RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria
Abstract
:1. Introduction
2. RND Multi-Drug Efflux Pumps and Their Regulation
3. Induction of Resistance
3.1. Bile
Molecules | Classification | Pumps | Strains | Mechanisms | References |
---|---|---|---|---|---|
Chenodeoxycholate | Bile salt | AcrAB-TolC | E. coli | Rob activation | [54] |
CmeABC | C. jejuni | CmeR interaction | [52] | ||
Chenodeoxycholic acid | Bile acid | AcrAB-TolC | E. coli | Rob activation | [53] |
S. enterica | RamR interaction | [48] | |||
MexAB-OprM | P. aeruginosa | * | [61] | ||
Cholate | Bile salt | AcrAB-TolC | E. coli | Rob activation | [52] |
CmeABC | C. jejuni | CmeR interaction | [54,56] | ||
Choleate | Bile salt | AcrAB-TolC | S. enterica | RamA activation | [45] |
CmeABC | C. jejuni | CmeR interaction | [54] | ||
Cholic acid | Bile acid | AcrAB-TolC | S. enterica | RamA activation and RamR interaction | [45,48] |
CmeABC | C. jejuni | CmeR interaction | [54] | ||
Decanoate | Fatty acids | AcrAB-TolC | E. coli | Rob activation | [50,52,53] |
Deoxycholate | Bile salt | AcrAB-TolC | E. coli | Rob activation | [52] |
S. enterica | RamR interaction | [46] | |||
CmeABC | C. jejuni | CmeR interaction | [54] | ||
Deoxycholic acid | Bile acid | AcrAB-TolC | S. enterica | RamA activation | [45] |
Glycochenodeoxycholate | Bile salt | AcrAB-TolC | E. coli | Rob activation | [52] |
Glycocholate | Bile salt | CmeABC | C. jejuni | CmeR interaction | [54] |
Taurocholate | Bile salt | AcrAB-TolC | E. coli | Rob activation | [52] |
CmeABC | C. jejuni | CmeR interaction | [54,55,56] | ||
Taurodeoxycholate | Bile salt | CmeABC | C. jejuni | CmeR interaction | [54] |
3.2. Antibiotics
Molecules | Classification | Pumps | Strains | Mechanisms | References |
---|---|---|---|---|---|
Amikacin | Aminoglycoside | MexAB-OprM | P. aeruginosa | * | [67,80] |
Azithromycin | Macrolide | MexAB-OprM | P. aeruginosa | * | [67] |
MexXY-OprM | Protein synthesis inhibition | [71] | |||
Azlocillin | Penicillin | MexAB-OprM | P. aeruginosa | * | [80] |
SmeYZ | S. maltophilia | [73] | |||
Chloramphenicol | Phenicol | CeoAB-OpcM | B. cenocepacia | ceoR induction | [69] |
AcrAB-TolC | E. coli | marA induction | [74] | ||
MexEF-OprN | P. aeruginosa | MexT-dependent (nitrosative stress) | [68] | ||
MexXY-OprM | Protein synthesis inhibition | [71,72] | |||
TtgABC | P. putida | TtgR interaction | [62,65] | ||
SmeYZ | S. maltophilia | Protein synthesis inhibition | [73] | ||
Chlortetracycline | Tetracycline | SmeVWX | S. maltophilia | * | [73] |
Cinoxacin | Penicillin | SmeYZ | S. maltophilia | * | [73] |
SmeVWX | |||||
Cloxacillin | Penicillin | SmeVWX | S. maltophilia | * | [73] |
Ethionamide | Antitubercular agent | MexAB-OprM | P. aeruginosa | * | [80] |
Erythromycin | Macrolide | MexAB-OprM | P. aeruginosa | * | [67] |
MexXY-OprM | Protein synthesis inhibition | [70,71,72] | |||
SmeYZ | S. maltophilia | [73] | |||
SmeVWX | * | ||||
Fusidic acid | Fusidanine | SmeYZ | S. maltophilia | Protein synthesis inhibition | [73] |
Gentamicin | Aminoglycoside | MexAB-OprM | P. aeruginosa | AmgRS activation | [67] |
MexXY-OprM | Protein synthesis inhibition | [70,71] | |||
Kanamycin | Aminoglycoside | MexAB-OprM | P. aeruginosa | AmgRS activation | [67] |
MexXY-OprM | Protein synthesis inhibition | [72] | |||
Lincomycin | Lincosamide | SmeYZ | S. maltophilia | Protein synthesis inhibition | [73] |
Meropenem | Carbapenem | AcrAB-TolC | E. coli | marA induction | [79] |
Neomycin | Aminoglycoside | MexAB-OprM | P. aeruginosa | AmgRS activation | [67] |
Novobiocin | Aminocoumarine | MexAB-OprM | P. aeruginosa | NalD interaction | [66] |
Oleandomycin | Macrolide | SmeYZ | S. maltophilia | Protein synthesis inhibition | [73] |
Paromycin | Aminoglycoside | MexAB-OprM | P. aeruginosa | AmgRS activation | [67] |
Penimepicycline | Tetracycline | SmeYZ | S. maltophilia | Protein synthesis inhibition | [73] |
SmeVWX | * | ||||
Puromycin | Aminoglycoside | SmeYZ | S. maltophilia | Protein synthesis inhibition | [73] |
Rolitetracycline | Tetracycline | SmeYZ | S. maltophilia | Protein synthesis inhibition | [73] |
Spectinomycin | Aminoglycoside | MexXY-OprM | P. aeruginosa | Protein synthesis inhibition | [71] |
Spiramycin | Macrolide | SmeYZ | S. maltophilia | Protein synthesis inhibition | [73] |
SmeVWX | * | ||||
Sulfadiazine | Sulfonamide | SmeYZ | S. maltophilia | * | [73] |
Sulfathiazole | Sulfonamide | SmeYZ | S. maltophilia | * | [73] |
Tetracycline | Tetracycline | AcrAB-TolC | E. coli | marA induction | [74,75] |
AcrAD-TolC | * | ||||
AcrEF-TolC | |||||
MexXY-OprM | P. aeruginosa | Protein synthesis inhibition | [70,71,72] | ||
TtgABC | P. putida | TtgR interaction | [62,65] | ||
Tylosin | Macrolide | SmeYZ | S. maltophilia | Protein synthesis inhibition | [73] |
SmeVWX | * | ||||
Vancomycin | Glycopeptide | SmeVWX | S. maltophilia | * | [73] |
3.3. Biocides
Molecules | Classification | Pumps | Strains | Mechanisms | References |
---|---|---|---|---|---|
2,4-Dichlorophenol | Herbicide precursor | MexAB-OprM | P. aeruginosa | NalC interaction | [87,89] |
AcrAB-TolC | E. coli | MarR interaction | [96] | ||
2,4-Dichlorophenoxyacetic acid | Herbicide | AcrAB-TolC | E. coli | marRAB induction | [92,95] |
S. enterica | * | [95] | |||
2,4,6-Trichlorophenol | Fungicide | MexAB-OprM | P. aeruginosa | NalC interaction | [87,89] |
4,4′-Dipyridyl | Degradation of the herbicide paraquat | AcrAB-TolC | E. coli | Rob activation | [51,53] |
Acriflavine | Antiseptic (fungal infections of aquarium fish) | MexAB-OprM | P. aeruginosa | * | [80] |
MexCD-OprJ | [80,83] | ||||
