Transplant for Recurrent Clostridium difficile Infection: A Systematic Review and Network Meta-analysis. J. Clin. Gastroenterol. 2023, 57, 239–245. [Google Scholar] [CrossRef] [PubMed]
- I Abdali, Z.; E Roberts, T.; Barton, P.; Hawkey, P.M. Economic evaluation of Faecal microbiota transplantation compared to antibiotics for the treatment of recurrent Clostridioides difficile infection. EClinicalMedicine 2020, 24, 100420. [Google Scholar] [CrossRef] [PubMed]
- Merenstein, D.; El-Nachef, N.; Lynch, S.V. Fecal Microbial Therapy. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Brandt, L.J.; Aroniadis, O.C. An overview of fecal microbiota transplantation: Techniques, indications, and outcomes: Promises and pitfalls. Gastrointest. Endosc. 2013, 78, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Stuntz, M.; Vignes, F.D. Treating Clostridium difficile infections: Should fecal microbiota transplantation be reclassified from investigational drug to human tissue? Contemp. Clin. Trials Commun. 2015, 1, 39–41. [Google Scholar] [CrossRef]
- Federal Register. Guidance for Industry: Enforcement Policy Regarding Investigational New Drug Requirements for Use of Fecal Microbiota for Transplantation To Treat Clostridium difficile Infection Not Responsive to Standard Therapies. Available online: https://www.federalregister.gov/documents/2013/07/18/2013-17223/guidance-for-industry-enforcement-policy-regarding-investigational-new-drug-requirements-for-use-of (accessed on 28 April 2023).
- Moore, T.; Rodriguez, A.; Bakken, J.S. Fecal Microbiota Transplantation: A Practical Update for the Infectious Disease Specialist. Clin. Infect. Dis. 2014, 58, 541–545. [Google Scholar] [CrossRef]
- Kelly, C.R.; Kunde, S.S.; Khoruts, A. Guidance on Preparing an Investigational New Drug Application for Fecal Microbiota Transplantation Studies. Clin. Gastroenterol. Hepatol. 2014, 12, 283–288. [Google Scholar] [CrossRef] [PubMed]
- US Food & Drug Administration. Important Safety Alert Regarding Use of Fecal Microbiota for Transplantation and Risk of Serious Adverse Reactions Due to Transmission of Multi-Drug Resistant Organisms. Available online: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/important-safety-alert-regarding-use-fecal-microbiota-transplantation-and-risk-serious-adverse (accessed on 5 January 2023).
- US Food & Drug Administration. FDA In Brief: FDA Warns about Potential Risk of Serious Infections Caused by Multi-Drug Resistant Organisms Related to the Investigational Use of Fecal Microbiota for Transplantation. Available online: https://www.fda.gov/news-events/fda-brief/fda-brief-fda-warns-about-potential-risk-serious-infections-caused-multi-drug-resistant-organisms (accessed on 5 January 2023).
- US Food & Drug Administration. Early Clinical Trials with Live Biotherapeutic Products: Chemistry, Manufacturing, and Control Information Guidance for Industry. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.fda.gov/files/vaccines,%2520blood%2520%26%2520biologics/published/Early-Clinical-Trials-With-Live-Biotherapeutic-Products--Chemistry--Manufacturing--and-Control-Information--Guidance-for-Industry.pdf&ved=2ahUKEwjumvTQvoSGAxVsk1YBHbA7Bn4QFnoECBsQAQ&usg=AOvVaw3tUOosUYWabss6kh1j0C9I (accessed on 5 January 2023).
- Hoffmann, D.; Palumbo, F.; Ravel, J.; Roghmann, M.-C.; Rowthorn, V.; von Rosenvinge, E. Improving regulation of microbiota transplants. Science 2017, 358, 1390–1391. [Google Scholar] [CrossRef] [PubMed]
- McChalicher, C.; Abdulaziz, A.; Zhou, S.S.; Lombardo, M.-J.; Hasson, B.; Auniņš, J.G.; McGovern, B.H.; Ege, D.S. Manufacturing Process of SER-109, a Purified Investigational Microbiome Therapeutic, Reduces Risk of Coronavirus Transmission From Donor Stool. Open Forum Infect. Dis. 2022, 9, ofac448. [Google Scholar] [CrossRef] [PubMed]
- Ferring Pharmaceuticals Inc. REBYOTA Package Insert. Available online: https://www.fda.gov/media/163587/download (accessed on 5 January 2023).
