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Abstract: This study conducted a quantitative meta-analysis to investigate the association of van-
comycin indicators, particularly area under the curve over 24 h (AUC24) and trough concentrations
(Ctrough), and their relationship with both nephrotoxicity and efficacy. Literature research was
performed in PubMed and Web of Science on vancomycin nephrotoxicity and efficacy in adult
inpatients. Vancomycin Ctrough, AUC24, AUC24/minimum inhibitory concentration (MIC), nephro-
toxicity evaluation and treatment outcomes were extracted. Logistic regression and Emax models
were conducted, stratified by evaluation criterion for nephrotoxicity and primary outcomes for
efficacy. Among 100 publications on nephrotoxicity, 29 focused on AUC24 and 97 on Ctrough, while of
74 publications on efficacy, 27 reported AUC24/MIC and 68 reported Ctrough. The logistic regression
analysis indicated a significant association between nephrotoxicity and vancomycin Ctrough (odds
ratio = 2.193; 95% CI 1.582–3.442, p < 0.001). The receiver operating characteristic curve had an area
of 0.90, with a cut-off point of 14.55 mg/L. Additionally, 92.3% of the groups with a mean AUC24

within 400–600 mg·h/L showed a mean Ctrough of 10–20 mg/L. However, a subtle, non-statistically
significant association was observed between the AUC24 and nephrotoxicity, as well as between
AUC24/MIC and Ctrough concerning treatment outcomes. Our findings suggest that monitoring
vancomycin Ctrough remains a beneficial and valuable approach to proactively identifying patients at
risk of nephrotoxicity, particularly when Ctrough exceeds 15 mg/L. Ctrough can serve as a surrogate for
AUC24 to some extent. However, no definitive cut-off values were identified for AUC24 concerning
nephrotoxicity or for Ctrough and AUC24/MIC regarding efficacy.

Keywords: therapeutic drug monitoring; vancomycin; trough concentration; efficacy; nephrotoxicity

1. Introduction

Vancomycin is the first-line antibiotic for methicillin resistant Staphylococcus aureus
(MRSA) infections [1], and is also used to treat suspected or confirmed infections caused
by other Gram-positive bacteria. However, a narrow therapeutic index, which requires
balancing efficacy with the risk of acute kidney injury (AKI), and large inter-patient vari-
ability in pharmacokinetics (PK) makes vancomycin dosing even more challenging, thus
necessitating the use of therapeutic drug monitoring (TDM).

Despite being in clinical use for over 60 years, there is still controversy regarding
the most appropriate indicator and its respective target value to optimize vancomycin
treatment and reduce toxicity. During the past few years, the ratio of area under the curve
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to minimum inhibitory concentration over 24 h (AUC24/MIC) has been advocated as the
preferred parameter for measuring vancomycin’s effectiveness [1–3]. Due to difficulty
in determining the AUC24 in routine clinical practice and subsequently calculating the
AUC24/MIC, the 2009 American guideline suggested the trough concentration (Ctrough) as
a surrogate marker for AUC24, which is recommended as the most accurate and practical
method to monitor vancomycin [4]. However, with the development of new approaches,
such as Bayesian software, estimating AUC24 has become more convenient. Some studies
reported AUC24-guided dosing as more clinically effective [5–7] and having less risk of
AKI over Ctrough-guide dosing [5–11]. Furthermore, Ctrough was reported as not being
substituted for AUC24 in some studies [12–16]. Thus, the 2020 American TDM guideline
for vancomycin and the 2022 Japanese TDM guideline recommended AUC24/MIC as a
reliable predictor to improve clinical efficacy and avoid nephrotoxicity, targeting a ratio of
400–600 [17,18].