Benzethonium chloride | Cationic surfactant; disinfectant; quaternary ammonium | MexCD-OprJ | P. aeruginosa | Membrane stress (AlgU induction) | [80] |
Benzalkonium chloride | Cationic surfactant; disinfectant; quaternary ammonium | MexCD-OprJ | P. aeruginosa | Membrane stress (AlgU induction) | [83] |
Boric acid | Insecticide | SmeYZ | S. maltophilia | Protein synthesis inhibition | [73] |
Cetylpyridinium chloride | Antiseptic (personal care products); topical anti-infective; pharmaceutical preservative; quaternary ammonium | MexCD-OprJ | P. aeruginosa | Membrane stress (AlgU induction) | [80] |
SmeYZ | S. maltophilia | * | [73] | ||
SmeVWX | |||||
Dicamba | Herbicide | AcrAB-TolC | E. coli | * | [95] |
S. enterica | |||||
Dodecyltrimethylammonium bromide | Detergent; surface active agent | SmeVWX | S. maltophilia | * | [73] |
Dodine | Fungicide | MexCD-OprJ | P. aeruginosa | * | [80] |
Glyphosate | Herbicide | AcrAB-TolC | E. coli | * | [95] |
S. enterica | |||||
Ortho-benzyl-parachlorophenol | Disinfectant | MexAB-OprM | P. aeruginosa | * | [89] |
Paraquat | Herbicide; quaternary ammonium | AcrAB-TolC | E. coli | MarR interaction | [97] |
S. enterica | SoxS induction | [93] | |||
SmeVWX | S. maltophilia | * | [73] | ||
Pentachlorophenol | Herbicide | MexAB-OprM | P. aeruginosa | NalC interaction Oxydative stress (MexR oxidation) | [80,86,87,88,89] |
MexJKL | * | [86] | |||
Poly(hexamethylenebiguanide) hydrochloride | Disinfectant | MexCD-OprJ | P. aeruginosa | Membrane stress (AlgU induction) | [84] |
Sodium cyanate | Briding agent between reagents in the production of herbicides | MexAB-OprM | P. aeruginosa | * | [80] |
MexCD-OprJ | |||||
Sodium metaborate | Herbicide | SmeYZ | S. maltophilia | * | [73] |
Triclosan | Antiseptic; disinfectant | MexAB-OprM | P. aeruginosa | NalC interaction | [81] |
SmeDEF | S. maltophilia | SmeT interaction | [87,89] |
3.4. Drugs
Molecules | Classification | Pumps | Strains | Mechanisms | References |
---|---|---|---|---|---|
9′-Aminoacridine | Topical antiseptic (eye drops) | MexAB-OprM | P. aeruginosa | * | [80] |
MexCD-OprJ | |||||
Acetaminophen (paracetamol) | Antipyretic; non-narcotic analgesic | AcrAB-TolC | E. coli | marA induction | [97,98,103] |
Acetyl salicyclic acid (aspirin) | NSAID; antipyretic; analgesic; platelet aggregation inhibitors | AcrAB-TolC | E. coli | marA induction | [98,103] |
Alexidine | Disinfectant (skin and mucous membrane) | MexCD-OprJ | P. aeruginosa | Membrane stress (AlgU induction) | [80,84] |
Amitriptyline | Non-narcotic analgesic | MexCD-OprJ | P. aeruginosa | * | [80] |
Atropine | Anesthetic; adjuvant | MexCD-OprJ | P. aeruginosa | * | [80] |
Cetrimide 1 | Local antiseptic; quaternary ammonium | MexCD-OprJ | P. aeruginosa | Membrane stress (AlgU induction) | [84] |
Chlorhexidine | Antiseptic (dermatology and dental) | MexCD-OprJ | P. aeruginosa | Membrane stress (AlgU induction) | [83,84] |
Chloroxylenol | Topical disinfectant | MexAB-OprM | P. aeruginosa | * | [89] |
Chlorquinaldol | Antiseptic (dermatology) | SmeVWX | S. maltophilia | * | [73] |
Clofibric acid | Anticholesteremic | AcrAB-TolC | E. coli | marA induction | [92] |
Clioquinol | Antifungal and antiprotozoal drug | SmeVWX | S. maltophilia | Thiol reactivity | [73] |
Diamide | Radiation-sensitizing agent (radiation therapy) | MexAB-OprM | P. aeruginosa | AmgRS activation | [67] |
Dequalinium chloride | Antiseptic; disinfectant; quaternary ammonium | MexCD-OprJ | P. aeruginosa | Membrane stress (AlgU induction) | [80,85] |
AcrAB-TolC | S. enterica | RamR interaction | [94] | ||
SmeYZ | S. maltophilia | * | [73] | ||
Domiphen bromide | Antiseptic; quaternary ammonium | MexCD-OprJ | P. aeruginosa | Membrane stress (AlgU induction) | [80] |
Ethacrynic acid | Diuretic | AcrAB-TolC | E. coli | marA induction | [92] |
Ibuprofen | NSAID; antipyretic; non-narcotic analgesic | AcrAB-TolC | E. coli | marA induction | [103] |
Menadione | Vitamin K3 | AcrAB-TolC | E. coli | MarR interaction | [96,97] |
SmeVWX | S. maltophilia | Thiol reactivity | [73,107] | ||
Orphenadrine | Skeletal muscle relaxant (Parkinson’s) | MexCD-OprJ | P. aeruginosa | * | [80] |
Plumbagin | Antineoplastic agent (chemotherapy); adjuvant; anticoagulant; contraceptive agent; cardiotonic agent | AcrAB-TolC | E. coli | MarR interaction | [96,97] |
SmeVWX | S. maltophilia | * | [107] | ||
Procaine | Local anesthetic | MexCD-OprJ | P. aeruginosa | * | [80] |
Proflavine | Topical antiseptic; acriflavine derivative | AcrAB-TolC | E. coli | AcrR interaction | [108] |
MexAB-OprM | P. aeruginosa | * | [80] | ||
MexCD-OprJ | |||||
Propanolol | -blocker (hypertension, anxiety, panic attacks, etc.) | MexCD-OprJ | P. aeruginosa | * | [80] |
Protamine sulfate | Anticoagulant | SmeYZ | S. maltophilia | * | [73] |
SmeVWX | |||||
Puromycin | Antineoplastic agent (chemotherapy) | SmeYZ | S. maltophilia | * | [73] |
Rhodamine 6G | Antineoplastic agent (chemotherapy) | AcrAB-TolC | S. enterica | RamR interaction | [94] |
E. coli | Rob interaction | [53] | |||
AcrR interaction | [108] | ||||
MexCD-OprJ | P. aeruginosa | * | [83,109] | ||
S-nitrosoglutathione | Nitric oxide donors (asthma, CF 2, embolization prevention, or diabetic leg ulcers) | MexEF-OprN | P. aeruginosa | Nitrosative stress | [68] |
Sodium salicylate | NSAID; antipyretic; analgesic | CeoAB-OpcM | B. cenocepacia | * | [69] |
CmeABC | C. jejuni | CmeR interaction | [55] | ||
AcrAB-TolC | E. coli | MarR interaction | [97,98,99,104] | ||
S. enterica | [99] | ||||
Sodium selenite | Phase I clinical trial in terminal cancer patients | SmeVWX | S. maltophilia | Thiol reactivity | [73] |
Tetraphenylphosphonium chloride | Antineoplastic agent (chemotherapy) | MexCD-OprJ | P. aeruginosa | * | [83,109] |
