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Abstract: The rise of multi-drug-resistant (MDR) pathogenic bacteria presents a grave challenge to
global public health, with antimicrobial resistance ranking as the third leading cause of mortality
worldwide. Understanding the mechanisms underlying antibiotic resistance is crucial for developing
effective treatments. Efflux pumps, particularly those of the resistance-nodulation-cell division (RND)
superfamily, play a significant role in expelling molecules from bacterial cells, contributing to the
emergence of multi-drug resistance. These are transmembrane transporters naturally produced
by Gram-negative bacteria. This review provides comprehensive insights into the modulation of
RND efflux pump expression in bacterial pathogens by numerous and common molecules (bile,
biocides, pharmaceuticals, additives, plant extracts, etc.). The interplay between these molecules and
efflux pump regulators underscores the complexity of antibiotic resistance mechanisms. The clinical
implications of efflux pump induction by non-antibiotic compounds highlight the challenges posed
to public health and the urgent need for further investigation. By addressing antibiotic resistance
from multiple angles, we can mitigate its impact and preserve the efficacy of antimicrobial therapies.

Keywords: efflux pump inductor; RND multi-drug efflux pump; Gram-negative bacteria; antimicrobial
resistance; adaptive antibiotic resistance

1. Introduction

Infections caused by MDR pathogenic bacteria present a formidable challenge to
global public health, as effective treatments remain elusive. Recent projections indicate that
antimicrobial resistance was associated with an estimated 4.95 million deaths worldwide in
2019, positioning it as the third leading cause of mortality on a global scale [1]. Furthermore,
these projections imply a potential surpassing of the latest estimations provided by the
WHO, which anticipate 10 million annual deaths attributable to antimicrobial resistance by
2050. Without significant advancements in antibiotherapy and the development of inno-
vative therapeutic strategies to counter bacterial resistance mechanisms, these escalating
concerns are expected to persist.

Bacteria employ four primary mechanisms of resistance that can be split into two
types: those that use specific mechanisms for selected antibiotic families or those that
use less-specific pathways within a broader spectrum of antibiotics. On the one hand,
enzymatic inactivation represents one of these specific mechanisms, typified by AmpC
β-lactamase, which degrades the β-lactam core of antibiotics within the β-lactam family [2].
Target alteration constitutes another mechanism observed for specific antibiotic families,
disrupting the bacterial replication process and impacting quinolones in various strains,
leading to a poorly targeted molecule [3]. On the other hand, membrane mechanisms serve
as formidable primary defenses to counteract and reduce intracellular broad-spectrum
antibiotic accumulation during exposure. While membrane impermeability restricts the
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influx of antimicrobials [4], efflux pumps facilitate the expulsion of compounds consid-
ered toxic to bacteria, thereby maintaining intracellular concentrations below therapeutic
thresholds [5]. Membrane impermeability and efflux pumps are often co-regulated and
can confer resistance across multiple antibiotic families, contributing to the emergence
of MDR pathogens. Even more concerning, various studies have demonstrated that the
overexpression of efflux pumps in bacteria is implicated in the selection of mutations within
entire genomes, including genes encoding antibiotic targets [6,7].

It is imperative to distinguish between innate and acquired resistance when focus-
ing on antibiotic resistance. Innate resistance refers to the natural resistance of bacterial
species to specific antibiotics, as seen in Escherichia coli, with the intrinsic expression of
AmpC, and of the AcrAB-TolC multi-drug efflux system [8]. Acquired resistance enables
strains to enhance their resistance levels through mutations [9] or acquisition of genetic
material from other bacteria [10]. Moreover, adaptive or induced resistance involves the oc-
casional or excessive activation of previously described mechanisms in response to stress or
resistance-inducing molecules. Exposure of specific bacterial species to trigger factors can
result in resistance development either by selecting mutant strains or inducing phenotypic
adaptations leading to cross-resistance to antibiotics. This form of resistance is transient,
with bacteria returning to a basal resistance state once the inducer dissipates.

This review focuses on the second type of resistance mechanism involving efflux
pumps and aims to provide a comprehensive overview of the diverse molecules influencing
RND efflux pump expression in Gram-negative bacteria. While many of these molecules are
antimicrobial agents, others are compounds present in the human body, natural substances,
additives, or non-antibiotic drugs. Given that some obscure pathways are associated with
each induction mechanism, elucidated induction mechanisms are described.

2. RND Multi-Drug Efflux Pumps and Their Regulation

The polyspecific efflux transporters expressed in Gram-negative bacteria exhibit re-
markable diversity and are classified into six distinct families: the RND superfamily, the
ATP-binding cassette (ABC) superfamily, the major facilitator superfamily (MFS), the multi-
drug and toxic compound extrusion (MATE) family, the small multi-drug resistance (SMR)
family, and the proteobacterial antimicrobial compound efflux (PACE) transporter fam-
ily [11]. Among these, the RND superfamily constitutes the primary player in multi-drug
efflux pumps within Gram-negative bacteria, highlighting this family’s significance within
the present review context. In Enterobacteriaceae, AcrAB-TolC stands out as the principal
and most prevalent efflux pump across various species, including Escherichia coli, Salmonella
enterica, and Klebsiella pneumoniae [12]. Pseudomonas aeruginosa, an opportunistic pathogen,
exhibits the most abundant efflux system identified, featuring MexAB-OprM, MexCD-
OprJ, MexEF-OprN, and MexXY-OprM as the clinically relevant RND efflux pumps [13].
Conversely, in Pseudomonas putida, the role of RND efflux pumps in antibiotic resistance
remains incompletely understood, though TtgABC is implicated [14]. Stenotrophomonas
maltophilia harbors numerous efflux pumps, with SmeABC, SmeDEF, SmeJK, SmeVWX,
and SmeYZ particularly relevant from a clinical standpoint [15–17]. Campylobacter jejuni, a
gastrointestinal pathogen, relies on CmeABC as its primary efflux pump contributing to
antibiotic resistance [18]. Burkholderia cenocepacia possesses several efflux pumps, including
CeoAB-OpcM, conferring resistance to clinically significant antibiotics [19].