However, some research still reported inconsistent results. Dalton et al. reported that
a target AUC24/MIC index could not be established to achieve the optimal effectiveness
and safety of vancomycin [19]. Bellos et al. discovered that an increase in Ctrough was
significantly associated with a higher risk of nephrotoxicity [20]. Lodise et al. found that
vancomycin Ctrough is the pharmacodynamic index that best describes the exposure–toxicity
response relationship [21]. Moreover, recent studies provide growing evidence that Ctrough
is more strongly correlated with nephrotoxicity [22]. Meanwhile, resource-constrained
settings that face challenges in estimating the AUC24 using a Bayesian approach or a
first-order PK equation with two concentrations of steady-state samples remain prevalent,
especially in developing countries [23]. Therefore, in some countries, not only is AUC24
still recommended, but Ctrough is as well. For instance, the 2020 Chinese guideline suggests
maintaining steady-state Ctrough at 10–15 mg/L in adult patients and 10–20 mg/L in
adult patients with serious MRSA infections [24]. The Anti-infectives Committee of the
International Association of Therapeutic Drug Monitoring and Clinical Toxicology also
recommends a target Ctrough of 10–15 mg/L for serious MRSA infections in 2022 [25]. The
European Society of Intensive Care Medicine recommended Ctrough at 15–20 mg/L for
severe infections in 2020 [26].

Although numerous reviews have examined a large number of clinical studies and pro-
posed target values for the efficacy and nephrotoxicity of vancomycin, providing valuable
clinical references, inconsistencies have persisted in previous meta-analysis. Meanwhile,
traditional meta-analysis often faces significant heterogeneity among studies, encompassing
differences in patient characteristics, definition of nephrotoxicity, and treatment outcomes.
This can make it challenging to accurately assess the relationships and target values for
vancomycin efficacy and nephrotoxicity.

Therefore, the present study employed a quantitative meta-analysis to investigate the
relationship between vancomycin parameters (Ctrough and AUC24 or AUC24/MIC) and both
nephrotoxicity and efficacy, taking into account the varying definition of nephrotoxicity and
treatment outcomes. This study aimed to evaluate the benefits of monitoring the Ctrough
and AUC24 of vancomycin, and to assess the relationship between AUC24 and Ctrough in
studies that included both measures.

2. Results
2.1. Characteristics of the Included Studies

A total of 172 from 1420 studies were subjected to further examination, and finally
100 articles (listed in the Supplementary Materials) were included in the nephrotoxicity
analysis. Among them, 29 and 97 articles were included for target AUC24 and target Ctrough
evaluation, respectively (Figure 1A). Most of the studies adopted a retrospective design
(n = 88), while 13 studies were prospective cohorts and 1 study conducted a post hoc
analysis of randomized controlled trials (RCT). The 2009 consensus guideline [4] was the
most commonly adopted criteria to define vancomycin nephrotoxicity (n = 65), while the
Kidney Disease Improving Global Outcomes (KDIGO) [27], Acute Kidney Injury Network
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(AKIN) [28], and Risk, Injury, Failure, Loss of kidney function and End-stage kidney disease
(RIFLE) [29] criteria were applied in 16, 14, and 16 studies, respectively.
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Figure 1. Flow chart for study identification and selection for nephrotoxicity (A) and efficacy (B).

A total of 115 from 4434 articles underwent detailed scrutiny for efficacy analysis.
Finally, 74 articles (listed in the Supplementary Materials) were screened for inclusion in
the efficacy analysis, of which 27 and 68 articles had the assessment of target AUC24/MIC
and target Ctrough, respectively (Figure 1B). Out of the 74 studies, 61 adopted a retrospective
design. The most frequently reported outcome was all-cause mortality (n = 55), followed by
clinical failure (n = 27), microbiological failure (n = 26) and treatment failure (n = 25). The
most commonly used methods for MIC testing were broth microdilution (BMD) (n = 16) and
the Etest (n = 17) method, while agar dilution, VITEK 2 (https://www.biomerieux-usa.com/
vitek-2, accessed on 24 April 2024) and MicroScan (https://www.beckmancoulter.com/
products/microbiology/microscan-walkaway-plus-system, accessed on 24 April 2024)
were used less frequently (n < 7).

https://www.biomerieux-usa.com/vitek-2
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Since 2012, the number of publications has significantly increased (ranging from 1990
to 2022), with the majority of results reported from United States, Japan and China. Further
details on the study characteristics are provided in Supplementary Table S1 to Table S4.