- Lee, C.; Louie, T.; Bancke, L.; Guthmueller, B.; Harvey, A.; Feuerstadt, P.; Khanna, S.; Orenstein, R.; Dubberke, E.R. Safety of fecal microbiota, live-jslm (REBYOTA™) in individuals with recurrent Clostridioides difficile infection: Data from five prospective clinical trials. Ther. Adv. Gastroenterol. 2023, 16, 17562848231174277. [Google Scholar] [CrossRef] [PubMed]
- Vowst Package Insert. Available online: https://www.serestherapeutics.com/our-products/VOWST_PI.pdf (accessed on 2 August 2023).
- Vedanta Biosciences, Inc. A Phase 1a/1b, First-in-Human, Open-Label Study of Escalating Doses of VE303 in Healthy Adult Volunteers with or without Vancomycin Pre-Treatment to Evaluate Safety, Dosing, and Pharmacodynamics. 2020. Available online: https://clinicaltrials.gov/study/NCT04236778 (accessed on 27 July 2023).
- Vedanta Biosciences, Inc. CONSORTIUM—A Double-Blind Placebo-Controlled Phase 2 Study of VE303 for Prevention of Recurrent Clostridium (Clostridioides) Difficile Infection. 2023. Available online: https://clinicaltrials.gov/study/NCT03788434 (accessed on 27 July 2023).
- Khanna, S.; Pardi, D.S.; Jones, C.; Shannon, W.D.; Gonzalez, C.; Blount, K. RBX7455, a Non-frozen, Orally Administered Investigational Live Biotherapeutic, Is Safe, Effective, and Shifts Patients’ Microbiomes in a Phase 1 Study for Recurrent Clostridioides difficile Infections. Clin. Infect. Dis. 2021, 73, e1613–e1620. [Google Scholar] [CrossRef] [PubMed]
- Orenstein, R.; Hardi, R.; Ray, A.; Mullane, K.; Pardi, D.S.; Ramesh, M.S.; Dubberke, E.R.; Kelly, C.; Mariani, P.; Misra, B.; et al. Safety and Durability of RBX2660 (Microbiota Suspension) for Recurrent Clostridium difficile Infection: Results of the PUNCH CD Study. Clin. Infect. Dis. 2016, 62, 596–602. [Google Scholar] [CrossRef]
- Orenstein, R.; Dubberke, E.R.; Khanna, S.; Lee, C.H.; Yoho, D.; Johnson, S.; Hecht, G.; DuPont, H.L.; Gerding, D.N.; Blount, K.F.; et al. Durable reduction of Clostridioides difficile infection recurrence and microbiome restoration after treatment with RBX2660: Results from an open-label phase 2 clinical trial. BMC Infect. Dis. 2022, 22, 245. [Google Scholar] [CrossRef] [PubMed]
- Dubberke, E.R.; Orenstein, R.; Khanna, S.; Guthmueller, B.; Lee, C. Final Results from a Phase 2b Randomized, Placebo-Controlled Clinical Trial of RBX2660: A Microbiota-Based Drug for the Prevention of Recurrent Clostridioides difficile Infection. Infect. Dis. Ther. 2023, 12, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Assi, M.; Lee, C.; Yoho, D.; Louie, T.; Knapple, W.; Aguilar, H.; Garcia-Diaz, J.; Wang, G.P.; Berry, S.M.; et al. Efficacy and Safety of RBX2660 in PUNCH CD3, a Phase III, Randomized, Double-Blind, Placebo-Controlled Trial with a Bayesian Primary Analysis for the Prevention of Recurrent Clostridioides difficile Infection. Drugs 2022, 82, 1527–1538. [Google Scholar] [CrossRef]
- Khanna, S.; Pardi, D.S.; Kelly, C.R.; Kraft, C.S.; Dhere, T.; Henn, M.R.; Lombardo, M.-J.; Vulic, M.; Ohsumi, T.; Winkler, J.; et al. A Novel Microbiome Therapeutic Increases Gut Microbial Diversity and Prevents Recurrent Clostridium difficile Infection. J. Infect. Dis. 2016, 214, 173–181. [Google Scholar] [CrossRef]
- Seres Therapeutics, Inc. ECOSPOR: A RandomizEd, Double Blind, Placebo Controlled, Parallel Group Study of SER 109 to Prevent Recurrent Clostridium difficile Infection. 2018. Available online: https://clinicaltrials.gov/study/NCT02437487 (accessed on 1 August 2023).
