Implications of Artificial Intelligence in Addressing Antimicrobial Resistance: Innovations, Global Challenges, and Healthcare’s Future
Abstract
:1. Introduction
2. Genetic Mutations Associated with Antibiotic Resistance
3. Horizontal Transfer of Resistance Genes among Bacteria
4. Role of Plasmids and Mobile Genetic Elements in Resistance Spread
5. Artificial Intelligence-Based Diagnostic Tools for Early Detection of Antibiotic Resistance
6. Optimizing Antibiotic Use through Artificial Intelligence-Guided Decision Support Systems
7. Artificial Intelligence in the Development of Novel Antibacterial Agents
8. Discussion
- 1.
- Genomic analysis: AI can accelerate the analysis of genomic data to identify resistance markers early on, thereby improving surveillance and monitoring of resistant infections. This enables timely and targeted interventions. For example, the use of machine learning algorithms to analyze genomic sequences can help to quickly identify specific mutations associated with antibiotic resistance. Such tools can be integrated into clinical microbiology laboratories to provide faster results than traditional methods, allowing clinicians to intervene earlier.
- 2.
- Optimizing antibiotic use: AI-based decision support systems can guide clinicians in choosing the most appropriate antibiotics, reducing inappropriate use and minimizing the risk of resistance development. This can significantly improve clinical management of infections. For example, the implementation of a CDSS can help to analyze real-time patient data and microbiological information in order to suggest the most effective therapies while taking into account clinical history and local patterns of resistance. In addition, such systems can be continuously updated with newly collected data to improve their recommendations over time.
- 3.
- Discovery of new antibacterial agents: AI facilitates the discovery and design of new antibacterial drugs through predictive modeling and computational simulation, accelerating the drug development process and potentially reducing associated costs. Using deep learning techniques, large libraries of chemical compounds can be analyzed to identify those with potential antibacterial activity. These approaches can also predict the likelihood of success of new drugs at later stages of development, thereby reducing the risks and costs associated with pharmaceutical research and development.
- 4.
- AI-controlled delivery and action of antibiotics: AI technologies are increasingly being used to improve the delivery and efficacy of antibiotics. These advanced systems can optimize dosing regimens, improve drug targeting, and monitor patient responses in real time. Significant examples of antibiotics for which administration and action have been successfully managed by artificial intelligence systems include:
- -
- Optimizing vancomycin dosing with AI: Vancomycin is a key antibiotic for the treatment of serious infections caused by Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Traditional vancomycin dosing requires careful monitoring to avoid toxicity and ensure therapeutic efficacy. Several studies have shown how AI models can optimize vancomycin dosing to improve efficacy and reduce the risk of toxicity. For example, an approach based on ensemble learning strategies has shown high accuracy and specificity in predicting initial and subsequent doses of vancomycin, making treatment safer and more effective [63,64].
- -
- AI-driven delivery of amikacin: Amikacin, an aminoglycoside antibiotic, is commonly used to treat severe Gram-negative infections. Its therapeutic window is narrow and requires precise dosing to avoid ototoxicity and nephrotoxicity. Artificial intelligence systems have been developed to monitor blood levels of amikacin in real time and adjust dosing accordingly. These artificial intelligence-driven delivery systems use pharmacokinetic and pharmacodynamic models to ensure that optimal drug concentrations are maintained, thereby improving treatment efficacy and safety. For example, Adbulla et al. [65] conducted a prospective evaluation of a model-based amikacin dosing regimen in infants which showed significant improvements in achieving target drug concentrations compared with traditional methods. Similarly, advances in biosensor technology have enabled real-time monitoring and dose adjustment of antibiotics such as amikacin, leading to improved outcomes in the treatment of critically ill patients [66,67].