2.2. Nephrotoxicity

The non-linear association between vancomycin Ctrough and the incidence of nephro-
toxicity, stratified by different nephrotoxicity definition, is illustrated in Figure 2 and Table 1.
The data indicate that a higher Ctrough of vancomycin are associated with a higher inci-
dence of nephrotoxicity, with a more obvious positive correlation observed for the KDIGO
and RIFLE criteria. This relationship is also evident in the box plot of the probability of
nephrotoxicity in different trough categories (Figure S1).
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Figure 2. Correlation between nephrotoxicity and trough concentrations. Black circles represent the
observed vancomycin Ctrough values from each study. The solid line and the shaded area represent
the estimated Emax model curve with 95% credible intervals of parameters. The grey shade represents
the interval between Ctrough 10 mg/L and 20 mg/L.

Table 1. Estimated parameters of Emax model for nephrotoxicity and efficacy endpoints.

Outcome Endpoint PK/PD Parameter Emax (%)
(CV%)

EC50 (mg/L)
(CV%)

γ

(CV%)

Nephrotoxicity

2009 Consensus Ctrough (mg/L) (n = 90) 32.5 (43.7%) 18.8 (78.4) 1.0 (FIX)

AKIN Ctrough (mg/L) (n = 22) 42.7 (37.6) 21.4 (86.2) 1.51 (148)

KDIGO Ctrough (mg/L) (n = 24) 100 (FIX) 22.7 (19.8) 4.15 (45.1)

RIFLE Ctrough (mg/L) (n = 29) 100 (FIX) 51.1 (25.1) 1.47 (23.1)
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Table 1. Cont.

Outcome Endpoint PK/PD Parameter Emax (%)
(CV%)

EC50 (mg/L)
(CV%)

γ

(CV%)

Efficacy

Treatment failure
AUC24/MICBMD (n = 11) 100 (FIX) 367 (20.0) 1.0 FIX

AUC24/MICEtest (n = 6) 100 (FIX) 335 (36.6) 2.65 (59.2)

30- or 28-day
all-cause mortality

AUC24/MICBMD (n = 8) 100 (FIX) 123 (19.4) 1.0 FIX

AUC24/MICEtest (n = 9) 100 (FIX) 96.7 (62.3) 1.03 (54.4)

Microbiologic failure
AUC24/MICBMD (n = 9) 100 (FIX) 296 (36.0) 2.39 (64.9)

AUC24/MICEtest (n = 11) 100 (FIX) 99.8 (60.8) 1.01 (79.2)

AKIN = Acute Kidney Injury Network; KDIGO = Kidney Disease Improving Global Outcomes; RIFLE = Risk,
Injury, Failure, Loss of kidney function and End-stage kidney disease; BMD = broth microdilution; CV = coefficient
of variation; PK/PD = pharmacokinetic/pharmacodynamics; Emax = maximum effect; EC50 = the indicators
required to achieve half the Emax; γ = slope factor (also known as Hill factor).

The univariate logistic regression analysis (see Figure 3 for the 2009 consensus guide-
lines criteria) revealed that nephrotoxicity was significantly associated with vancomycin
Ctrough (OR (95%CI) = 2.193 (1.582–3.442), p < 0.001). The area under the receiver operating
characteristic (ROC) curve (AUROC) value of 0.90 indicated the potential of vancomycin
Ctrough to serve as a predictor of vancomycin nephrotoxicity (Figure S2), with a cut-off of
14.55 mg/L, representing 79.4% sensitivity and 91.2% specificity in the study populations.
Covariates with missing values less than 30% (i.e., age, serum creatinine and male percent-
age) were also evaluated for their association with nephrotoxicity, but none demonstrated
a statistically significant relationship. A subgroup analysis of patients not receiving renal
replacement therapy showed similar results (Figure S3).
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A slight trend towards lower nephrotoxicity in patients with low AUC24 was observed 
in Figure S4. Logistic regression analysis examining the association between AUC24 and 
nephrotoxicity according to the 2009 consensus guideline, using data from eight articles, 
revealed a similar trend with a cut-off value of 510 mg·h/L, although the trend was not 
significant (OR = 1.008, 95%CI of 1.001–1.02, p > 0.05, Figure 4). 