3.5. Food and Cosmetic Additives
Molecules | Classification | Pumps | Strains | Mechanisms | References |
---|---|---|---|---|---|
Acesulfame potassium | Food additive; artificial sweetener | AcrAB-TolC | E. coli | * | [110] |
K. pneumoniae | |||||
Aspartame | Food additive; artificial sweetener | AcrAB-TolC | E. coli | * | [110] |
K. pneumoniae | |||||
Saccharin | Food additive; artificial sweetener | AcrAB-TolC | E. coli | * | [110] |
K. pneumoniae | |||||
Sucralose | Food additive; artificial sweetener | AcrAB-TolC | E. coli | * | [110] |
K. pneumoniae | |||||
Sodium benzoate | Food preservative; antifungal agent | AcrAB-TolC | E. coli | * | [97,98] |
3.6. Natural Compounds
Molecules | Classification | Pumps | Strains | Mechanisms | References |
---|---|---|---|---|---|
Berberine | Food supplement | AcrAB-TolC | S. enterica | RamR interaction | [94] |
Cadmium | Heavy metal | CzcABC | P. aeruginosa | CzcRS activation | [119,120] |
Cinnamaldehyde | Component of cinnamon oil | MexAB-OprM | P. aeruginosa | NalC interaction | [112,113] |
MexCD-OprJ | * | ||||
MexEF-OprN | |||||
MexXY-OprM | |||||
Cinnamate | Component of cinnamon oil | AcrAB-TolC | E. coli | marRAB induction | [98] |
Citral | Component of many commercial oils (lemon glass, verbena, etc.); flavoring agents and fragrance | MexEF-OprN | P. aeruginosa | * | [114] |
MexXY-OprM | |||||
Cobalt | Heavy metal | CzcABC | P. aeruginosa | CzcRS activation | [119,120] |
Copper | Metal cation | CusCBA | E. coli | CusRS activation | [116,117] |
K. pneumoniae | |||||
CrdABC | H. pylori | CrdABC activation | [118] | ||
CzcABC | P. aeruginosa | CzcRS activation | [119,120] | ||
Iron | Metal cation | MtrCDE | N. gonorrhoeae | Repression by MpeR of the repressor MtrR | [121] |
Methylglyoxal | Found in honey and soft drinks | MexEF-OprN | P. aeruginosa | * | [112] |
Sanguinarine | Natural alkaloid; toothpaste, mouthwash | MexAB-OprM | P. aeruginosa | * | [80] |
MexCD-OprJ | |||||
Zinc | Metal cation | CzcABC | P. aeruginosa | CzcRS activation | [119,120,125] |
MdtABC | E. coli | BaeSR activation | [124] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Antimicrobial Resistance Collaborators. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef]
- Schaenzer, A.J.; Wright, G.D. Antibiotic Resistance by Enzymatic Modification of Antibiotic Targets. Trends Mol. Med. 2020, 26, 768–782. [Google Scholar] [CrossRef]
- Masi, M.; Winterhalter, M.; Pagès, J.-M. Outer Membrane Porins. Subcell Biochem. 2019, 92, 79–123. [Google Scholar] [CrossRef]
- Vergalli, J.; Bodrenko, I.V.; Masi, M.; Moynié, L.; Acosta-Gutiérrez, S.; Naismith, J.H.; Davin-Regli, A.; Ceccarelli, M.; van den Berg, B.; Winterhalter, M.; et al. Porins and Small-Molecule Translocation across the Outer Membrane of Gram-Negative Bacteria. Nat. Rev. Microbiol. 2020, 18, 164–176. [Google Scholar] [CrossRef]
- Grimsey, E.M.; Weston, N.; Ricci, V.; Stone, J.W.; Piddock, L.J.V. Overexpression of RamA, Which Regulates Production of the Multidrug Resistance Efflux Pump AcrAB-TolC, Increases Mutation Rate and Influences Drug Resistance Phenotype. Antimicrob. Agents Chemother. 2020, 64, e02460-19. [Google Scholar] [CrossRef]
- El Meouche, I.; Dunlop, M.J. Heterogeneity in Efflux Pump Expression Predisposes Antibiotic-Resistant Cells to Mutation. Science 2018, 362, 686–690. [Google Scholar] [CrossRef]
- Mazzariol, A.; Cornaglia, G.; Nikaido, H. Contributions of the AmpC Beta-Lactamase and the AcrAB Multidrug Efflux System in Intrinsic Resistance of Escherichia coli K-12 to Beta-Lactams. Antimicrob. Agents Chemother. 2000, 44, 1387–1390. [Google Scholar] [CrossRef]
- Ferrand, A.; Vergalli, J.; Bosi, C.; Pantel, A.; Pagès, J.-M.; Davin-Regli, A. Contribution of Efflux and Mutations in Fluoroquinolone Susceptibility in MDR Enterobacterial Isolates: A Quantitative and Molecular Study. J. Antimicrob. Chemother. 2023, 78, 1532–1542. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.-Y.; Lupo, A.; Schink, A.-K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 10–1128. [Google Scholar] [CrossRef]
- Huang, L.; Wu, C.; Gao, H.; Xu, C.; Dai, M.; Huang, L.; Hao, H.; Wang, X.; Cheng, G. Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Antibiotics 2022, 11, 520. [Google Scholar] [CrossRef]
- Hernando-Amado, S.; Blanco, P.; Alcalde-Rico, M.; Corona, F.; Reales-Calderón, J.A.; Sánchez, M.B.; Martínez, J.L. Multidrug Efflux Pumps as Main Players in Intrinsic and Acquired Resistance to Antimicrobials. Drug Resist. Updat. 2016, 28, 13–27. [Google Scholar] [CrossRef]
- Bialvaei, A.Z.; Rahbar, M.; Hamidi-Farahani, R.; Asgari, A.; Esmailkhani, A.; Dashti, Y.M.; Soleiman-Meigooni, S. Expression of RND Efflux Pumps Mediated Antibiotic Resistance in Pseudomonas Aeruginosa Clinical Strains. Microb. Pathog. 2021, 153, 104789. [Google Scholar] [CrossRef]
- Puja, H.; Comment, G.; Chassagne, S.; Plésiat, P.; Jeannot, K. Coordinate Overexpression of Two RND Efflux Systems, ParXY and TtgABC, Is Responsible for Multidrug Resistance in Pseudomonas Putida. Environ. Microbiol. 2020, 22, 5222–5231. [Google Scholar] [CrossRef]
- Chang, L.-L.; Chen, H.-F.; Chang, C.-Y.; Lee, T.-M.; Wu, W.-J. Contribution of Integrons, and SmeABC and SmeDEF Efflux Pumps to Multidrug Resistance in Clinical Isolates of Stenotrophomonas Maltophilia. J. Antimicrob. Chemother. 2004, 53, 518–521. [Google Scholar] [CrossRef]