- Feuerstadt, P.; Louie, T.J.; Lashner, B.; Wang, E.E.; Diao, L.; Bryant, J.A.; Sims, M.; Kraft, C.S.; Cohen, S.H.; Berenson, C.S.; et al. SER-109, an Oral Microbiome Therapy for Recurrent Clostridioides difficile Infection. N. Engl. J. Med. 2022, 386, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Sims, M.D.; Khanna, S.; Feuerstadt, P.; Louie, T.J.; Kelly, C.R.; Huang, E.S.; Hohmann, E.L.; Wang, E.E.L.; Oneto, C.; Cohen, S.H.; et al. Safety and Tolerability of SER-109 as an Investigational Microbiome Therapeutic in Adults With Recurrent Clostridioides difficile Infection: A Phase 3, Open-Label, Single-Arm Trial. JAMA Netw. Open 2023, 6, e2255758. [Google Scholar] [CrossRef] [PubMed]
- Louie, T.; Golan, Y.; Khanna, S.; Bobilev, D.; Erpelding, N.; Fratazzi, C.; Carini, M.; Menon, R.; Ruisi, M.; Norman, J.M.; et al. VE303, a Defined Bacterial Consortium, for Prevention of Recurrent Clostridioides difficile Infection. JAMA 2023, 329, 1356–1366. [Google Scholar] [CrossRef]
- Ferring. Ellen, L. More Real-World Data and New Analyses of Data for REBYOTA® (Fecal Microbiota, Live—Jslm) Presented at IDWeek 2023. Available online: https://www.biospace.com/article/releases/more-real-world-data-and-new-analyses-of-data-for-rebyota-fecal-microbiota-live-jslm-presented-at-idweek-2023/ (accessed on 5 January 2023).
- Dubberke, E.R.; Lee, C.H.; Orenstein, R.; Khanna, S.; Hecht, G.; Gerding, D.N. Results From a Randomized, Placebo-Controlled Clinical Trial of a RBX2660—A Microbiota-Based Drug for the Prevention of Recurrent Clostridium difficile Infection. Clin. Infect. Dis. 2018, 67, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- US Food & Drug Administration. FDA Approves First Fecal Microbiota Product. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-fecal-microbiota-product (accessed on 5 January 2023).
- Khanna, S.; Sims, M.; Louie, T.J.; Fischer, M.; LaPlante, K.; Allegretti, J.; Hasson, B.R.; Fonte, A.T.; McChalicher, C.; Ege, D.S.; et al. SER-109: An Oral Investigational Microbiome Therapeutic for Patients with Recurrent Clostridioides difficile Infection (rCDI). Antibiotics 2022, 11, 1234. [Google Scholar] [CrossRef] [PubMed]
- McGovern, B.H.; Ford, C.B.; Henn, M.R.; Pardi, D.S.; Khanna, S.; Hohmann, E.L.; O’brien, E.J.; A Desjardins, C.; Bernardo, P.; Wortman, J.R.; et al. SER-109, an Investigational Microbiome Drug to Reduce Recurrence After Clostridioides difficile Infection: Lessons Learned From a Phase 2 Trial. Clin. Infect. Dis. 2021, 72, 2132–2140. [Google Scholar] [CrossRef] [PubMed]
- Kempler, C. FDA Approves First Orally Administered Fecal Microbiota Product for the Prevention of Recurrence of Clostridioides difficile Infection. FDA News Release. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-orally-administered-fecal-microbiota-product-prevention-recurrence-clostridioides (accessed on 5 January 2023).