Figure 3. Logistic regression illustrating the association of the probability of experiencing nephrotoxi-
city and as a function of vancomycin trough concentrations. The upper and lower circles represent the
presence or absence of a given nephrotoxicity across the range of vancomycin trough concentrations,
respectively. The dots depict the observed incidence for the quartiles of exposure, whereas the
corresponding vertical bars represent the exact 95% CI calculated using Wilson’s method. Finally, the
middle line and its corresponding shaded area represent the model-based exposure–safety relation-
ship and the 95% CI, respectively. Vertical dashed lines represent min, 25%, median, 75% and max
percentile of trough concentrations, respectively.
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A slight trend towards lower nephrotoxicity in patients with low AUC24 was observed
in Figure S4. Logistic regression analysis examining the association between AUC24 and
nephrotoxicity according to the 2009 consensus guideline, using data from eight articles,
revealed a similar trend with a cut-off value of 510 mg·h/L, although the trend was not
significant (OR = 1.008, 95%CI of 1.001–1.02, p > 0.05, Figure 4).
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Figure 4. Logistic regression illustrating the association of the probability of experiencing nephrotox-
icity and as a function of vancomycin AUC24. The upper and lower circles represent the presence
or absence of a given nephrotoxicity across the range of vancomycin AUC24, respectively. The dots
depict the observed incidence for the quartiles of exposure, whereas the corresponding vertical
bars represent the exact 95% CI calculated using Wilson’s method. Finally, the middle line and its
corresponding shaded area represent the model-based exposure–safety relationship and the 95%
CI, respectively. Vertical dashed lines represent min, 25%, median, 75% and max percentile of
AUC24, respectively.

2.3. Efficacy
2.3.1. Treatment Failure

Eleven studies reported treatment failure as an outcome, with ten articles presenting
results with BMD method and six using the Etest method. A subtle trend suggesting that a
higher AUC24/MIC is associated with a lower treatment failure rate was observed (Figure 5,
Table 1). When AUC24/MICBMD reached 400 or 600, the predicted treatment success rate
was 52% and 62%, respectively. Similarly, when AUC24/MICEtest attained 400 or 600, the
predicted treatment success rate was 59% and 80%. However, no statistically significant
difference (OR = 1.017, 95% CI of 0.999–1.051, p > 0.05, Figure S5) in treatment success rates
was identified across the range of AUC24/MICBMD in the logistic regression analysis. A
similar trend was observed for the relationship between treatment failure rates and Ctrough
(Figure S6).
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Figure 5. Correlation between outcomes and continuous AUC24/MIC stratified by MIC method. The
solid black line and the shaded area represent the estimated Emax model curve with 95% credible
intervals of parameters to reflect the correlation between clinical outcomes and AUC24/MIC. The
black dashed transverse line represents the 60% and 80% treatment success rate for each clinical
outcome. The black circles represent the observed incidence of success of each clinical outcome. The
shaded area represents the AUC24/MIC interval between 400 and 600.

2.3.2. All-Cause Mortality

Out of 18 studies that reported an all-cause mortality outcome, 12 studies reported the
30- or 28-day all-cause mortality, of which 8 articles reported results with BMD and the Etest
method, respectively. Due to the limited sample size of studies reporting a binary outcome,
only incidence was analyzed. A subtle trend emerged, suggesting a correlation between
higher AUC24/MIC and lower 30-day all-cause mortality rates (Figure 5, Table 1). When
the AUC24/MICBMD reached 400 or 600, the predicted survival rate was 76% and 83%,
respectively. Similarly, when the AUC24/MICEtest reached 400 or 600, the predicted survival
rate was 78% and 84%, respectively. A similar trend was observed for the relationship
between 30-day all-cause mortality rate and Ctrough (Figure S6).

2.3.3. Microbiologic Failure

Of 17 studies reporting microbiologic failure, 9 articles utilized BMD method and the
Etest method, respectively. Microbiologic failure appeared to be lower in patients with
higher AUC24/MIC and Ctrough (Figure 5, Table 1 and Figure S6). The AUC24/MICBMD
and AUC24/MICEtest equal to 400 resulted in a microbiologic success rate of 63% and 77%,
respectively.