- García-León, G.; Ruiz de Alegría Puig, C.; García de la Fuente, C.; Martínez-Martínez, L.; Martínez, J.L.; Sánchez, M.B. High-Level Quinolone Resistance Is Associated with the Overexpression of smeVWX in Stenotrophomonas Maltophilia Clinical Isolates. Clin. Microbiol. Infect. 2015, 21, 464–467. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Huang, Y.-W.; Chen, S.-J.; Chang, C.-W.; Yang, T.-C. The SmeYZ Efflux Pump of Stenotrophomonas Maltophilia Contributes to Drug Resistance, Virulence-Related Characteristics, and Virulence in Mice. Antimicrob. Agents Chemother. 2015, 59, 4067–4073. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, M.; Yang, W.; Fang, Y.; Wang, G.; Hou, F. A Seventeen-Year Observation of the Antimicrobial Susceptibility of Clinical Campylobacter Jejuni and the Molecular Mechanisms of Erythromycin-Resistant Isolates in Beijing, China. Int. J. Infect. Dis. 2016, 42, 28–33. [Google Scholar] [CrossRef]
- Podnecky, N.L.; Rhodes, K.A.; Schweizer, H.P. Efflux Pump-Mediated Drug Resistance in Burkholderia. Front. Microbiol. 2015, 6, 305. [Google Scholar] [CrossRef]
- Alav, I.; Kobylka, J.; Kuth, M.S.; Pos, K.M.; Picard, M.; Blair, J.M.A.; Bavro, V.N. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem. Rev. 2021, 121, 5479–5596. [Google Scholar] [CrossRef]
- Murakami, S.; Nakashima, R.; Yamashita, E.; Matsumoto, T.; Yamaguchi, A. Crystal Structures of a Multidrug Transporter Reveal a Functionally Rotating Mechanism. Nature 2006, 443, 173–179. [Google Scholar] [CrossRef]
- Seeger, M.A.; Schiefner, A.; Eicher, T.; Verrey, F.; Diederichs, K.; Pos, K.M. Structural Asymmetry of AcrB Trimer Suggests a Peristaltic Pump Mechanism. Science 2006, 313, 1295–1298. [Google Scholar] [CrossRef]
- Seeger, M.A.; Diederichs, K.; Eicher, T.; Brandstätter, L.; Schiefner, A.; Verrey, F.; Pos, K.M. The AcrB Efflux Pump: Conformational Cycling and Peristalsis Lead to Multidrug Resistance. Curr. Drug Targets 2008, 9, 729–749. [Google Scholar] [CrossRef]
- Takatsuka, Y.; Nikaido, H. Covalently Linked Trimer of the AcrB Multidrug Efflux Pump Provides Support for the Functional Rotating Mechanism. J. Bacteriol. 2009, 191, 1729–1737. [Google Scholar] [CrossRef]
- Revol-Tissot, J.; Boyer, G.; Alibert, S. Molecular Determinant Deciphering of MIC-Guided RND Efflux Substrates in E. Coli. Front. Drug Discov. 2024, 4, 1326121. [Google Scholar] [CrossRef]
- Blair, J.M.A.; Richmond, G.E.; Piddock, L.J.V. Multidrug Efflux Pumps in Gram-Negative Bacteria and Their Role in Antibiotic Resistance. Future Microbiol. 2014, 9, 1165–1177. [Google Scholar] [CrossRef]
- Ferrand, A.; Vergalli, J.; Pagès, J.-M.; Davin-Regli, A. An Intertwined Network of Regulation Controls Membrane Permeability Including Drug Influx and Efflux in Enterobacteriaceae. Microorganisms 2020, 8, 833. [Google Scholar] [CrossRef]
- Du, D.; Wang-Kan, X.; Neuberger, A.; van Veen, H.W.; Pos, K.M.; Piddock, L.J.V.; Luisi, B.F. Multidrug Efflux Pumps: Structure, Function and Regulation. Nat. Rev. Microbiol. 2018, 16, 523–539. [Google Scholar] [CrossRef]
- Colclough, A.L.; Scadden, J.; Blair, J.M.A. TetR-Family Transcription Factors in Gram-Negative Bacteria: Conservation, Variation and Implications for Efflux-Mediated Antimicrobial Resistance. BMC Genom. 2019, 20, 731. [Google Scholar] [CrossRef]
- Harmon, D.E.; Ruiz, C. The Multidrug Efflux Regulator AcrR of Escherichia coli Responds to Exogenous and Endogenous Ligands To Regulate Efflux and Detoxification. mSphere 2022, 7, e0047422. [Google Scholar] [CrossRef]
- Grinnage-Pulley, T.; Mu, Y.; Dai, L.; Zhang, Q. Dual Repression of the Multidrug Efflux Pump CmeABC by CosR and CmeR in Campylobacter Jejuni. Front. Microbiol. 2016, 7, 1097. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, P.; Alonso, A.; Martinez, J.L. Regulatory Regions of smeDEF in Stenotrophomonas Maltophilia Strains Expressing Different Amounts of the Multidrug Efflux Pump SmeDEF. Antimicrob. Agents Chemother. 2004, 48, 2274–2276. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, P.; Rojo, F.; Martínez, J.L. Transcriptional Regulation of mexR, the Repressor of Pseudomonas Aeruginosa mexAB-oprM Multidrug Efflux Pump. FEMS Microbiol. Lett. 2002, 207, 63–68. [Google Scholar] [CrossRef]
- Duque, E.; Segura, A.; Mosqueda, G.; Ramos, J.L. Global and Cognate Regulators Control the Expression of the Organic Solvent Efflux Pumps TtgABC and TtgDEF of Pseudomonas Putida. Mol. Microbiol. 2001, 39, 1100–1106. [Google Scholar] [CrossRef]
- Morita, Y.; Cao, L.; Gould, V.C.; Avison, M.B.; Poole, K. nalD Encodes a Second Repressor of the mexAB-oprM Multidrug Efflux Operon of Pseudomonas Aeruginosa. J. Bacteriol. 2006, 188, 8649–8654. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Srikumar, R.; Poole, K. MexAB-OprM Hyperexpression in NalC-Type Multidrug-Resistant Pseudomonas Aeruginosa: Identification and Characterization of the nalC Gene Encoding a Repressor of PA3720-PA3719. Mol. Microbiol. 2004, 53, 1423–1436. [Google Scholar] [CrossRef]
- Daigle, D.M.; Cao, L.; Fraud, S.; Wilke, M.S.; Pacey, A.; Klinoski, R.; Strynadka, N.C.; Dean, C.R.; Poole, K. Protein Modulator of Multidrug Efflux Gene Expression in Pseudomonas Aeruginosa. J. Bacteriol. 2007, 189, 5441–5451. [Google Scholar] [CrossRef]
- Wilke, M.S.; Heller, M.; Creagh, A.L.; Haynes, C.A.; McIntosh, L.P.; Poole, K.; Strynadka, N.C.J. The Crystal Structure of MexR from Pseudomonas Aeruginosa in Complex with Its Antirepressor ArmR. Proc. Natl. Acad. Sci. USA 2008, 105, 14832–14837. [Google Scholar] [CrossRef]
- Köhler, T.; Epp, S.F.; Curty, L.K.; Pechère, J.C. Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas Aeruginosa. J. Bacteriol. 1999, 181, 6300–6305. [Google Scholar] [CrossRef]
- Duval, V.; Lister, I.M. MarA, SoxS and Rob of Escherichia coli—Global Regulators of Multidrug Resistance, Virulence and Stress Response. Int. J. Biotechnol. Wellness Ind. 2013, 2, 101–124. [Google Scholar] [CrossRef]