- -
- AI-driven targeted delivery of colistin: Colistin is an antibiotic of last resort for multidrug-resistant Gram-negative bacterial infections; however, its use is limited by significant nephrotoxicity. Researchers have employed artificial intelligence to develop targeted colistin delivery systems, such as nanoparticle-based delivery vehicles, that can be targeted to the site of infection. Artificial intelligence algorithms can optimize the design and release profiles of these nanoparticles to maximize therapeutic effects and minimize systemic toxicity. Early studies indicate that AI-guided targeted delivery significantly reduces adverse effects and improves treatment outcomes. For example, silver nanoparticles conjugated to colistin (Col-AgNPs) have shown enhanced antimicrobial activity and reduced toxicity compared to colistin alone, demonstrating the potential of AI-optimized nanoparticle systems for improving the colistin therapeutic index [68].
- -
- AI-personalized antibiotic regimens: AI can help to personalize antibiotic regimens by analyzing large amounts of patient data, including genetic information, aiding in the prediction of individual responses to different antibiotics. For example, Zagajewski et al. [69] have demonstrated the use of AI to detect antibiotic resistance and tailor treatments accordingly. This study highlighted rapid detection capabilities and the potential for personalized antibiotic regimens, particularly with ciprofloxacin, showcasing how AI can revolutionize treatment strategies to combat antibiotic resistance. Weaver et al. [70] focused on using reinforcement learning to develop optimal treatment strategies that limit antibiotic resistance. Personalized approaches for various antibiotics, including ciprofloxacin and azithromycin, formed part of their research. A study on personalized dosing of antibiotics at the bedside for severe sepsis and septic shock included ciprofloxacin among the tested antibiotics. Artificial intelligence systems based on pharmacokinetic models were used to optimize dosing, demonstrating potential for improved efficacy and safety in antibiotic administration [71].
Author Contributions
Funding
Conflicts of Interest
References
- Andersson, D.I.; Balaban, N.Q.; Baquero, F.; Courvalin, P.; Glaser, P.; Gophna, U.; Kishony, R.; Molin, S.; Tønjum, T. Antibiotic resistance: Turning evolutionary principles into clinical reality. Fems Microbiol. Rev. 2020, 44, 171–188. [Google Scholar] [CrossRef] [PubMed]
- Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J. Mol. Evol. 2020, 88, 26–40. [Google Scholar] [CrossRef]
- Jasovskỳ, D.; Littmann, J.; Zorzet, A.; Cars, O. Antimicrobial resistance—A threat to the world’s sustainable development. Upsala J. Med. Sci. 2016, 121, 159–164. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.; Wertheim, H.F.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance—The need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [PubMed]
- Branda, F. The impact of artificial intelligence in the fight against antimicrobial resistance. Infect. Dis. 2024, 56, 484–486. [Google Scholar] [CrossRef]
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; et al. A deep learning approach to antibiotic discovery. Cell 2020, 180, 688–702. [Google Scholar] [CrossRef]
- Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019, 37, 1038–1040. [Google Scholar] [CrossRef]
- Torng, W.; Altman, R.B. 3D deep convolutional neural networks for amino acid environment similarity analysis. BMC Bioinform. 2017, 18, 302. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.K.; Wong, Y.H.; Pichika, M.R. Artificial intelligence in drug discovery and development. In Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays; Springer: Cham, Switzerland, 2023; pp. 1–38. [Google Scholar] [CrossRef]