Due to the limited number of articles, it is not possible to analyze clinical failure
outcomes. In the subgroup of patients with MRSA infections, the trends observed in the
above analysis were similar (results not shown). This suggests that the relationship between
AUC24/MIC and clinical outcomes may be consistent in this patient population.
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2.4. Relationship of Vancomycin Mean AUC24 and Ctrough

The mean Ctrough values were categorized into the following groups: ≤10 mg/L,
10–15 mg/L, 15–20 mg/L and >20 mg/L. Similarly, the mean AUC24 were divided into
≤200 mg·h/L, 200–400 mg·h/L, 400–600 mg·h/L and >600 mg·h/L. The chord diagram
vividly demonstrates the relationship between the mean Ctrough and mean AUC24 for each
subgroup of studies (Figure 6, Table 2).
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nephrotoxicity analysis; (B) the correlation between AUC24 and trough concentration from studies
reporting efficacy. VTC: vancomycin trough concentration.

Table 2. The overall distribution of mean trough concentration and AUC24.

Analysis, n (%/%) Ctrough (mg/L)

Nephrotoxicity (n = 61)

AUC24 (mg·h/L) ≤10 (n = 9) 10–15 (n = 31) 15–20 (n = 16) >20 (n = 5)

≤200 (n = 0) 0 (0/0) 0 (0/0) 0 (0/0) 0 (0/0)

200–400 (n = 10) 7 (70.0/77.8) 2 (20.0/6.5) 1 (10.0/6.2) 0 (0/0)

400–600 (n = 39) 1 (2.6/11.1) 24 (61.5/77.4) 12 (30.8/75.0) 2 (5.1/40.0)

>600 (n = 12) 1 (8.3/11.1) 5 (41.7/16.1) 3 (25.0/18.8) 3 (25.0/60.0)

Efficacy (n = 83)

AUC24 (mg·h/L) ≤10 (n = 28) 10–15 (n = 45) 15–20 (n = 7) >20 (n = 3)

≤200 (n = 0) 0 (0/0) 0 (0/0) 0 (0/0) 0 (0/0)

200–400 (n = 24) 19 (79.2/67.9) 5 (20.8/11.1) 0 (0/0) 0 (0/0)

400–600 (n = 54) 9 (16.7/32.1) 38 (70.4/84.4) 5 (9.3/71.4) 2 (3.7/66.7)

>600 (n = 5) 0 (0/0) 2 (40.0/4.4) 2 (40.0/28.6) 1 (20.0/33.3)

n (%/%) represents the numbers of groups in each paired group with the percentage (the first %) of groups in
each of the AUC24 categories and the percentage (the second %) of groups in each of the Ctrough categories.

Among the paired groups (n = 61) from studies included in the nephrotoxicity analysis,
77.8% of the groups with mean Ctrough ≤ 10 mg/L had mean AUC24 < 400 mg·h/L,
while all groups with mean Ctrough > 20 mg/L (n = 5) had AUC24 > 400 mg·h/L, among
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which 60% had AUC24 values > 600 mg·h/L. In the subgroups with mean AUC24 within
400–600 mg·h/L, 92.3% had mean Ctrough of 10–20 mg/L.

Of the paired groups (n = 83) from studies included in the efficacy analysis with
both exposure measures, 67.9% of the groups with mean Ctrough ≤ 10 mg/L had mean
AUC24 < 400 mg·h/L, while all groups with Ctrough > 20 mg/L (n = 3) had
AUC24 > 400 mg·h/L. When Ctrough reached 10–15 mg/L, the rate of vancomycin AUC24 in
400–600 mg·h/L was 84.4%, and when Ctrough reached 15–20 mg/L, the rate of vancomycin
AUC24 in 400–600 mg·h/L was 71.4%. In other words, 79.7% of the subgroups with mean
AUC24 within 400–600 mg·h/L had mean Ctrough of 10–20 mg/L.

3. Discussion

The recent American and Japanese TDM guidelines recommend AUC24/MIC as the
preferred approach for enhancing vancomycin efficacy and educing nephrotoxicity, and
Ctrough is no longer recommended [17,18]. Nevertheless, obtaining timely and accurate
AUC24 poses challenges, and measuring Ctrough remains the most efficient and accessible
method to monitor vancomycin dosing, especially in source-limited settings. Therefore, the
question of whether Ctrough monitoring remains beneficial warrants further investigation.