- VE303: Vedanta Biosciences, Inc. Available online: https://www.vedantabio.com/pipeline/ve303 (accessed on 31 July 2023).
- Vedanta Biosciences, Inc. Vedanta Announces Positive Topline Phase 2 Data for VE303 in High-Risk C. difficile Infection and Exercise of $23.8 Million Option by BARDA. Available online: https://www.vedantabio.com/news-media/press-releases/detail/2805/vedanta-announces-positive-topline-phase-2-data-for-ve303 (accessed on 31 July 2023).
- Dsouza, M.; Menon, R.; Crossette, E.; Bhattarai, S.K.; Schneider, J.; Kim, Y.-G.; Reddy, S.; Caballero, S.; Felix, C.; Cornacchione, L.; et al. Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host Microbe 2022, 30, 583–598.e8. [Google Scholar] [CrossRef]
- Bloom, P. A Randomized Controlled Trial of VE303 to Treat Hepatic Encephalopathy. 2023. Available online: https://clinicaltrials.gov/study/NCT04899115 (accessed on 27 July 2023).
- Sarkis, N. Vedanta Biosciences Receives Fast Track Designation for VE303 and Presents Phase 2 Data at Digestive Disease Week. Available online: https://www.vedantabio.com/news-media/press-releases/detail/3013/vedanta-biosciences-receives-fast-track-designation-for (accessed on 5 January 2023).
- Mayo Clinic. A Pilot Trial of Preoperative Oral Microbiota-Based Investigational New Drug, RBX7455 to Target Immune Response in Patients with Operable Stage I–III Breast Cancer. 2023. Available online: https://clinicaltrials.gov/study/NCT04139993 (accessed on 24 July 2023).
- Pai, N. PediCRaFT: Pediatric Crohn’s Disease Fecal Microbiota Transplant Pilot Study. 2022. Available online: https://clinicaltrials.gov/study/NCT03378167 (accessed on 24 July 2023).
- Ochsner Health System. Assessment of Cognitive Ability and the Intestinal Microbiome in Individuals with Liver Disease before and after Investigational Microbiota Restoration Therapeutic. 2023. Available online: https://clinicaltrials.gov/study/NCT04155099 (accessed on 24 July 2023).
- Pai, N.; Popov, J.; Hill, L.; Hartung, E. Protocol for a double-blind, randomised, placebo-controlled pilot study for assessing the feasibility and efficacy of faecal microbiota transplant in a paediatric Crohn’s disease population: PediCRaFT Trial. BMJ Open 2019, 9, e030120. [Google Scholar] [CrossRef]
- Finch Research and Development LLC. A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial of the Efficacy, Safety, and Tolerability of a Single Oral Administration of CP101 for the Prevention of Recurrent Clostridioides difficile Infection (CDI). 2023. Available online: https://clinicaltrials.gov/study/NCT05153499 (accessed on 24 July 2023).
- Allegretti, J. CP101, an Investigational Orally Administered Microbiome Therapeutic, Increases Intestinal Microbiome Diversity and Prevents Recurrent C. difficile Infection: Results From a Randomized, Placebo-Controlled Trial. In Proceedings of the 2021 American College of Gastroenterology Annual Scientific Meeting, Las Vegas, NV, USA, 22–27 October 2021; Available online: https://gi.org/media/press-info-scientific-meeting/featured-science/oral-25-cp101-an-investigational-orally-administered-microbiome-therapeutic-increases-intestinal-microbiome-diversity-and-prevents-recurrent-c-difficile-infection-results-from-a-randomized-plac/ (accessed on 26 July 2023).
- Finch Research and Development LLC. PRISM-EXT: An Open-Label Extension of CP101 Trials Evaluating Oral Full-Spectrum MicrobiotaTM (CP101) in Subjects with Recurrence of Clostridium difficile Infection. 2022. Available online: https://clinicaltrials.gov/study/NCT03497806 (accessed on 24 July 2023).