RND efflux pumps possess a tripartite architecture (Figure 1) consisting of an active
RND transporter in the inner membrane as a homo- or heterotrimer using the proton
motive force for substrate extrusion. This architecture also involves an outer membrane
factor (OMF) and a periplasmic adaptor protein (PAP) that bridges the proteins across both
membranes [20].
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Figure 1. Organization of an RND efflux pump. The illustration shows the structure of the P. aeru-
ginosa MexAB-OprM system (Protein DataBank entry: 6IOL). It is a tripartite complex composed of 
the inner membrane RND protein MexB, the outer membrane protein OprM, and the periplasmic 
adaptative protein MexA. The transport activity is coupled to the translocation of protons in the 
cytoplasm. 

The inner membrane transporter forms an asymmetric trimer where each protomer 
adopts distinct conformational states designated as loose (L) or access, tight (T) or binding, 
and open (O) or extrusion [21,22]. This conformational cycle facilitates the sequential bind-
ing of substrates, ultimately leading to drug efflux [23,24], whereby substrates are trans-
ported by the RND transporter and extruded from the cell through the tripartite complex. 
Several studies have demonstrated the broad substrate specificity exhibited by these efflux 
pumps, including structurally diverse molecules such as antibiotics, anticancer agents, 
dyes, bile salts, detergents, and solvents [20]. Recently, a study based on minimum inhib-
itory concentration (MIC) values of various efflux-resistant E. coli strains towards distinct 
classes of antibiotics elucidated the molecular determinants responsible for substrate 
recognition by AcrAB-TolC [25]. 

The genes encoding efflux systems are commonly arranged into operons, comprising 
the RND transporter and the PAP. The third partner may be located within the same op-
eron or elsewhere in the genome. These genes are subject to regulation by local or global 
regulators (Figure 1). These regulators respond to a diverse array of signals to modulate 
efflux gene expression [26]. For the sake of simplicity, the following paragraph will pro-
vide an overview of the regulatory pathways cited throughout this review (for further 
details, refer to recent reviews [20,27,28]).  

Figure 1. Organization of an RND efflux pump. The illustration shows the structure of the
P. aeruginosa MexAB-OprM system (Protein DataBank entry: 6IOL). It is a tripartite complex com-
posed of the inner membrane RND protein MexB, the outer membrane protein OprM, and the
periplasmic adaptative protein MexA. The transport activity is coupled to the translocation of protons
in the cytoplasm.

The inner membrane transporter forms an asymmetric trimer where each protomer
adopts distinct conformational states designated as loose (L) or access, tight (T) or binding,
and open (O) or extrusion [21,22]. This conformational cycle facilitates the sequential
binding of substrates, ultimately leading to drug efflux [23,24], whereby substrates are
transported by the RND transporter and extruded from the cell through the tripartite
complex. Several studies have demonstrated the broad substrate specificity exhibited by
these efflux pumps, including structurally diverse molecules such as antibiotics, anticancer
agents, dyes, bile salts, detergents, and solvents [20]. Recently, a study based on minimum
inhibitory concentration (MIC) values of various efflux-resistant E. coli strains towards dis-
tinct classes of antibiotics elucidated the molecular determinants responsible for substrate
recognition by AcrAB-TolC [25].

The genes encoding efflux systems are commonly arranged into operons, comprising
the RND transporter and the PAP. The third partner may be located within the same
operon or elsewhere in the genome. These genes are subject to regulation by local or global
regulators (Figure 1). These regulators respond to a diverse array of signals to modulate
efflux gene expression [26]. For the sake of simplicity, the following paragraph will provide
an overview of the regulatory pathways cited throughout this review (for further details,
refer to recent reviews [20,27,28]).

Local regulation commonly involves TetR family transcriptional regulators, which
consist of an N-terminal DNA binding domain (NTD) recognizing and binding to a palin-
dromic DNA sequence located in the intergenic region between the regulator and the
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regulated gene. These regulators also feature a large C-terminal domain (CTD) responsible
for ligand binding [29]. For instance, AcrR locally represses and maintains basal levels of
AcrAB-TolC in Enterobacteriaceae [30], while CmeR regulates CmeABC in C. jejuni [31].
Furthermore, SmeT controls SmeDEF in S. maltophilia [32], MexR governs MexAB-OprM
in P. aeruginosa [33], and TtgR regulates TtgABC in P. putida [34] (Figure 1). Moreover, the
repression of the MexAB-OprM system involves NalD and NalC, located elsewhere in the
genome [35,36]. NalC indirectly regulates MexAB-OprM expression by repressing ArmR,
an antirepressor of MexR [37]. The complex formation between MexR and ArmR prevents
MexR attachment to the intergenic promoter region, leading to mexAB-oprM overexpres-
sion [38] (Figure 2). In contrast, MexT, a Lys-R family regulator, activates MexEF-OprN
expression in P. aeruginosa [39].
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Figure 2. RND efflux pump transcriptional regulation networks. Local regulation primarily involves
TetR family transcriptional regulators (highlighted in red), including AcrR, CmeR, SmeT, TtgR, and
MexR, which, respectively, regulate AcrAB-TolC, CmeABC, SmeDEF, TtgABC, and MexAB-OprM
systems. Repression of MexAB-OprM systems involves NalD and NalC, located elsewhere in the
genome of P. aeruginosa. NalC indirectly modulates expression by inhibiting ArmR, an antirepressor
of MexR (highlighted in grey), leading to the alleviation of repression by MexR. MexT (highlighted in
yellow) activates MexEF-OprN expression. Global regulation, on the other hand, is orchestrated by
AraC/XylS family transcriptional regulators (highlighted in green), including MarA, RamA, SoxS,
and Rob, which activate AcrAB-TolC expression. These regulators are subject to local regulation by
their own TetR family transcriptional regulators (highlighted in red), such as MarR, RamR, and SoxR.
Transcriptional regulatory pathways enabling activation are depicted by green arrows, while those
repressing activation are indicated by red arrows.

Global regulation typically involves AraC/XylS family transcriptional regulators, such
as MarA, RamA, SoxS, and Rob in Enterobacteriaceae, which activate efflux pump gene
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expression [40] (Figure 2). These global regulators are themselves locally regulated by their
own TetR family transcriptional regulators, including MarR, RamR, and SoxR (Figure 2).
External stressors can trigger the release of these repressors, leading to the activation of
efflux gene expression, as discussed in subsequent paragraphs.

Furthermore, in addition to transcriptional regulation, many tripartite efflux systems
are subject to regulation by two-component systems (TCS) [41]. TCS detect and respond
to external stimuli by orchestrating gene expression. The correlation between TCS and
antibiotic resistance has been elucidated in numerous pathogens [42,43]; for instance, the
AmgRS TCS has been implicated in the development of aminoglycoside resistance in
P. aeruginosa through the upregulation of mexXY [44].