- Feretzakis, G.; Sakagianni, A.; Loupelis, E.; Kalles, D.; Skarmoutsou, N.; Martsoukou, M.; Christopoulos, C.; Lada, M.; Petropoulou, S.; Velentza, A.; et al. Machine learning for antibiotic resistance prediction: A prototype using off-the-shelf techniques and entry-level data to guide empiric antimicrobial therapy. Healthc. Inform. Res. 2021, 27, 214. [Google Scholar] [CrossRef]
- Mak, K.K.; Pichika, M.R. Artificial intelligence in drug development: Present status and future prospects. Drug Discov. Today 2019, 24, 773–780. [Google Scholar] [CrossRef]
- Stiglic, G.; Kocbek, P.; Fijacko, N.; Zitnik, M.; Verbert, K.; Cilar, L. Interpretability of machine learning-based prediction models in healthcare. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1379. [Google Scholar] [CrossRef]
- Weese, J.; Giguère, S.; Guardabassi, L.; Morley, P.; Papich, M.; Ricciuto, D.; Sykes, J. ACVIM consensus statement on therapeutic antimicrobial use in animals and antimicrobial resistance. J. Vet. Intern. Med. 2015, 29, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Vidovic, N.; Vidovic, S. Antimicrobial resistance and food animals: Influence of livestock environment on the emergence and dissemination of antimicrobial resistance. Antibiotics 2020, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Ellington, M.J. The emergence of antibiotic resistance by mutation. Clin. Microbiol. Infect. 2007, 13, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Lambert, P.A. Bacterial resistance to antibiotics: Modified target sites. Adv. Drug Deliv. Rev. 2005, 57, 1471–1485. [Google Scholar] [CrossRef] [PubMed]
- Dabhi, M.; Patel, R.; Shah, V.; Soni, R.; Saraf, M.; Rawal, R.; Goswami, D. Penicillin-binding proteins: The master builders and breakers of bacterial cell walls and its interaction with β-lactam antibiotics. J. Proteins Proteom. 2024, 18, 1–18. [Google Scholar] [CrossRef]
- Prajapati, J.D.; Kleinekathofer, U.; Winterhalter, M. How to enter a bacterium: Bacterial porins and the permeation of antibiotics. Chem. Rev. 2021, 121, 5158–5192. [Google Scholar] [CrossRef]
- Fernández, L.; Hancock, R.E. Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 2012, 25, 661–681. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef]
- Zhang, S.; Liao, X.; Ding, T.; Ahn, J. Role of β-Lactamase Inhibitors as Potentiators in Antimicrobial Chemotherapy Targeting Gram-Negative Bacteria. Antibiotics 2024, 13, 260. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.; Zeng, L.; Xu, T.; Sun, S.; Yan, S.; Yang, L.; Huang, Y.; Jia, J.; Dou, T. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J. Basic Microbiol. 2021, 61, 1049–1070. [Google Scholar] [CrossRef] [PubMed]
- Brito, I.L. Examining horizontal gene transfer in microbial communities. Nat. Rev. Microbiol. 2021, 19, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Fraikin, N.; Couturier, A.; Lesterlin, C. The winding journey of conjugative plasmids toward a novel host cell. Curr. Opin. Microbiol. 2024, 78, 102449. [Google Scholar] [CrossRef] [PubMed]
- Al Doghaither, H.; Gull, M. Plasmids as genetic tools and their applications in ecology and evolution. In Plasmid; IntechOpen: London, UK, 2019. [Google Scholar]
- Blakely, G.W. Mechanisms of horizontal gene transfer and DNA recombination. In Molecular Medical Microbiology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 309–324. [Google Scholar]
- Gummalla, V.S.; Zhang, Y.; Liao, Y.T.; Wu, V.C. The role of temperate phages in bacterial pathogenicity. Microorganisms 2023, 11, 541. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Mirshekari, H.; Basri, S.M.M.; Bahrami, S.; Moghoofei, M.; Hamblin, M.R. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv. Drug Deliv. Rev. 2016, 106, 45–62. [Google Scholar] [CrossRef]