- De Gaetano, G.V.; Lentini, G.; Famà, A.; Coppolino, F.; Beninati, C. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. Antibiotics 2023, 12, 965. [Google Scholar] [CrossRef] [PubMed]
- Bhagirath, A.Y.; Li, Y.; Patidar, R.; Yerex, K.; Ma, X.; Kumar, A.; Duan, K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int. J. Mol. Sci. 2019, 20, 1781. [Google Scholar] [CrossRef] [PubMed]
- Tierney, A.R.; Rather, P.N. Roles of Two-Component Regulatory Systems in Antibiotic Resistance. Future Microbiol. 2019, 14, 533–552. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.H.-F.; Fraud, S.; Jones, M.; Peterson, S.N.; Poole, K. Mutational Activation of the AmgRS Two-Component System in Aminoglycoside-Resistant Pseudomonas Aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 2243–2251. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, E.; Yamaguchi, A.; Nishino, K. AcrAB Multidrug Efflux Pump Regulation in Salmonella enterica Serovar Typhimurium by RamA in Response to Environmental Signals. J. Biol. Chem. 2008, 283, 24245–24253. [Google Scholar] [CrossRef] [PubMed]
- Prouty, A.M.; Brodsky, I.E.; Falkow, S.; Gunn, J.S. Bile-Salt-Mediated Induction of Antimicrobial and Bile Resistance in Salmonella Typhimurium. Microbiology 2004, 150, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Baucheron, S.; Nishino, K.; Monchaux, I.; Canepa, S.; Maurel, M.-C.; Coste, F.; Roussel, A.; Cloeckaert, A.; Giraud, E. Bile-Mediated Activation of the acrAB and tolC Multidrug Efflux Genes Occurs Mainly through Transcriptional Derepression of ramA in Salmonella enterica Serovar Typhimurium. J. Antimicrob. Chemother. 2014, 69, 2400–2406. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, S.; Nakashima, R.; Sakurai, K.; Baucheron, S.; Giraud, E.; Doublet, B.; Cloeckaert, A.; Nishino, K. Crystal Structure of the Multidrug Resistance Regulator RamR Complexed with Bile Acids. Sci. Rep. 2019, 9, 177. [Google Scholar] [CrossRef] [PubMed]
- Kus, J.V.; Gebremedhin, A.; Dang, V.; Tran, S.-L.; Serbanescu, A.; Barnett Foster, D. Bile Salts Induce Resistance to Polymyxin in Enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 2011, 193, 4509–4515. [Google Scholar] [CrossRef]
- Ma, D.; Cook, D.N.; Alberti, M.; Pon, N.G.; Nikaido, H.; Hearst, J.E. Genes acrA and acrB Encode a Stress-Induced Efflux System of Escherichia coli. Mol. Microbiol. 1995, 16, 45–55. [Google Scholar] [CrossRef]
- Rosner, J.L.; Dangi, B.; Gronenborn, A.M.; Martin, R.G. Posttranscriptional Activation of the Transcriptional Activator Rob by Dipyridyl in Escherichia coli. J. Bacteriol. 2002, 184, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, E.Y.; Bertenthal, D.; Nilles, M.L.; Bertrand, K.P.; Nikaido, H. Bile Salts and Fatty Acids Induce the Expression of Escherichia coli AcrAB Multidrug Efflux Pump through Their Interaction with Rob Regulatory Protein. Mol. Microbiol. 2003, 48, 1609–1619. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wang, F.; Li, F.; Wang, L.; Xiong, Y.; Wen, A.; Jin, Y.; Jin, S.; Gao, F.; Feng, Z.; et al. Structural Basis of Transcription Activation by Rob, a Pleiotropic AraC/XylS Family Regulator. Nucleic Acids Res. 2022, 50, 5974–5987. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Cagliero, C.; Guo, B.; Barton, Y.-W.; Maurel, M.-C.; Payot, S.; Zhang, Q. Bile Salts Modulate Expression of the CmeABC Multidrug Efflux Pump in Campylobacter Jejuni. J. Bacteriol. 2005, 187, 7417–7424. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Pu, X.-Y.; Zhang, Q. Salicylate Functions as an Efflux Pump Inducer and Promotes the Emergence of Fluoroquinolone-Resistant Campylobacter Jejuni Mutants. Appl. Environ. Microbiol. 2011, 77, 7128–7133. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.-T.; Shen, Z.; Surana, P.; Routh, M.D.; Su, C.-C.; Zhang, Q.; Yu, E.W. Crystal Structures of CmeR-Bile Acid Complexes from Campylobacter Jejuni. Protein. Sci. 2011, 20, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Benson, V.S.; Müllerová, H.; Vestbo, J.; Wedzicha, J.A.; Patel, A.; Hurst, J.R. Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Investigators Associations between Gastro-Oesophageal Reflux, Its Management and Exacerbations of Chronic Obstructive Pulmonary Disease. Respir. Med. 2015, 109, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Rosen, R.; Lurie, M.; Kane, M.; DiFilippo, C.; Cohen, A.; Freiberger, D.; Boyer, D.; Visner, G.; Narvaez-Rivas, M.; Liu, E.; et al. Risk Factors for Bile Aspiration and Its Impact on Clinical Outcomes. Clin. Transl. Gastroenterol. 2021, 12, e00434. [Google Scholar] [CrossRef] [PubMed]
- Reen, F.J.; Woods, D.F.; Mooij, M.J.; Adams, C.; O’Gara, F. Respiratory Pathogens Adopt a Chronic Lifestyle in Response to Bile. PLoS ONE 2012, 7, e45978. [Google Scholar] [CrossRef]
- Reen, F.J.; Woods, D.F.; Mooij, M.J.; Chróinín, M.N.; Mullane, D.; Zhou, L.; Quille, J.; Fitzpatrick, D.; Glennon, J.D.; McGlacken, G.P.; et al. Aspirated Bile: A Major Host Trigger Modulating Respiratory Pathogen Colonisation in Cystic Fibrosis Patients. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1763–1771. [Google Scholar] [CrossRef]
- Reen, F.J.; Flynn, S.; Woods, D.F.; Dunphy, N.; Chróinín, M.N.; Mullane, D.; Stick, S.; Adams, C.; O’Gara, F. Bile Signalling Promotes Chronic Respiratory Infections and Antibiotic Tolerance. Sci. Rep. 2016, 6, 29768. [Google Scholar] [CrossRef] [PubMed]
- Terán, W.; Felipe, A.; Segura, A.; Rojas, A.; Ramos, J.-L.; Gallegos, M.-T. Antibiotic-Dependent Induction of Pseudomonas Putida DOT-T1E TtgABC Efflux Pump Is Mediated by the Drug Binding Repressor TtgR. Antimicrob. Agents Chemother. 2003, 47, 3067–3072. [Google Scholar] [CrossRef] [PubMed]