- Finch Therapeutics Announces Decision to Discontinue Phase 3 Trial of CP101 and Focus on Realizing the Value of Its Intellectual Property Estate and Other Assets—Finch Therapeutics. Available online: https://ir.finchtherapeutics.com/news-releases/news-release-details/finch-therapeutics-announces-decision-discontinue-phase-3-trial/ (accessed on 26 July 2023).
- Bear, T.; Dalziel, J.; Coad, J.; Roy, N.; Butts, C.; Gopal, P. The Microbiome-Gut-Brain Axis and Resilience to Developing Anxiety or Depression under Stress. Microorganisms 2021, 9, 723. [Google Scholar] [CrossRef]
- Garey, K.W.; Jo, J.; Gonzales-Luna, A.J.; Lapin, B.; Deshpande, A.; Wang, E.; Hasson, B.; Pham, S.V.; Huang, S.P.; Reese, P.R.; et al. Assessment of Quality of Life Among Patients with Recurrent Clostridioides difficile Infection Treated with Investigational Oral Microbiome Therapeutic SER-109: Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2253570. [Google Scholar] [CrossRef]
- Garey, K.W.; Dubberke, E.R.; Guo, A.; Harvey, A.; Yang, M.; García-Horton, V.; Fillbrunn, M.; Wang, H.; Tillotson, G.S.; Bancke, L.L.; et al. Effect of Fecal Microbiota, Live-Jslm (REBYOTA [RBL]) on Health-Related Quality of Life in Patients With Recurrent Clostridioides difficile Infection: Results From the PUNCH CD3 Clinical Trial. Open Forum Infect. Dis. 2023, 10, ofad383. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, G.; Masucci, L.; Ianiro, G.; Bibbò, S.; Dinoi, G.; Costamagna, G.; Sanguinetti, M.; Gasbarrini, A. Randomised clinical trial: Faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment. Pharmacol. Ther. 2015, 41, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Minkoff, N.Z.; Aslam, S.; Medina, M.; E Tanner-Smith, E.; Zackular, J.P.; Acra, S.; Nicholson, M.R.; Imdad, A. Fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile (Clostridium difficile). Cochrane Database Syst. Rev. 2023, 2023, CD013871. [Google Scholar] [CrossRef] [PubMed]
LBP | Manufacturer | Dosage Form | Microbes in CFU Per Dosage Form | Admixture | Storage and Stability |
---|---|---|---|---|---|
RBX2660 Rebyota [78,79] | RebiotixTM | 150 mL of liquid suspension administered rectally | 1 × 108~5 × 1010 per mL of fecal microbes, including >1 × 105 of Bacteroides | Polyethylene glycol 3350 and 0.9% sodium chloride | Ultracold freezer (−60 °C to −90 °C), up to 5 days in refrigerator (2 °C to 8 °C) |
SER109 Vowst [80] | SeresTM | Oral capsule | 1 × 106~3 × 107 of Firmicutes spores | Glycerol in 0.9% sodium chloride | Store at 2 °C to 25 °C Do not store in freezer |
VE303 [81,82] | VedantaTM | Oral capsule | ~1 × 108 of microbes from 8 distinct Clostridial species, for a total content of 8 × 108 microbes | Sucrose, histidine, yeast extract, cysteine, metabisulfite, and microcrystalline cellulose | Long term storage at −20 °C |
RBX7455 [83] | RebiotixTM | Oral capsule | 8 × 108~2 × 109 of fecal microbes prepared from RBX2660 | A proprietary formulation of lyoprotectant and cryoprotectant excipients | Store at 2 °C to 8 °C before dispensing, then room temperature at 23 °C to 27 °C |
Trial References | Enrollment Criteria | Assay Used | Clinical Outcome at 8 Weeks |
---|---|---|---|
Clinical trials of RBX2660 | |||
PUNCH-CD [84] | At least 3 CDI episodes and completed at least 2 rounds of antibiotics OR at least 2 severe CDI episodes, defined as requiring hospitalization | Stool test and colonoscopic/histopathologic findings of pseudomembranous colitis | Recurrence observed in 15/31 (48.4%) of the 1-dose group; 4/31 (12.9%) of the 2-doses group |