- Baquero, F.; Martinez, J.L.; Lanza, V.F.; Rodríguez-Beltrán, J.; Galán, J.C.; San Millán, A.; Cantón, R.; Coque, T.M. Evolutionary pathways and trajectories in antibiotic resistance. Clin. Microbiol. Rev. 2021, 34, e00050-19. [Google Scholar] [CrossRef] [PubMed]
- Dhital, S.; Deo, P.; Bharathwaj, M.; Horan, K.; Nickson, J.A.M.; Stuart, I.; Chow, S.; Gunasinghe, S.; Bamert, R.; Li, J.; et al. Neisseria gonorrhoeae-derived outer membrane vesicles package β-lactamases to promote antibiotic resistance. microLife 2022, 3, uqac013. [Google Scholar] [CrossRef] [PubMed]
- Bennett, P.M. Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol. 2008, 153, S347–S357. [Google Scholar] [CrossRef]
- Del Solar, G.; Giraldo, R.; Ruiz-Echevarría, M.J.; Espinosa, M.; Díaz-Orejas, R. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 1998, 62, 434–464. [Google Scholar] [CrossRef]
- Anahtar, M.N.; Yang, J.H.; Kanjilal, S. Applications of machine learning to the problem of antimicrobial resistance: An emerging model for translational research. J. Clin. Microbiol. 2021, 59, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Hayashi-Nishino, M.; Aoki, K.; Kishimoto, A.; Takeuchi, Y.; Fukushima, A.; Uchida, K.; Echigo, T.; Yagi, Y.; Hirose, M.; Iwasaki, K.; et al. Identification of bacterial drug-resistant cells by the convolutional neural network in transmission electron microscope images. Front. Microbiol. 2022, 13, 839718. [Google Scholar] [CrossRef] [PubMed]
- Green, A.G.; Yoon, C.H.; Chen, M.L.; Ektefaie, Y.; Fina, M.; Freschi, L.; Gröschel, M.I.; Kohane, I.; Beam, A.; Farhat, M. A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis. Nat. Commun. 2022, 13, 3817. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Chen, J.; Liu, C.; Zeng, Y.; Sun, Q.; Li, J.; Shen, Z.; Chen, S.; Zhang, R. Identification of antibiotic resistance and virulence-encoding factors in Klebsiella pneumoniae by Raman spectroscopy and deep learning. Microb. Biotechnol. 2022, 15, 1270–1280. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.; Tseng, D.; Larkin, P.M.; Realegeno, S.; Mortimer, L.; Subramonian, A.; Di Carlo, D.; Garner, O.B.; Ozcan, A. Automated, cost-effective optical system for accelerated antimicrobial susceptibility testing (AST) using deep learning. ACS Photonics 2020, 7, 2527–2538. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Chafai, N.; Bonizzi, L.; Botti, S.; Badaoui, B. Emerging applications of machine learning in genomic medicine and healthcare. Crit. Rev. Clin. Lab. Sci. 2024, 61, 140–163. [Google Scholar] [CrossRef] [PubMed]
- Arango-Argoty, G.; Garner, E.; Pruden, A.; Heath, L.S.; Vikesland, P.; Zhang, L. DeepARG: A deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 2018, 6, 23. [Google Scholar] [CrossRef]
- Gupta, S.; Arango-Argoty, G.; Zhang, L.; Pruden, A.; Vikesland, P. Identification of discriminatory antibiotic resistance genes among environmental resistomes using extremely randomized tree algorithm. Microbiome 2019, 7, 123. [Google Scholar] [CrossRef]
- Van Passel, M.W.; Kant, R.; Zoetendal, E.G.; Plugge, C.M.; Derrien, M.; Malfatti, S.A.; Chain, P.S.; Woyke, T.; Palva, A.; de Vos, W.M.; et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 2011, 6, e16876. [Google Scholar] [CrossRef]
- Kim, J.I.; Maguire, F.; Tsang, K.K.; Gouliouris, T.; Peacock, S.J.; McAllister, T.A.; McArthur, A.G.; Beiko, R.G. Machine learning for antimicrobial resistance prediction: Current practice, limitations, and clinical perspective. Clin. Microbiol. Rev. 2022, 35, e00179-21. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Gupta, A. Dealing with noise problem in machine learning data-sets: A systematic review. Procedia Comput. Sci. 2019, 161, 466–474. [Google Scholar] [CrossRef]