- Daniels, C.; Daddaoua, A.; Lu, D.; Zhang, X.; Ramos, J.-L. Domain Cross-Talk during Effector Binding to the Multidrug Binding TTGR Regulator. J. Biol. Chem. 2010, 285, 21372–21381. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Escamilla, A.M.; Fernandez-Ballester, G.; Morel, B.; Casares-Atienza, S.; Ramos, J.L. Molecular Binding Mechanism of TtgR Repressor to Antibiotics and Antimicrobials. PLoS ONE 2015, 10, e0138469. [Google Scholar] [CrossRef] [PubMed]
- Alguel, Y.; Meng, C.; Terán, W.; Krell, T.; Ramos, J.L.; Gallegos, M.-T.; Zhang, X. Crystal Structures of Multidrug Binding Protein TtgR in Complex with Antibiotics and Plant Antimicrobials. J. Mol. Biol. 2007, 369, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, D.; Zhou, W.; Sang, H.; Liu, X.; Ge, Z.; Zhang, J.; Lan, L.; Yang, C.-G.; Chen, H. Novobiocin Binding to NalD Induces the Expression of the MexAB-OprM Pump in Pseudomonas Aeruginosa. Mol. Microbiol. 2016, 100, 749–758. [Google Scholar] [CrossRef]
- Fruci, M.; Poole, K. Aminoglycoside-Inducible Expression of the mexAB-oprM Multidrug Efflux Operon in Pseudomonas Aeruginosa: Involvement of the Envelope Stress-Responsive AmgRS Two-Component System. PLoS ONE 2018, 13, e0205036. [Google Scholar] [CrossRef] [PubMed]
- Fetar, H.; Gilmour, C.; Klinoski, R.; Daigle, D.M.; Dean, C.R.; Poole, K. mexEF-oprN Multidrug Efflux Operon of Pseudomonas Aeruginosa: Regulation by the MexT Activator in Response to Nitrosative Stress and Chloramphenicol. Antimicrob. Agents Chemother. 2011, 55, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Nair, B.M.; Cheung, K.-J.; Griffith, A.; Burns, J.L. Salicylate Induces an Antibiotic Efflux Pump in Burkholderia Cepacia Complex Genomovar III (B. Cenocepacia). J. Clin. Investig. 2004, 113, 464–473. [Google Scholar] [CrossRef]
- Masuda, N.; Sakagawa, E.; Ohya, S.; Gotoh, N.; Tsujimoto, H.; Nishino, T. Contribution of the MexX-MexY-oprM Efflux System to Intrinsic Resistance in Pseudomonas Aeruginosa. Antimicrob. Agents Chemother. 2000, 44, 2242–2246. [Google Scholar] [CrossRef]
- Jeannot, K.; Sobel, M.L.; El Garch, F.; Poole, K.; Plésiat, P. Induction of the MexXY Efflux Pump in Pseudomonas Aeruginosa Is Dependent on Drug-Ribosome Interaction. J. Bacteriol. 2005, 187, 5341–5346. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Sobel, M.L.; Poole, K. Antibiotic Inducibility of the MexXY Multidrug Efflux System of Pseudomonas Aeruginosa: Involvement of the Antibiotic-Inducible PA5471 Gene Product. J. Bacteriol. 2006, 188, 1847–1855. [Google Scholar] [CrossRef] [PubMed]
- Blanco, P.; Corona, F.; Martínez, J.L. Biolog Phenotype Microarray Is a Tool for the Identification of Multidrug Resistance Efflux Pump Inducers. Antimicrob. Agents Chemother. 2018, 62, e01263-18. [Google Scholar] [CrossRef]
- Hächler, H.; Cohen, S.P.; Levy, S.B. marA, a Regulated Locus Which Controls Expression of Chromosomal Multiple Antibiotic Resistance in Escherichia coli. J. Bacteriol. 1991, 173, 5532–5538. [Google Scholar] [CrossRef] [PubMed]
- Viveiros, M.; Jesus, A.; Brito, M.; Leandro, C.; Martins, M.; Ordway, D.; Molnar, A.M.; Molnar, J.; Amaral, L. Inducement and Reversal of Tetracycline Resistance in Escherichia coli K-12 and Expression of Proton Gradient-Dependent Multidrug Efflux Pump Genes. Antimicrob. Agents Chemother. 2005, 49, 3578–3582. [Google Scholar] [CrossRef]
- Alekshun, M.N.; Levy, S.B.; Mealy, T.R.; Seaton, B.A.; Head, J.F. The Crystal Structure of MarR, a Regulator of Multiple Antibiotic Resistance, at 2.3 A Resolution. Nat. Struct. Biol. 2001, 8, 710–714. [Google Scholar] [CrossRef]
- Lopez, P.J.; Marchand, I.; Yarchuk, O.; Dreyfus, M. Translation Inhibitors Stabilize Escherichia coli mRNAs Independently of Ribosome Protection. Proc. Natl. Acad. Sci. USA 1998, 95, 6067–6072. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, P.-R.; Hoban, D.J.; Carmeli, Y.; Chen, S.-Y.; Desikan, S.; Alejandria, M.; Ko, W.-C.; Binh, T.Q. Consensus Review of the Epidemiology and Appropriate Antimicrobial Therapy of Complicated Urinary Tract Infections in Asia-Pacific Region. J. Infect. 2011, 63, 114–123. [Google Scholar] [CrossRef]
- Chetri, S.; Das, B.J.; Bhowmik, D.; Chanda, D.D.; Chakravarty, A.; Bhattacharjee, A. Transcriptional Response of Mar, Sox and Rob Regulon against Concentration Gradient Carbapenem Stress within Escherichia coli Isolated from Hospital Acquired Infection. BMC Res. Notes 2020, 13, 168. [Google Scholar] [CrossRef]
- Laborda, P.; Alcalde-Rico, M.; Blanco, P.; Martínez, J.L.; Hernando-Amado, S. Novel Inducers of the Expression of Multidrug Efflux Pumps That Trigger Pseudomonas Aeruginosa Transient Antibiotic Resistance. Antimicrob. Agents Chemother. 2019, 63, e01095-19. [Google Scholar] [CrossRef]
- Hernández, A.; Ruiz, F.M.; Romero, A.; Martínez, J.L. The Binding of Triclosan to SmeT, the Repressor of the Multidrug Efflux Pump SmeDEF, Induces Antibiotic Resistance in Stenotrophomonas Maltophilia. PLoS Pathog. 2011, 7, e1002103. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.; Moore, L.E. Cationic Antiseptics: Diversity of Action under a Common Epithet. J. Appl. Microbiol. 2005, 99, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Murata, T.; Mima, T.; Shiota, S.; Kuroda, T.; Mizushima, T.; Gotoh, N.; Nishino, T.; Tsuchiya, T. Induction of mexCD-oprJ Operon for a Multidrug Efflux Pump by Disinfectants in Wild-Type Pseudomonas Aeruginosa PAO1. J. Antimicrob. Chemother. 2003, 51, 991–994. [Google Scholar] [CrossRef] [PubMed]