PUNCH-Open Label [85] | Matched PUNCH-CD; fidaxomicin lead-in therapy was permitted | Stool test based on study site availability; majority PCR 1 and EIA 2 for toxin a/b | Recurrence observed in 30/142 (21.1%) of the Rebyota group; 52/75 (69.3%) of the historical control group; p < 0.0001 |
PUNCH-CD 2 [86] | Matched PUNCH Open Label | Stool test based on study site availability | Recurrence observed in 20/45 (43.2%) of the Rebyota + placebo group; 20/45 (43.2%) of the Rebyota group; p = 0.243; 25/44 (56.2%) of the placebo group; p = 0.201 |
PUNCH-CD 3 [87] | At least 2 or more episodes of CDI and completed at least 1 round of antibiotics | Stool test of PCR, EIA for toxin a/b, GDH 3, or other assays | Recurrence observed in 29.6% of the Rebyota group; 41.9% of the placebo group; posterior probability of superiority was 0.986 |
Clinical trials of SER09 | |||
Initial phase 2 trial [88] | At least 3 CDI episodes in the preceding 12 months | Stool test based on availability | Recurrence observed in 2/15 (13.3%) of the high-dose group; 2/15 (13.3%) of the low-dose group |
ECOSPOR [89] | At least 3 CDI episodes in the preceding 9 months | Stool test of PCR, EIA for toxin a/b, and GDH | Recurrence observed in 44.1% of the Vowst group; 53.3% of the placebo group; no significance achieved |
ECOSPOR III [90] | Matched ECOSPOR | Matched ECOSPOR plus EIA for toxin a/b | Recurrence observed in 11/89 (12%) of the Vowst group; 37/93 (40%) of the placebo group; p < 0.001 |
ECOSPOR IV [91] | Cohort 1: matched ECOSPOR III Cohort 2: at least 2 episodes of CDI | Cohort 1: Stool test of EIA for toxin a/b Cohort 2: any positive stool test | Recurrence observed in 4/29 (13.8%) of cohort 1; 19/234 (8.1%) of cohort 2 |
Clinical trials of VE303 | |||
CONSORTIUM [82,92] | At least 1 CDI episode in the last 6 months AND those with study-defined high risk for recurrence | Stool test of EIA for toxin a/b, CNNA 4, PCR, and toxigenic culture | Recurrence observed in 4/29 (13.8%) of the high-dose VE303 group; 10/27 (37.0%) of the low-dose VE303 group; 10/22 (45.5%) of the placebo group |
Clinical trials of RBX7455 | |||
Initial phase 1 trial [83] | At least 2 CDI episodes and completed at least 2 rounds of antibiotics | Stool test of EIA for toxin a/b and NAAT 5 | Recurrence observed in 1/10 (10%) of 4 capsules twice daily for 4 days; 2/10 (80%) of 4 capsules twice daily for 2 days; 0/10 (0%) of 2 capsules twice daily for 2 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hunt, A.; Danziger, L.; Drwiega, E.N. A Comparison of Currently Available and Investigational Fecal Microbiota Transplant Products for Recurrent Clostridioides difficile Infection. Antibiotics 2024, 13, 436. https://doi.org/10.3390/antibiotics13050436
Wang Y, Hunt A, Danziger L, Drwiega EN. A Comparison of Currently Available and Investigational Fecal Microbiota Transplant Products for Recurrent Clostridioides difficile Infection. Antibiotics. 2024; 13(5):436. https://doi.org/10.3390/antibiotics13050436
Chicago/Turabian StyleWang, Yifan, Aaron Hunt, Larry Danziger, and Emily N. Drwiega. 2024. "A Comparison of Currently Available and Investigational Fecal Microbiota Transplant Products for Recurrent Clostridioides difficile Infection" Antibiotics 13, no. 5: 436. https://doi.org/10.3390/antibiotics13050436
APA StyleWang, Y., Hunt, A., Danziger, L., & Drwiega, E. N. (2024). A Comparison of Currently Available and Investigational Fecal Microbiota Transplant Products for Recurrent Clostridioides difficile Infection. Antibiotics, 13(5), 436. https://doi.org/10.3390/antibiotics13050436