Our quantitative meta-analysis demonstrated a robust correlation between vancomycin
Ctrough and nephrotoxicity (OR (95%CI) = 2.193 (1.582–3.442), p < 0.001), with a cut-off
point identified at 14.55 mg/L. This finding aligns with the recommendations of a clinical
guideline [24] and a position statement [25]. Moreover, our analysis revealed that studies
with a mean Ctrough of 10–15 mg/L and 15–20 mg/L showed that almost 80% had a mean
AUC24 400–600 mg·h/L, suggesting that Ctrough can serve as a surrogate for AUC24 to
some degree. This is further supported by a recent multicenter, retrospective study in
China that focused on critically ill patients without any form of dialysis [23]. Our study
supports the clinical utility of Ctrough monitoring, particularly for nephrotoxicity preven-
tion, as it correlates with AUC24 within specific ranges. However, the direct substitution
of Ctrough for AUC24 is not always feasible due to individual pharmacokinetic variations.
Developing an AUC24-Ctrough equation could establish patient-specific Ctrough targets for
individualized management.

In addition, our study revealed that the application of KDIGO and RIFLE criteria for
assessing kidney toxicity yielded higher sensitivity in identifying vancomycin-associated
nephrotoxicity compared to the 2009 consensus guideline. This disparity in sensitivity
could be attributed to the slightly higher threshold defined in the 2009 guideline (an
increase in the serum creatinine ≥0.5 mg/dL [4]), which has been updated in the latest
guideline [17].

Unfortunately, although we observed a subtle trend that higher Ctrough were associated
with lower treatment or microbiologic failure rates and 30-day all-cause mortality rates,
no definitive cut-off value was identified. This lack of specificity can be attributed to the
fact that the majority of Ctrough falls within the common therapeutic range of 10–20 mg/L
for vancomycin. However, considering the observed efficacy outcome (Figure S6) and the
simulation using the Emax model, it appears that a Ctrough greater than 15 mg/L nearly
reaches the plateau of the efficacy curve.

Furthermore, we evaluated the relationship between AUC24 and vancomycin nephro-
toxicity and the relation between AUC24/MIC and efficacy outcome. While a subtle trend
of reduced nephrotoxicity in patients with lower AUC24 was observed, it did not reach
statistical significance. This could be attributed to the fact that only eight included stud-
ies with a mean AUC24 were centered on the range of 400–600 mg·h/L. However, we
attempted to identify a cut-off value at 510 mg·h/L. Concerning the correlation between
AUC24/MIC and the efficacy outcome, our analysis revealed that when the AUC24/MICEtest
and AUC24/MICBMD exceeded 500–600, both the treatment/microbiologic success rate
and 30-day survival rates appeared to approach the efficacy curve plateau. Nonetheless,
these findings should be interpreted with caution given the narrow range of AUC24/MIC
values obtained from clinical settings employing TDM. In summary, AUC24 not exceeding
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500 mg·h/L (assuming the MIC as 1 mg/L) may favor both clinical efficacy and nephrotox-
icity avoidance.

There are some limitations for the selected studies. The most common limitation
the selected studies mentioned is the retrospective nature of the study design, which is
also one of limitations of our analysis, i.e., the majority of the included studies (greater
than 80%) were retrospective, which introduces a risk of unmeasured confounding effects
and bias. In addition, in the selected studies, the small sample size of the study, a single
center being included in most studies, and the fact that a limited type of patient population
hinders extrapolation to a wider range of people were also mentioned. However, what we
conducted was a quantitative meta-analysis including all the patient population data for
analysis, which addressed the concern of the small sample size, single center and single
type patient population in each study. Furthermore, some other limitations for our analysis
needed to be considered when interpreting the results. Firstly, articles reported different
detection methods for vancomycin concentration (most are commercial immunoassays),
along with various types of Ctrough measurements, including initial or first steady-state
values, average, highest or predicted values used in each article, which may introduce bias.
Additionally, among different studies, the severity of the disease and the physiological and
pathological condition of the patients vary, and the limited data availability hindered the
evaluation of covariates on nephrotoxicity or efficacy, such as co-administered medication,
renal function (creatinine clearance rate and renal replacement therapy), and critically ill
patients’ percentage. Finally, most studies published after 2009 focused on collecting data
within the recommended range of vancomycin Ctrough and AUC24 due to the widespread
use of TDM. The narrow range of data might obscure the relationship for the two indictors,
making it challenging to draw definitive conclusions.