- Fraud, S.; Campigotto, A.J.; Chen, Z.; Poole, K. MexCD-OprJ Multidrug Efflux System of Pseudomonas Aeruginosa: Involvement in Chlorhexidine Resistance and Induction by Membrane-Damaging Agents Dependent upon the AlgU Stress Response Sigma Factor. Antimicrob. Agents Chemother. 2008, 52, 4478–4482. [Google Scholar] [CrossRef] [PubMed]
- Hernando-Amado, S.; Laborda, P.; Martínez, J.L. Tackling Antibiotic Resistance by Inducing Transient and Robust Collateral Sensitivity. Nat. Commun. 2023, 14, 1723. [Google Scholar] [CrossRef] [PubMed]
- Muller, J.F.; Stevens, A.M.; Craig, J.; Love, N.G. Transcriptome Analysis Reveals That Multidrug Efflux Genes Are Upregulated to Protect Pseudomonas Aeruginosa from Pentachlorophenol Stress. Appl. Environ. Microbiol. 2007, 73, 4550–4558. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Cremers, C.M.; Jakob, U.; Love, N.G. Chlorinated Phenols Control the Expression of the Multidrug Resistance Efflux Pump MexAB-OprM in Pseudomonas Aeruginosa by Interacting with NalC. Mol. Microbiol. 2011, 79, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Starr, L.M.; Fruci, M.; Poole, K. Pentachlorophenol Induction of the Pseudomonas Aeruginosa mexAB-oprM Efflux Operon: Involvement of Repressors NalC and MexR and the Antirepressor ArmR. PLoS ONE 2012, 7, e32684. [Google Scholar] [CrossRef] [PubMed]
- Muller, J.F.; Ghosh, S.; Ikuma, K.; Stevens, A.M.; Love, N.G. Chlorinated Phenol-Induced Physiological Antibiotic Resistance in Pseudomonas Aeruginosa. FEMS Microbiol. Lett. 2015, 362, fnv172. [Google Scholar] [CrossRef]
- Chen, H.; Hu, J.; Chen, P.R.; Lan, L.; Li, Z.; Hicks, L.M.; Dinner, A.R.; He, C. The Pseudomonas Aeruginosa Multidrug Efflux Regulator MexR Uses an Oxidation-Sensing Mechanism. Proc. Natl. Acad. Sci. USA 2008, 105, 13586–13591. [Google Scholar] [CrossRef]
- Chen, H.; Yi, C.; Zhang, J.; Zhang, W.; Ge, Z.; Yang, C.-G.; He, C. Structural Insight into the Oxidation-Sensing Mechanism of the Antibiotic Resistance of Regulator MexR. EMBO Rep. 2010, 11, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Balagué, C.; Véscovi, E.G. Activation of Multiple Antibiotic Resistance in Uropathogenic Escherichia coli Strains by Aryloxoalcanoic Acid Compounds. Antimicrob. Agents Chemother. 2001, 45, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, E.; Shirosaka, I.; Yamaguchi, A.; Nishino, K. Regulation of the AcrAB Multidrug Efflux Pump in Salmonella enterica Serovar Typhimurium in Response to Indole and Paraquat. Microbiology 2011, 157, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, S.; Nikaido, E.; Nakashima, R.; Sakurai, K.; Fujiwara, D.; Fujii, I.; Nishino, K. The Crystal Structure of Multidrug-Resistance Regulator RamR with Multiple Drugs. Nat. Commun. 2013, 4, 2078. [Google Scholar] [CrossRef]
- Kurenbach, B.; Marjoshi, D.; Amábile-Cuevas, C.F.; Ferguson, G.C.; Godsoe, W.; Gibson, P.; Heinemann, J.A. Sublethal Exposure to Commercial Formulations of the Herbicides Dicamba, 2,4-Dichlorophenoxyacetic Acid, and Glyphosate Cause Changes in Antibiotic Susceptibility in Escherichia coli and Salmonella enterica Serovar Typhimurium. mBio 2015, 6, e00009-15. [Google Scholar] [CrossRef]
- Alekshun, M.N.; Levy, S.B. Alteration of the Repressor Activity of MarR, the Negative Regulator of the Escherichia coli marRAB Locus, by Multiple Chemicals in Vitro. J. Bacteriol. 1999, 181, 4669–4672. [Google Scholar] [CrossRef]
- Seoane, A.S.; Levy, S.B. Characterization of MarR, the Repressor of the Multiple Antibiotic Resistance (Mar) Operon in Escherichia coli. J. Bacteriol. 1995, 177, 3414–3419. [Google Scholar] [CrossRef]
- Cohen, S.P.; Levy, S.B.; Foulds, J.; Rosner, J.L. Salicylate Induction of Antibiotic Resistance in Escherichia coli: Activation of the Mar Operon and a Mar-Independent Pathway. J. Bacteriol. 1993, 175, 7856–7862. [Google Scholar] [CrossRef]
- Sulavik, M.C.; Dazer, M.; Miller, P.F. The Salmonella Typhimurium Mar Locus: Molecular and Genetic Analyses and Assessment of Its Role in Virulence. J. Bacteriol. 1997, 179, 1857–1866. [Google Scholar] [CrossRef]
- Randall, L.P.; Woodward, M.J. Multiple Antibiotic Resistance (Mar) Locus in Salmonella enterica Serovar Typhimurium DT104. Appl. Environ. Microbiol. 2001, 67, 1190–1197. [Google Scholar] [CrossRef]
- Chubiz, L.M.; Rao, C.V. Aromatic Acid Metabolites of Escherichia coli K-12 Can Induce the marRAB Operon. J. Bacteriol. 2010, 192, 4786–4789. [Google Scholar] [CrossRef] [PubMed]
- Hartog, E.; Menashe, O.; Kler, E.; Yaron, S. Salicylate Reduces the Antimicrobial Activity of Ciprofloxacin against Extracellular Salmonella enterica Serovar Typhimurium, but Not against Salmonella in Macrophages. J. Antimicrob. Chemother. 2010, 65, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Verma, T.; Bhaskarla, C.; Sadhir, I.; Sreedharan, S.; Nandi, D. Non-Steroidal Anti-Inflammatory Drugs, Acetaminophen and Ibuprofen, Induce Phenotypic Antibiotic Resistance in Escherichia coli: Roles of marA and acrB. FEMS Microbiol. Lett. 2018, 365, fny251. [Google Scholar] [CrossRef] [PubMed]
- Duval, V.; McMurry, L.M.; Foster, K.; Head, J.F.; Levy, S.B. Mutational Analysis of the Multiple-Antibiotic Resistance Regulator MarR Reveals a Ligand Binding Pocket at the Interface between the Dimerization and DNA Binding Domains. J. Bacteriol. 2013, 195, 3341–3351. [Google Scholar] [CrossRef]