3. Induction of Resistance
3.1. Bile

Bile is a complex mixture of organic and inorganic constituents, including fatty acids
and bile acids or salts. According to references in the literature, it appears to play a
significant role in upregulating the expression of RND efflux pumps (refer to Table 1).
Specifically, within the intestinal tract, bile components have been observed to induce the
expression of the AcrAB-TolC pump in enterobacteria, including opportunistic pathogens
such as S. enterica and E. coli. In the case of S. enterica, bile facilitates the induction of
the AcrAB-TolC pump via RamA. This induction occurs through a two-step mechanism:
initially, bile binds to RamA, activating it [45]; subsequently, as the bile concentration
increases, it binds to RamR. This binding prevents RamR from interacting with the ramA
promoter region, leading to the overexpression of ramA and subsequent overproduction of
the AcrAB-TolC system [46–48] (Figure 3). Structural analyses of RamR complexed with
bile components revealed that cholic acid and chenodeoxycholic acid form four hydrogen
bonds with Tyr59, Trp85, Ser137, and Asp152 of RamR instead of the typical π-π interaction
with Phe155, which is an essential residue for the recognition of many other molecules,
inducing conformational changes that are crucial for their operation. It has been challenging
to crystallize RamR with deoxycholic acid, likely due to the absence of the 7a-hydroxyl
group, which is crucial for forming a hydrogen bond with Asp152 of RamR. This absence
also prevents the induction of acrAB-tolC [48].
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Figure 3. Bile components induce acrAB-tolC overexpression in S. enterica. Absence of bile results in
basal expression of acrAB-tolC. Low bile concentration triggers RamA activation. High bile concentra-
tion induces RamR interaction, causing overexpression of ramA and subsequent overproduction of
the AcrAB-TolC system.

In E. coli, bile salts induce the overexpression of acrAB while inhibiting the expression
of ompF, an outer membrane porin [49,50]. This induction is mediated by Rob. Unlike
RamA, the induction by Rob does not involve overexpression but rather a conformational
change in existing Rob proteins [51,52]. Shi et al. demonstrated the docking interaction of
chenodeoxycholic acid with the ligand binding pocket, which is surrounded by a cluster
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of aromatic and heterocyclic amino acids. They concluded that the CTD of Rob contains
a Gyr-like domain which acts as an environmental sensor interacting with ligands. This
interaction structurally stabilizes and activates transcription via allosteric coordination
with the NTD [53].

Moreover, bile has been demonstrated to induce overexpression of the cmeABC operon
in C. jejuni [54], which encodes for the major RND efflux pump and is regulated by CmeR.
The binding of bile salts to the CmeR protein inhibits its interaction with the DNA operon,
thereby relieving repression [54,55]. Co-crystallization studies have elucidated the interac-
tions between CmeR protein and bile salts, including taurocholate and cholate, which share
a similar chemical structure and charge. These molecules bind to the CmeR-DNA binding
region in the same orientation but in an antiparallel mode within the tunnel. Specifically,
only two positively charged residues, Lys170 and His175, form essential hydrogen bonds
with the steroid backbones of taurocholate and cholate. In the case of taurocholate, CmeR
also anchors the molecule by utilizing the positively charged residue His72 to form an addi-
tional hydrogen bond with the 3a-hydroxyl group. For cholate, the residue His174 interacts
with the non-conjugated 5b-cholanoate tail. These interactions have been corroborated by
isothermal titration calorimetry, revealing that the regulator binds to these compounds
with dissociation constants (Kd) in the micromolar range [56].

Interestingly, over 80% of cystic fibrosis patients experience increased gastric reflux
and aspiration of duodenogastric contents into the lungs [57]. Bile present in the lungs
constitutes the primary comorbidity factor for patients with respiratory diseases [58]. In
the case of cystic fibrosis, bile has been shown to correlate with a decrease in biodiversity
and the emergence of specific pathogens such as P. aeruginosa [59–61]. Bile facilitates the
induction of genes associated with chronic infections, including the mexAB-oprM operon of
P. aeruginosa [61].

Table 1. Bile components which induce RND efflux pumps.

Molecules Classification Pumps Strains Mechanisms References

Chenodeoxycholate Bile salt
AcrAB-TolC E. coli Rob activation [54]

CmeABC C. jejuni CmeR interaction [52]

Chenodeoxycholic acid Bile acid AcrAB-TolC
E. coli Rob activation [53]

S. enterica RamR interaction [48]
MexAB-OprM P. aeruginosa * [61]

Cholate Bile salt
AcrAB-TolC E. coli Rob activation [52]

CmeABC C. jejuni CmeR interaction [54,56]

Choleate Bile salt
AcrAB-TolC S. enterica RamA activation [45]

CmeABC C. jejuni CmeR interaction [54]

Cholic acid Bile acid
AcrAB-TolC S. enterica RamA activation and

RamR interaction [45,48]

CmeABC C. jejuni CmeR interaction [54]

Decanoate Fatty acids AcrAB-TolC E. coli Rob activation [50,52,53]

Deoxycholate Bile salt AcrAB-TolC
E. coli Rob activation [52]

S. enterica RamR interaction [46]
CmeABC C. jejuni CmeR interaction [54]

Deoxycholic acid Bile acid AcrAB-TolC S. enterica RamA activation [45]

Glycochenodeoxycholate Bile salt AcrAB-TolC E. coli Rob activation [52]

Glycocholate Bile salt CmeABC C. jejuni CmeR interaction [54]

Taurocholate Bile salt
AcrAB-TolC E. coli Rob activation [52]

CmeABC C. jejuni CmeR interaction [54–56]

Taurodeoxycholate Bile salt CmeABC C. jejuni CmeR interaction [54]

* Unknown.
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3.2. Antibiotics

Many antibiotics have been described as inducing the expression of RND efflux pumps
(refer to Table 2). In 2003, it was demonstrated for the first time that the expression of
an RND transporter is directly regulated by antibiotics. Specifically, chloramphenicol,
tetracycline, and other plant antimicrobials induce the expression of TtgABC from P. putida
by interacting with the regulator TtgR. Upon exposure to these antimicrobial agents, TtgR,
capable of binding to various structurally distinct antibiotics, loses its ability to bind to
the promoter [62–64]. This mechanism has been confirmed through co-crystallizations of
TtgR with antibiotics, revealing that most of the characterized ligands bind at a common
site parallel to the axis of the dimer and within a hydrophobic binding pocket with few
specific interactions. This likely enhances the binding flexibility of the ligand and results
in the micromolar affinity of TtgR [63–65]. NalD follows a similar mechanism. It interacts
with novobiocin, with one NalD dimer binding to two novobiocin molecules with a Kd
of 4.65 µM, thereby dissociating it from the promoter and leading to the expression of
mexAB-oprM. The involvement of Asn129 and His167 residues in this interaction has been
demonstrated [66]. Additionally, aminoglycosides can induce MexAB-OprM expression
via the two-component system AmgRS involved in the envelope stress response [67]. This
pump can also be induced in the presence of erythromycin, tetracycline, and azithromycin,
and this can occur independently of AmgRS activity [67].