4. Methods
4.1. Search Strategy

The literature search was performed using the PubMed and Web of Science database.
The search keywords for the analysis of association between exposure and nephrotoxic-
ity included “vancomycin”, its exposure parameters (“area under the concentration-time
curve”, “trough concentration”, “exposure”, “pharmacokinetics” and “pharmacokinet-
ics /pharmacodynamics”) and safety related indicators (“nephrotoxicity”, “acute kidney
injury”, “renal failure”, “renal impairment”).

Similarly, for the analysis of association between exposure and efficacy, the search
keywords for vancomycin-related ones included the above mentioned keywords and also
“area under the concentration-time curve to minimum inhibitory concentration ratio”,
while efficacy related indicators included “efficacy”, “clinical outcome”, “clinical failure”,
“clinical response”, “microbiological failure”, “treatment failure”, “success”, “mortality”
and “eradication”.

The reference lists of the included studies and historical systematic reviews were
searched using a snowball method to identify potential additional sources. No language or
date restrictions were imposed, but the patients were limited to adults.

4.2. Inclusion Criteria and Outcomes

We included adult inpatients treated with intravenous vancomycin and studies from
RCT, as well as prospective and retrospective studies that met the searching criteria.

The inclusion criteria for the analysis of the association between vancomycin exposure
(AUC24 and Ctrough) and nephrotoxicity included studies reporting AUC24 or/and Ctrough,
along with detailed definitions of nephrotoxicity events. The primary outcome was the
incidence of nephrotoxicity. Likewise, for the association between a vancomycin indicator
(AUC24/MIC or Ctrough) and efficacy, the inclusion criteria included studies reporting
AUC24/MIC or/and Ctrough and respective outcomes, i.e., treatment failure, all-cause
mortality, microbiologic failure, or clinical failure. The primary outcome was treatment
failure and 30- or 28-day all-cause mortality. Secondary outcomes were microbiologic failure
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and clinical failure. Treatment failure was defined as any combination of death, clinical
non-improvement or worsening, need for antibiotic modification, microbiologic failure or
recurrence of bacteremia. No specific patient populations or infections were excluded.

4.3. Data Extraction

The analysis of nephrotoxicity in the extraction of data comprised the following
information: characteristics of the literature (year of publication, name of first author, region
or country of study); study design (trial type, eligibility criteria, patient population, and
sample size); study outcomes of vancomycin exposure (measurement of AUC24 or Ctrough,
method of AUC24 calculation, timing of AUC24 calculation and Ctrough collection relative
to start of therapy) and nephrotoxicity (continuous (incidence rate) and/or binary (yes vs.
no) nephrotoxicity outcome) per different evaluation criterion like the 2009 vancomycin
consensus [4], KDIGO [27], AKIN [28] or RIFLE [29] guidelines), and patient characteristics
(age, weight, renal function, proportion of male patients, coadministration of nephrotoxins
and critically ill /intensive care unit status).

For the efficacy analysis, the data extraction involved literature characteristics, the
study design as mentioned above, study outcomes of exposure parameters (measurement
of AUC24/MIC or Ctrough, method of AUC24 calculation, timing of AUC24 calculation and
Ctrough collection relative to start of therapy, method of MIC determination) and efficacy
(the continuous and/or binary clinical outcome measures), and patient characteristics
(age, weight, renal function, proportion of male patients and critically ill/intensive care
unit status).

Data extraction was conducted independently by two authors who applied the inclu-
sion criteria. In case of any disagreements, alignment was achieved through consensus.

4.4. Data Handling

Two types of outcomes (all-cause mortality, treatment failure, microbiologic failure,
clinical failure and nephrotoxicity) were collected, i.e., proportion (incidence rate) and
binary variables (yes or no). The mean values of AUC24/MIC, AUC24 and Ctrough were
extracted and treated as continuous variables, except for the articles that only reported
median values, which were used instead.