- Martin, R.G.; Rosner, J.L. Binding of Purified Multiple Antibiotic-Resistance Repressor Protein (MarR) to Mar Operator Sequences. Proc. Natl. Acad. Sci. USA 1995, 92, 5456–5460. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Kunze, C.; Dunlop, M.J. Salicylate Increases Fitness Cost Associated with MarA-Mediated Antibiotic Resistance. Biophys. J. 2019, 117, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Blanco, P.; Corona, F.; Sánchez, M.B.; Martínez, J.L. Vitamin K3 Induces the Expression of the Stenotrophomonas Maltophilia SmeVWX Multidrug Efflux Pump. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Su, C.-C.; Rutherford, D.J.; Yu, E.W. Characterization of the Multidrug Efflux Regulator AcrR from Escherichia coli. Biochem. Biophys. Res. Commun. 2007, 361, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Komori, Y.; Mima, T.; Kuroda, T.; Mizushima, T.; Tsuchiya, T. Construction of a Series of Mutants Lacking All of the Four Major Mex Operons for Multidrug Efflux Pumps or Possessing Each One of the Operons from Pseudomonas Aeruginosa PAO1: MexCD-OprJ Is an Inducible Pump. FEMS Microbiol. Lett. 2001, 202, 139–143. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, J. Non-Caloric Artificial Sweeteners Exhibit Antimicrobial Activity against Bacteria and Promote Bacterial Evolution of Antibiotic Tolerance. J. Hazard. Mater. 2022, 433, 128840. [Google Scholar] [CrossRef]
- Elcocks, E.R.; Spencer-Phillips, P.T.N.; Adukwu, E.C. Rapid Bactericidal Effect of Cinnamon Bark Essential Oil against Pseudomonas Aeruginosa. J. Appl. Microbiol. 2020, 128, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Juarez, P.; Jeannot, K.; Plésiat, P.; Llanes, C. Toxic Electrophiles Induce Expression of the Multidrug Efflux Pump MexEF-OprN in Pseudomonas Aeruginosa through a Novel Transcriptional Regulator, CmrA. Antimicrob. Agents Chemother. 2017, 61, e00585-17. [Google Scholar] [CrossRef] [PubMed]
- Tetard, A.; Zedet, A.; Girard, C.; Plésiat, P.; Llanes, C. Cinnamaldehyde Induces Expression of Efflux Pumps and Multidrug Resistance in Pseudomonas Aeruginosa. Antimicrob. Agents Chemother. 2019, 63, e01081-19. [Google Scholar] [CrossRef] [PubMed]
- Tetard, A.; Foley, S.; Mislin, G.L.A.; Brunel, J.-M.; Oliva, E.; Torrealba Anzola, F.; Zedet, A.; Cardey, B.; Pellequer, Y.; Ramseyer, C.; et al. Negative Impact of Citral on Susceptibility of Pseudomonas Aeruginosa to Antibiotics. Front. Microbiol. 2021, 12, 709838. [Google Scholar] [CrossRef] [PubMed]
- Nies, D.H. Efflux-Mediated Heavy Metal Resistance in Prokaryotes. FEMS Microbiol. Rev. 2003, 27, 313–339. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Ishihama, A. Transcriptional Response of Escherichia coli to External Copper. Mol. Microbiol. 2005, 56, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Pontel, L.B.; Soncini, F.C. Alternative Periplasmic Copper-Resistance Mechanisms in Gram Negative Bacteria. Mol. Microbiol. 2009, 73, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Waidner, B.; Melchers, K.; Stähler, F.N.; Kist, M.; Bereswill, S. The Helicobacter Pylori CrdRS Two-Component Regulation System (HP1364/HP1365) Is Required for Copper-Mediated Induction of the Copper Resistance Determinant CrdA. J. Bacteriol. 2005, 187, 4683–4688. [Google Scholar] [CrossRef] [PubMed]
- Caille, O.; Rossier, C.; Perron, K. A Copper-Activated Two-Component System Interacts with Zinc and Imipenem Resistance in Pseudomonas Aeruginosa. J. Bacteriol. 2007, 189, 4561–4568. [Google Scholar] [CrossRef]
- Dieppois, G.; Ducret, V.; Caille, O.; Perron, K. The Transcriptional Regulator CzcR Modulates Antibiotic Resistance and Quorum Sensing in Pseudomonas Aeruginosa. PLoS ONE 2012, 7, e38148. [Google Scholar] [CrossRef]
- Mercante, A.D.; Jackson, L.; Johnson, P.J.T.; Stringer, V.A.; Dyer, D.W.; Shafer, W.M. MpeR Regulates the Mtr Efflux Locus in Neisseria Gonorrhoeae and Modulates Antimicrobial Resistance by an Iron-Responsive Mechanism. Antimicrob. Agents Chemother. 2012, 56, 1491–1501. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Mao, W.; Warren, M.S.; Mistry, A.; Hoshino, K.; Okumura, R.; Ishida, H.; Lomovskaya, O. Interplay between Efflux Pumps May Provide Either Additive or Multiplicative Effects on Drug Resistance. J. Bacteriol. 2000, 182, 3142–3150. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.J.; Barrett, J.A.; Poole, R.K. Genome-Wide Transcriptional Response of Chemostat-Cultured Escherichia coli to Zinc. J. Bacteriol. 2005, 187, 1124–1134. [Google Scholar] [CrossRef] [PubMed]
- Baranova, N.; Nikaido, H. The baeSR Two-Component Regulatory System Activates Transcription of the yegMNOB (mdtABCD) Transporter Gene Cluster in Escherichia coli and Increases Its Resistance to Novobiocin and Deoxycholate. J. Bacteriol. 2002, 184, 4168–4176. [Google Scholar] [CrossRef]
- Perron, K.; Caille, O.; Rossier, C.; van Delden, C.; Dumas, J.-L.; Köhler, T. CzcR-CzcS, a Two-Component System Involved in Heavy Metal and Carbapenem Resistance in Pseudomonas Aeruginosa. J. Biol. Chem. 2004, 279, 8761–8768. [Google Scholar] [CrossRef]
- Compagne, N.; Vieira Da Cruz, A.; Müller, R.T.; Hartkoorn, R.C.; Flipo, M.; Pos, K.M. Update on the Discovery of Efflux Pump Inhibitors against Critical Priority Gram-Negative Bacteria. Antibiotics 2023, 12, 180. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novelli, M.; Bolla, J.-M. RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. Antibiotics 2024, 13, 501. https://doi.org/10.3390/antibiotics13060501
Novelli M, Bolla J-M. RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. Antibiotics. 2024; 13(6):501. https://doi.org/10.3390/antibiotics13060501
Chicago/Turabian StyleNovelli, Marine, and Jean-Michel Bolla. 2024. "RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria" Antibiotics 13, no. 6: 501. https://doi.org/10.3390/antibiotics13060501
APA StyleNovelli, M., & Bolla, J. -M. (2024). RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. Antibiotics, 13(6), 501. https://doi.org/10.3390/antibiotics13060501