MexEF-OprN responds to nitrous stress in P. aeruginosa. The nitroaromatic antibiotic
chloramphenicol can induce the expression of mexEF-oprN via the transcriptional regulator
MexT [68]. Similarly, chloramphenicol induces CeoAB-OpcM, which is a homologue of
MexEF-OprN from B. cenocepacia, by inducing the CeoR regulator, which is a homologue of
MexT [69].

The induction of MexXY-OprM is triggered by ribosome-targeting antibiotics, such
as chloramphenicol, tetracycline, macrolides, and aminoglycosides, but not by antibiotics
acting on other cellular targets [70–72]. Similarly, SmeYZ in S. maltophilia is also induced
by these ribosome-targeting antibiotics that inhibit protein synthesis. Interestingly, boric
acid, an insecticide which prevents tRNA acylation and inhibits protein synthesis, can also
induce SmeYZ [73].

Chloramphenicol and tetracycline induce marA and acrB expression in E. coli. Tetracy-
cline, particularly, allows the induction of acrD and acrF [74,75] through the intervention of
MarR [76]. The induction mechanism is hypothesized to involve RNA stabilization rather
than direct regulation by MarR [77]. Furthermore, carbapenems, representing the final
therapeutic option for all Gram-negative bacteria [78], have also been shown to induce
efflux [79].

Table 2. Antibiotics which induce RND efflux pumps.

Molecules Classification Pumps Strains Mechanisms References

Amikacin Aminoglycoside MexAB-OprM P. aeruginosa * [67,80]

Azithromycin Macrolide
MexAB-OprM

P. aeruginosa
* [67]

MexXY-OprM Protein synthesis
inhibition [71]

Azlocillin Penicillin
MexAB-OprM P. aeruginosa

*
[80]

SmeYZ S. maltophilia [73]

Chloramphenicol Phenicol

CeoAB-OpcM B. cenocepacia ceoR induction [69]
AcrAB-TolC E. coli marA induction [74]

MexEF-OprN P. aeruginosa
MexT-dependent

(nitrosative stress) [68]

MexXY-OprM Protein synthesis
inhibition [71,72]

TtgABC P. putida TtgR interaction [62,65]

SmeYZ S. maltophilia Protein synthesis
inhibition [73]
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Table 2. Cont.

Molecules Classification Pumps Strains Mechanisms References

Chlortetracycline Tetracycline SmeVWX S. maltophilia * [73]

Cinoxacin Penicillin
SmeYZ S. maltophilia * [73]SmeVWX

Cloxacillin Penicillin SmeVWX S. maltophilia * [73]

Ethionamide Antitubercular agent MexAB-OprM P. aeruginosa * [80]

Erythromycin Macrolide

MexAB-OprM P. aeruginosa * [67]
MexXY-OprM Protein synthesis

inhibition
[70–72]

SmeYZ S. maltophilia [73]SmeVWX *

Fusidic acid Fusidanine SmeYZ S. maltophilia Protein synthesis
inhibition [73]

Gentamicin Aminoglycoside
MexAB-OprM

P. aeruginosa
AmgRS activation [67]

MexXY-OprM Protein synthesis
inhibition [70,71]

Kanamycin Aminoglycoside
MexAB-OprM

P. aeruginosa
AmgRS activation [67]

MexXY-OprM Protein synthesis
inhibition [72]

Lincomycin Lincosamide SmeYZ S. maltophilia Protein synthesis
inhibition [73]

Meropenem Carbapenem AcrAB-TolC E. coli marA induction [79]

Neomycin Aminoglycoside MexAB-OprM P. aeruginosa AmgRS activation [67]

Novobiocin Aminocoumarine MexAB-OprM P. aeruginosa NalD interaction [66]

Oleandomycin Macrolide SmeYZ S. maltophilia Protein synthesis
inhibition [73]

Paromycin Aminoglycoside MexAB-OprM P. aeruginosa AmgRS activation [67]

Penimepicycline Tetracycline SmeYZ S. maltophilia
Protein synthesis

inhibition [73]
SmeVWX *

Puromycin Aminoglycoside SmeYZ S. maltophilia Protein synthesis
inhibition [73]

Rolitetracycline Tetracycline SmeYZ S. maltophilia Protein synthesis
inhibition [73]

Spectinomycin Aminoglycoside MexXY-OprM P. aeruginosa Protein synthesis
inhibition [71]

Spiramycin Macrolide
SmeYZ S. maltophilia

Protein synthesis
inhibition [73]

SmeVWX *

Sulfadiazine Sulfonamide SmeYZ S. maltophilia * [73]

Sulfathiazole Sulfonamide SmeYZ S. maltophilia * [73]

Tetracycline Tetracycline

AcrAB-TolC
E. coli

marA induction
[74,75]AcrAD-TolC

*AcrEF-TolC

MexXY-OprM P. aeruginosa Protein synthesis
inhibition [70–72]

TtgABC P. putida TtgR interaction [62,65]

Tylosin Macrolide
SmeYZ

S. maltophilia
Protein synthesis

inhibition [73]
SmeVWX *

Vancomycin Glycopeptide SmeVWX S. maltophilia * [73]

* Unknown.
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3.3. Biocides

While the upregulation of RND efflux pumps in response to antibiotic exposure is well-
documented, emerging evidence suggests that biocides, commonly used in disinfection
and sanitation, may also induce the expression of these efflux systems (refer to Table 3).