The nephrotoxicity outcome was analyzed, stratified by the evaluation criterion (i.e.,
2009 vancomycin consensus, KDIGO, AKIN and RIFLE guidelines). A subgroup analysis
of patients in the intensive care unit and without receipt of dialysis was also performed
separately, provided that enough studies (>5) were available.

The efficacy outcomes, including all-cause mortality, treatment failure, microbiologic
failure and clinical failure, were analyzed separately. To account for potential variations
in MIC results due to the use of different MIC testing methods, the analysis was stratified
by the MIC testing method. Due to the small sample size of articles reporting MIC testing
methods of agar dilution, VITEK 2 and MicroScan, only articles reporting BMD and the
Etest method were included. Additionally, a subgroup analysis of only MRSA-infected
individuals was performed separately.

4.5. Analytical Method

An exploratory analysis revealed a trend of gradually increasing outcome proportions
along with increasing vancomycin indicators, reaching a plateau at higher levels. The
distributional characteristics of these data were described by the Emax model (Equation (1)).
A fit-for-purpose simulation using the typical values of parameters from the Emax model
was conducted to obtain the incidence of outcome at a certain value of Ctrough or AUC24:

E =
Emax·Cγ

ECγ
50 + Cγ

(1)

where Emax represents the maximum effect, while EC50 represents the indicators required
to achieve half the Emax. The slope factor (also known as Hill factor), represented by
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γ, measures the sensitivity of the response to the indicator’s change, determining the
steepness of the curve.

Binary outcomes were analyzed using a logistic regression model (Equation (2)). A
univariate logistic regression analysis was first performed to assess the relationship between
the vancomycin indicators (as a continuous variable) and the outcomes. Optimal cut-off
points were derived from the ROC curves using Youden’s index [30]. The study employed
a univariate logistic regression analysis to evaluate patient characteristics, such as age and
renal function, as potential factors influencing the outcome. Missing data were imputed
by using the median value of the entire study population, and variables with missing
proportions exceeding 30% were excluded from evaluation. A corresponding odds ratio
(OR) in relation to the reference group, along with the 95% confidence interval (CI) and
p-values, were calculated for each univariate logistic regression model. Variables with a
p value of <0.05 in the univariate analysis were included in the multivariate analysis. To
evaluate the discrimination of the logistic regression model, ROC curves were constructed,
and AUROC was calculated as follows:

log
[

p
1 − p

]
= β0 + β1X1 + · · ·+ βkXk (2)

where p is the probability that an observation is in a specified category of the binary Y
variable, p

1−p describes the odds of being in the current category of interest, the (natural)

logarithm of the odds log
[

p
1−p

]
is a linear function of the X variables (and is often called the

log odds). This is also referred to as the logit transformation of the probability of success.
β0 is the coefficient on the constant term, X is the independent variable(s), and βk is the
coefficient on the kth independent variable.

The data management, all the analysis, simulation and plotting were carried out
using the R software (version 4.2.0, Comprehensive R Network, http://cran.r-project.org/,
accessed on 9 December 2023).

5. Conclusions

In conclusion, our quantitative meta-analysis has provided evidence of the correlation
between vancomycin Ctrough and nephrotoxicity incidence. The findings support that
monitoring Ctrough is still beneficial and can be a valuable approach in clinical practice,
particularly when the concentration exceeds 15 mg/L. Ctrough can serve as a surrogate
for AUC24 to some extent. No definite cut-off was determined for AUC24 in relation to
nephrotoxicity, and likewise, for Ctrough and AUC24/MIC in terms of efficacy, underscoring
the need for additional investigations.
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mdpi.com/article/10.3390/antibiotics13060497/s1, Table S1. Methodological characteristics of the
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toxicity; Table S3. Methodological characteristics of the included studies for efficacy; Table S4. Patients’
characteristics in included studies for efficacy. Figure S1. Probability of nephrotoxicity for the trough
category; Figure S2. Receiver operating characteristic curve of predictive level of vancomycin trough
concentration for nephrotoxicity; Figure S3. Logistic regression illustrating the association of the
probability of experiencing nephrotoxicity and as a function of vancomycin trough concentrations in
patients without any form of dialysis; Figure S4. Correlation between nephrotoxicity and AUC24;
Figure S5. Logistic regression illustrating the association of the treatment success rates and as a
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