Triclosan, a widely used biocide found in numerous products, such as toothpaste and
liquid hand soap, modulates the expression of SmeDEF in S. maltophilia by disrupting the
interaction between the transcriptional repressor SmeT and its operator site. This disruption
leads to an increase in smeDEF expression, consequently reducing the susceptibility of
S. maltophilia to antibiotics such as ciprofloxacin, as evidenced by an increased MIC: from
0.75 µg/mL to 2 µg/mL [81]. Triclosan exerts its effect by binding two molecules to
SmeT, with a Kd of 0.63 µM. One triclosan molecule binds to the bottom of the ligand-
binding pocket, adopting a conformation reminiscent of the interaction between the plant
antimicrobial molecule phloretin and TtgR in P. putida [65], where it is parallel to the α6
helix and stacks against the phenolic ring of Phe70, a residue crucial for ligand binding.
The second molecule binds near the dimer interface, interacting with the α6 helix via its
phenolic ring. This binding event stabilizes the NTD of each subunit of the homodimer,
preventing DNA binding [81].

Biocides are capable of interacting with bacterial membranes, such as benzalkonium
chloride, chlorhexidine, and dequalinium chloride, and disrupting them [82]. Biocides can
trigger the upregulation of the RND MexCD-OprJ efflux pump in P. aeruginosa, thereby
decreasing its susceptibility to certain antibiotics [80,83–85]. These findings hold clinical
relevance, given that these biocidal agents are commonly employed in antiseptic and disin-
fectant protocols in clinical context. For instance, exposure to 10 µg/mL of dequalinium
chloride resulted in a 54-fold increase in mexCD-oprJ expression within 30 min of addi-
tion (with no further inducers present in the media), with a sustained 10-fold increase
observed even after 120 min, indicating a potential “induction memory” [80]. It has been
postulated that the membrane damage caused by these biocides, rather than the biocides
themselves, induces the mexCD-oprJ operon. Supporting this notion, it was demonstrated
that chlorhexidine induces mexCD-oprJ by interacting with AlgU, which is a sigma factor in
P. aeruginosa analogous to RpoE in E. coli, where RpoE plays a pivotal role as a membrane
stress response-associated sigma factor [84].

Exposure to chlorinated phenols, such as pentachlorophenol, and to chlorinated
phenol-based disinfectants, such as triclosan, results in the development of an antibiotic
resistance phenotype in P. aeruginosa by inducing mexAB-oprM [86–89]. Transcriptional anal-
yses following pentachlorophenol exposure have revealed the overexpression of mexAB,
mexR, armR, and nalC genes [86,87]. NalC can reversibly bind to chlorinated phenols and
chlorophenol-containing chemicals and be dissociated from the promoter when linked
with it. This binding can facilitate the upregulation of the NalC regulon [87]. Overpro-
duction of ArmR and formation of MexR-ArmR complexes contribute to mexAB-oprM
overexpression [87,88]. Evidence of overexpression in an armR-depleted strain suggests the
involvement of other mechanisms that still require MexR [88]. Although pentachlorophe-
nol does not directly affect MexR binding to DNA, it is hypothesized that oxidative stress
induced by this molecule affects MexR, a redox-sensitive regulator. The oxidation of two
cysteines in MexR leads to conformational changes in the protein, hindering its binding to
the promoter DNA region [90,91].

Furthermore, in E. coli, it has been demonstrated that compounds with a chlorinated
phenol structure can enhance resistance to various antibiotics by repressing ompF in a micF-
dependent manner and inducing marRAB, leading to overexpression of acrAB-tolC. This
induction likely occurs through interaction with MarR, as the mechanism is not dependent
on SoxS and thus does not result from oxidative stress generation [92]. In contrast, paraquat
induces acrAB via SoxS in S. enterica [93]. In these bacteria, as observed with bile, co-
crystallization of the dequalinium–RamR complex revealed that binding increases the
distance between the NTD of the helix–turn–helix motifs in the RamR dimer. The binding
of this compound to RamR reduces its DNA-binding affinity, leading to the increased
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expression of ramA and, subsequently, acrAB [94]. Additionally, in E. coli, treatment with
the iron chelator dipyridyl leads to increased transcription of the Rob regulon. The low-
activity form of Rob undergoes post-translational conversion to a high-activity form [51,53].
Studies of enterobacteria such as E. coli and S. enterica have shown that responses to different
herbicides may vary depending on the species exposed, considering that pre-exposure is
not necessary. This suggests that induction due to herbicide exposure occurs more promptly
than the interaction of antibiotics with their targets [95].

Table 3. Biocides that induce RND efflux pumps.

Molecules Classification Pumps Strains Mechanisms References

2,4-Dichlorophenol Herbicide precursor MexAB-OprM P. aeruginosa NalC interaction [87,89]
AcrAB-TolC E. coli MarR interaction [96]

2,4-Dichlorophenoxyacetic acid Herbicide AcrAB-TolC
E. coli marRAB induction [92,95]

S. enterica * [95]

2,4,6-Trichlorophenol Fungicide MexAB-OprM P. aeruginosa NalC interaction [87,89]

4,4′-Dipyridyl Degradation of the
herbicide paraquat AcrAB-TolC E. coli Rob activation [51,53]

Acriflavine
Antiseptic

(fungal infections of aquarium fish)
MexAB-OprM P. aeruginosa *

[80]
MexCD-OprJ [80,83]

Benzethonium chloride Cationic surfactant; disinfectant;
quaternary ammonium MexCD-OprJ P. aeruginosa Membrane stress

(AlgU induction) [80]

Benzalkonium chloride Cationic surfactant; disinfectant;
quaternary ammonium MexCD-OprJ P. aeruginosa Membrane stress

(AlgU induction) [83]

Boric acid Insecticide SmeYZ S. maltophilia Protein synthesis
inhibition [73]

Cetylpyridinium chloride

Antiseptic (personal care products);
topical anti-infective;

pharmaceutical preservative;
quaternary ammonium

MexCD-OprJ P. aeruginosa Membrane stress
(AlgU induction) [80]

SmeYZ S. maltophilia * [73]SmeVWX

Dicamba Herbicide AcrAB-TolC
E. coli

* [95]S. enterica

Dodecyltrimethylammonium
bromide

Detergent;
surface active agent SmeVWX S. maltophilia * [73]

Dodine Fungicide MexCD-OprJ P. aeruginosa * [80]

Glyphosate Herbicide AcrAB-TolC
E. coli

* [95]S. enterica

Ortho-benzyl-parachlorophenol Disinfectant MexAB-OprM P. aeruginosa * [89]

Paraquat Herbicide;
quaternary ammonium

AcrAB-TolC
E. coli MarR interaction [97]

S. enterica SoxS induction [93]
SmeVWX S. maltophilia * [73]

Pentachlorophenol Herbicide
MexAB-OprM P. aeruginosa

NalC interaction
Oxydative stress
(MexR oxidation)

[80,86–89]

MexJKL * [86]

Poly(hexamethylenebiguanide)
hydrochloride Disinfectant MexCD-OprJ P. aeruginosa Membrane stress

(AlgU induction) [84]

Sodium cyanate Briding agent between reagents in
the production of herbicides

MexAB-OprM P. aeruginosa * [80]MexCD-OprJ

Sodium metaborate Herbicide SmeYZ S. maltophilia * [73]

Triclosan Antiseptic; disinfectant MexAB-OprM P. aeruginosa NalC interaction [81]
SmeDEF S. maltophilia SmeT interaction [87,89]

* Unknown.

3.4. Drugs

Among the drugs cataloged in Table 4, sodium salicylate’s impact on bacterial resis-
tance to antibiotics, particularly in E. coli, has been the most extensively studied. Sodium
salicylate and acetyl salicylic acid belong to the class of non-steroidal anti-inflammatory
drugs (NSAIDs), which exhibit antipyretic and anti-platelet aggregation properties. They
are employed to alleviate fever, pain, and inflammatory rheumatism and in the prevention
of stroke and infarction. Salicylic acid and salicylate represent the primary metabolites
of aspirin. In the presence of salicylate, E. coli’s resistance level mirrors that of a mar
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mutant, conferring resistance to quinolones, cephalosporins, ampicillin, tetracycline, and
chloramphenicol [40,97–103]. At the molecular level, the interaction of salicylate with
MarR prevents its binding to marO, which constitutes the operator region [76,104]. The
de-repression of the marRAB operon increased MarA production [96,97,103,105,106], subse-
quently reducing antibiotic accumulation. This occurs due to a decrease in influx caused
by increased micF transcription, leading to reduced OmpF levels, and due to an increase
in efflux through the induction of acrAB transcription by MarA. Acetaminophen and
ibuprofen similarly induce marA and acrB, heightening resistance to ciprofloxacin, nalidixic
acid, and tetracycline [98,103]. However, acetaminophen-induced resistance is not totally
attributable to marA—as evidenced by elevated MICs in marA-depleted strains—unlike
ibuprofen-induced resistance, which is entirely dependent on marA [103]. The involvement
of Rob in this induction, as described in previous sections, is hypothesized.

Clofibric acid and ethacrynic acid, employed for hypertriglyceridemia and as diuretic,
respectively, share a chlorinated phenoxy structure and increase resistance in uropathogenic
E. coli strains to various antibiotics in the same way as aspirin: via micF-dependent ompF
repression and marRAB induction [92].

In S. enterica, the co-crystallization of the rhodamine 6G-RamR complex exhibits an
interaction with a Kd of 26.4 µM, increasing the distance between the NTD helix–turn–helix
motifs in the RamR dimer [94].

Procaine and atropine, used as a local anesthetic and for preoperative sedation, re-
spectively, may affect P. aeruginosa’s sensitivity to antibiotics in surgical patients. Despite
differing structures, these drugs, with similar pharmacological properties, induce mexCD-
oprJ, thereby enhancing P. aeruginosa’s resistance to ciprofloxacin [80].

A distinct induction mechanism is observed for SmeVWX in S. maltophilia. This
mechanism involves the thiol reactivity of inducing compounds. Menadione, sodium
selenite, and clioquinol, respectively, react with thiol groups, catalyze the oxidation of thiol
groups, and interact with thiol and amino groups. All these compounds enable induction of
this efflux pump (starting from 4µM for menadione) and reduce S. maltophilia susceptibility
to ofloxacin and chloramphenicol [73,107].

Table 4. Drugs that induce RND efflux pumps.

Molecules Classification Pumps Strains Mechanisms References

9′-Aminoacridine
Topical antiseptic

(eye drops)
MexAB-OprM P. aeruginosa * [80]MexCD-OprJ

Acetaminophen
(paracetamol)

Antipyretic;
non-narcotic analgesic AcrAB-TolC E. coli marA induction [97,98,103]

Acetyl salicyclic acid
(aspirin)

NSAID; antipyretic; analgesic; platelet
aggregation inhibitors AcrAB-TolC E. coli marA induction [98,103]

Alexidine Disinfectant (skin and
mucous membrane) MexCD-OprJ P. aeruginosa Membrane stress

(AlgU induction) [80,84]

Amitriptyline Non-narcotic analgesic MexCD-OprJ P. aeruginosa * [80]

Atropine Anesthetic; adjuvant MexCD-OprJ P. aeruginosa * [80]

Cetrimide 1 Local antiseptic;
quaternary ammonium MexCD-OprJ P. aeruginosa Membrane stress

(AlgU induction) [84]

Chlorhexidine Antiseptic (dermatology and dental) MexCD-OprJ P. aeruginosa Membrane stress
(AlgU induction) [83,84]

Chloroxylenol Topical disinfectant MexAB-OprM P. aeruginosa * [89]

Chlorquinaldol Antiseptic
(dermatology) SmeVWX S. maltophilia * [73]

Clofibric acid Anticholesteremic AcrAB-TolC E. coli marA induction [92]
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Table 4. Cont.

Molecules Classification Pumps Strains Mechanisms References

Clioquinol Antifungal and
antiprotozoal drug SmeVWX S. maltophilia Thiol reactivity [73]

Diamide Radiation-sensitizing agent
(radiation therapy) MexAB-OprM P. aeruginosa AmgRS activation [67]

Dequalinium
chloride

Antiseptic; disinfectant;
quaternary ammonium

MexCD-OprJ P. aeruginosa Membrane stress
(AlgU induction) [80,85]

AcrAB-TolC S. enterica RamR interaction [94]
SmeYZ S. maltophilia * [73]

Domiphen bromide Antiseptic;
quaternary ammonium MexCD-OprJ P. aeruginosa Membrane stress

(AlgU induction) [80]

Ethacrynic acid Diuretic AcrAB-TolC E. coli marA induction [92]

Ibuprofen NSAID; antipyretic;
non-narcotic analgesic AcrAB-TolC E. coli marA induction [103]

Menadione Vitamin K3
AcrAB-TolC E. coli MarR interaction [96,97]

SmeVWX S. maltophilia Thiol reactivity [73,107]

Orphenadrine Skeletal muscle
relaxant (Parkinson’s) MexCD-OprJ P. aeruginosa * [80]

Plumbagin
Antineoplastic agent (chemotherapy);

adjuvant; anticoagulant; contraceptive agent;
cardiotonic agent

AcrAB-TolC E. coli MarR interaction [96,97]
SmeVWX S. maltophilia * [107]

Procaine Local anesthetic MexCD-OprJ P. aeruginosa * [80]

Proflavine Topical antiseptic;
acriflavine derivative

AcrAB-TolC E. coli AcrR interaction [108]
MexAB-OprM P. aeruginosa * [80]MexCD-OprJ

Propanolol
β-blocker

(hypertension, anxiety,
panic attacks, etc.)

MexCD-OprJ P. aeruginosa * [80]

Protamine sulfate Anticoagulant SmeYZ S. maltophilia * [73]SmeVWX

Puromycin Antineoplastic agent (chemotherapy) SmeYZ S. maltophilia * [73]

Rhodamine 6G Antineoplastic agent (chemotherapy) AcrAB-TolC
S. enterica RamR interaction [94]

E. coli
Rob interaction [53]

AcrR interaction [108]
MexCD-OprJ P. aeruginosa * [83,109]

S-nitrosoglutathione
Nitric oxide donors (asthma, CF 2,

embolization prevention, or diabetic
leg ulcers)

MexEF-OprN P. aeruginosa Nitrosative stress [68]

Sodium salicylate NSAID; antipyretic; analgesic

CeoAB-OpcM B. cenocepacia * [69]
CmeABC C. jejuni CmeR interaction [55]

AcrAB-TolC
E. coli

MarR interaction
[97–99,104]

S. enterica [99]

Sodium selenite Phase I clinical trial in terminal
cancer patients SmeVWX S. maltophilia Thiol reactivity [73]

Tetraphenylphosphonium
chloride Antineoplastic agent (chemotherapy) MexCD-OprJ P. aeruginosa * [83,109]

* Unknown. 1 Tetradonium bromide; cetrinomium bromide; laurtrimonium bromide. 2 Cystic fibrosis.

3.5. Food and Cosmetic Additives

The impact of additives on the induction of antibiotic resistance has been investigated
(refer to Table 5). In a 2022 study, non-caloric artificial sweeteners, such as saccharin,
sucralose, aspartame, and acesulfame-K, were investigated. Introduced nearly a century
ago as sugar substitutes with potent sweetness and low caloric content, these sweeteners
have garnered attention. Yu and Guo demonstrated that at a concentration of 300 mg/mL,
they can induce the upregulation of acrAB-tolC and increase intracellular ROS and cell
envelope permeability in both E. coli and K. pneumoniae [110].
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Furthermore, sodium benzoate, commonly known as E211 in the context of food
additives, serves as a widely employed preservative in food and cosmetics due to its
efficacy against yeast, bacteria, and fungi. It exhibits a lower effect on induction of acrAB-
tolC in E. coli, with an induction ratio of 2.3 for 5 mM of sodium benzoate compared to
7.1 for 5 mM of salicylate [97,98].

Table 5. Additives that induce RND efflux pumps.

Molecules Classification Pumps Strains Mechanisms References

Acesulfame potassium Food additive;
artificial sweetener

AcrAB-TolC
E. coli

* [110]K. pneumoniae

Aspartame Food additive;
artificial sweetener

AcrAB-TolC
E. coli

* [110]K. pneumoniae

Saccharin Food additive;
artificial sweetener

AcrAB-TolC
E. coli

* [110]K. pneumoniae

Sucralose Food additive;
artificial sweetener

AcrAB-TolC
E. coli

* [110]K. pneumoniae

Sodium benzoate Food preservative;
antifungal agent AcrAB-TolC E. coli * [97,98]

* Unknown.

3.6. Natural Compounds

Essential oils and their constituents are increasingly used due to their potential in
combating bacterial infections; however, they have been shown to act counterproductively
by inducing a mechanism of resistance to antibiotics (refer to Table 6). Cinnamaldehyde, the
main component of cinnamon oil, has exhibited promising antimicrobial properties against
various pathogens, including P. aeruginosa [111]. Nevertheless, exposure of P. aeruginosa to
subinhibitory concentrations of cinnamaldehyde resulted in a robust yet transient upregu-
lation of operons encoding the MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-
OprM efflux systems. This multifaceted activation led to increased resistance to a range
of antibiotics, including meropenem, ceftazidime, tobramycin, and ciprofloxacin, with
resistance levels escalating from twofold to eightfold [112,113]. The NalC regulator is
implicated in the control of the MexAB-OprM system, where it facilitates the production of
the ArmR antirepressor [113]. In the case of MexEF-OprN, electrophilic molecules such as
cinnamaldehyde and methylglyoxal activate CmrA, thereby inducing mexS and PA2048.
This cascade allows for the accumulation of oxidized products, subsequently activating
MexT and leading to the overexpression of mexEF-oprN [112]. Additionally, cinnamate
induces acrAB-tolC via the induction of marRAB [98].

Moreover, citral demonstrates induction of mexEF-oprN and mexXY-oprM, enhanc-
ing resistance to various antibiotics, including imipenem (2-fold), gentamicin (8-fold),
tobramycin (8-fold), ciprofloxacin (2-fold), and colistin (over 128-fold). In this case, efflux
is not the only factor involved. Citral also impedes the attachment of aminoglycosides
and colistin to the cell surface, and Schiff base formation, which can occur between the
aldehyde group of citral and the amine group of tobramycin or colistin, that results in
decreased antibiotic activity [114].

As described in the previous sections, the co-crystallization of the berberine–RamR
complex revealed that binding increases the distance between the NTD helix–turn–helix
motifs in the RamR dimer, with a Kd of 17.9 µM, thereby increasing the expression of ramA
and, subsequently, acrAB [94].

Heavy metals and metal cations present in the environment have historically been
utilized as antimicrobials. These metals represent a class of natural compounds capable
of inducing the expression of RND efflux pumps. While metals are essential as cofactors
in numerous bacterial processes, their toxicity at elevated concentrations necessitates that
bacteria possess systems for maintaining cellular metal homeostasis. In some instances,
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this regulation involves efflux pumps that expel these toxic substances from the cell [115].
The CusCBA efflux system, for example, confers bacterial tolerance to copper and silver
ions. The expression of cusCBA is naturally induced by these substrates and is regulated
by the CusRS two-component system found in various Enterobacteriaceae such as E. coli
and K. pneumoniae [116,117]. Similarly, in Helicobacter pylori, the expression of the CrdABC
efflux system is induced by copper via the CrdRS two-component system [118]. In addition,
CzcABC in P. aeruginosa confers resistance to zinc, cadmium, and cobalt, and its regulation
is mediated by the metal-inducible CzcRS two-component system that is activated directly
by its specific substrates or indirectly in the presence of copper [119,120]. In some cases, the
regulation of efflux systems can serve as an environmental signal reflecting the surrounding
ecosystem. For instance, the MtrCDE system in Neisseria gonorrhoeae is indirectly regulated
by iron availability. Its expression increases under iron-limited conditions, a scenario that
bacteria encounter during host infection [121]. Cross-resistance between heavy metals and
antibiotics is an important phenomenon in which exposure to one agent induces resistance
mechanisms against others. For example, the mdtABC operon is upregulated in response
to excess zinc, conferring resistance to the antibiotic novobiocin [122–124]. Additionally,
P. aeruginosa isolates exposed to zinc demonstrate resistance not only to cadmium and cobalt
but also to the antibiotic imipenem. This cross-resistance reveals a co-regulation mechanism
in which imipenem influx is coordinated with heavy metal efflux via the CzcRS two-
component system [125]. The interaction between metals and antibiotic resistance involves
intricate regulatory networks, often mediated by two-component systems, that allow
bacteria to survive in hostile environments by expelling toxic compounds and developing
resistance to multiple antimicrobial agents.

Table 6. Drugs that induce RND efflux pumps.

Molecules Classification Pumps Strains Mechanisms References

Berberine Food supplement AcrAB-TolC S. enterica RamR interaction [94]

Cadmium Heavy metal CzcABC P. aeruginosa CzcRS activation [119,120]

Cinnamaldehyde Component of
cinnamon oil

MexAB-OprM

P. aeruginosa

NalC interaction

[112,113]
MexCD-OprJ

*MexEF-OprN
MexXY-OprM

Cinnamate Component of
cinnamon oil AcrAB-TolC E. coli marRAB induction [98]

Citral
Component of many commercial
oils (lemon glass, verbena, etc.);
flavoring agents and fragrance

MexEF-OprN P. aeruginosa * [114]
MexXY-OprM

Cobalt Heavy metal CzcABC P. aeruginosa CzcRS activation [119,120]

Copper Metal cation
CusCBA

E. coli
CusRS activation [116,117]K. pneumoniae

CrdABC H. pylori CrdABC activation [118]
CzcABC P. aeruginosa CzcRS activation [119,120]

Iron Metal cation MtrCDE N. gonorrhoeae Repression by MpeR
of the repressor MtrR [121]

Methylglyoxal Found in honey and soft drinks MexEF-OprN P. aeruginosa * [112]

Sanguinarine Natural alkaloid; toothpaste,
mouthwash

MexAB-OprM P. aeruginosa * [80]MexCD-OprJ

Zinc Metal cation
CzcABC P. aeruginosa CzcRS activation [119,120,125]
MdtABC E. coli BaeSR activation [124]

* Unknown.

4. Conclusions

The escalating threat posed by MDR pathogenic bacteria to global public health
necessitates urgent and concerted efforts to address antibiotic resistance. Understanding
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the diverse mechanisms employed by bacteria to resist antibiotics, particularly the role of
RND efflux pumps, is pivotal in this endeavor.

In this review, we developed a comprehensive insight into the interplay between bile,
biocides, pharmaceuticals, and various other compounds, shedding light on their roles
in the modulation of RND efflux pump expression in bacterial pathogens. Due to the
chemical diversity of the inducing molecules, it is impossible to draw conclusions about
structure–activity relationships. Herein lies the subtlety of these efflux pumps: they have a
wide range of substrates, and their regulators can interact with a wide range of molecules.
The clinical implications of efflux pump induction by non-antibiotic compounds warrant
further investigation. The impact of environmental factors, food additives, and pharma-
ceuticals on the emergence and dissemination of antibiotic resistance poses significant
challenges for public health. Therefore, comprehensive surveillance programs are essential
to monitor the prevalence and dynamics of efflux pump-mediated resistance in clinical
settings and the environment.

The prospects for future research in this field are multifaceted. Firstly, there is a need
for deeper mechanistic insights into the regulation of efflux pump expression and the
interplay between various regulatory pathways. Understanding how environmental cues
and stressors modulate efflux pumps’ activity can inform the development of novel thera-
peutic interventions to combat antibiotic resistance. Additionally, efforts should be directed
towards exploring alternative strategies to target efflux pumps, either through the design
of efflux pump inhibitors (EPIs) [126] or through the development of new antimicrobial
agents that are less susceptible to efflux-mediated resistance [25]. Finally, the diagnosis of
infection by bacteria overexpressing an efflux system needs to be developed and improved
as a routine in hospitals and the community [9]. Although antibacterial resistance arises
through various mechanisms, the increased active efflux of antibiotics is particularly signif-
icant. A single type of efflux pump can confer resistance to multiple drugs simultaneously.
Furthermore, the overproduction of efflux pumps in bacteria significantly contributes to the
selection of target mutations, both of which culminate in a MDR phenotype [6,7]. Despite
the first discovery of efflux pumps over 40 years ago, their clinical significance remains
challenging to ascertain. This difficulty primarily arises from the absence of reliable meth-
ods for detecting efflux levels in bacterial strains isolated from infected patients or animals.
Additionally, the current lack of EPIs on the market diminishes the incentive for clinicians
to investigate efflux mechanisms in clinical isolates. RND efflux pumps play a crucial
role in antimicrobial resistance. Therefore, assessing the efflux capacity of clinical isolates
could substantially improve the management of infections, especially if effective EPIs are
available. Unfortunately, as of now, no EPI is undergoing clinical trials. This highlights
an urgent need for increased research and development in this area to enhance the fight
against MDR pathogens.

In summary, addressing antibiotic resistance requires a multidimensional approach
that encompasses understanding the molecular mechanisms of resistance, exploring innova-
tive therapeutic strategies, and implementing robust surveillance measures. By elucidating
the intricate interplay between bacterial pathogens and their resistance mechanisms, we can
strive towards mitigating the threat of antibiotic resistance and safeguarding the efficacy of
antimicrobial treatments for future generations.
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