- Lipton, Z.C. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue 2018, 16, 31–57. [Google Scholar] [CrossRef]
- Holzinger, A.; Plass, M.; Holzinger, K.; Crisan, G.C.; Pintea, C.M.; Palade, V. A glass-box interactive machine learning approach for solving NP-hard problems with the human-in-the-loop. arXiv 2017, arXiv:1708.01104. [Google Scholar] [CrossRef]
- Tokgöz, P.; Krayter, S.; Hafner, J.; Dockweiler, C. Decision support systems for antibiotic prescription in hospitals: A survey with hospital managers on factors for implementation. BMC Med. Inform. Decis. Mak. 2024, 24, 96. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Wu, L.; Wu, L.; Xu, C.; Mu, T. Effectiveness of decision support tools on reducing antibiotic use for respiratory tract infections: A systematic review and meta-analysis. Front. Pharmacol. 2023, 14, 1253520. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Chung, H.J.; Kang, H.M.; Kim, D.K.; Kwak, Y.H. Development and validation of machine learning-driven prediction model for serious bacterial infection among febrile children in emergency departments. PLoS ONE 2022, 17, e0265500. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, M.; Kabanza, F.; Nault, V.; Valiquette, L. Evaluation of a machine learning capability for a clinical decision support system to enhance antimicrobial stewardship programs. Artif. Intell. Med. 2016, 68, 29–36. [Google Scholar] [CrossRef]
- Shah, P.; Kendall, F.; Khozin, S.; Goosen, R.; Hu, J.; Laramie, J.; Ringel, M.; Schork, N. Artificial intelligence and machine learning in clinical development: A translational perspective. NPJ Digit. Med. 2019, 2, 69. [Google Scholar] [CrossRef]
- Moffa, M.A.; Walsh, T.L.; Tang, A.; Bremmer, D.N. Impact of an antimicrobial stewardship program on healthcare-associated Clostridium difficile rates at a community-based teaching hospital. J. Infect. Prev. 2018, 19, 191–194. [Google Scholar] [CrossRef]
- Lauritsen, S.M.; Kalør, M.E.; Kongsgaard, E.L.; Lauritsen, K.M.; Jørgensen, M.J.; Lange, J.; Thiesson, B. Early detection of sepsis utilizing deep learning on electronic health record event sequences. Artif. Intell. Med. 2020, 104, 101820. [Google Scholar] [CrossRef]
- Schinkel, M.; Paranjape, K.; Panday, R.N.; Skyttberg, N.; Nanayakkara, P.W. Clinical applications of artificial intelligence in sepsis: A narrative review. Comput. Biol. Med. 2019, 115, 103488. [Google Scholar] [CrossRef]
- Jukič, M.; Bren, U. Machine learning in antibacterial drug design. Front. Pharmacol. 2022, 13, 864412. [Google Scholar] [CrossRef]
- Fernandes, P.O.; Dias, A.L.T.; dos Santos Júnior, V.S.; Sa Magalhaes Serafim, M.; Sousa, Y.V.; Monteiro, G.C.; Coutinho, I.D.; Valli, M.; Verzola, M.M.S.A.; Ottoni, F.M.; et al. Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus. J. Chem. Inf. Model. 2024, 64, 1932–1944. [Google Scholar] [CrossRef]
- Tao, S.; Wang, D.M.; Song, W.; Jiang, J.D.; Jie, X. Deep learning-based de novo drug design: Principles, tools and practice. Acta Pharm. Sin. 2023, 58, 2610–2622. [Google Scholar]
- Nocedo-Mena, D.; Cornelio, C.; Camacho-Corona, M.d.R.; Garza-González, E.; Waksman de Torres, N.; Arrasate, S.; Sotomayor, N.; Lete, E.; González-Díaz, H. Modeling antibacterial activity with machine learning and fusion of chemical structure information with microorganism metabolic networks. J. Chem. Inf. Model. 2019, 59, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Ivanenkov, Y.; Zhavoronkov, A.; Yamidanov, R.; Osterman, I.; Sergiev, P.V.; Aladinskiy, V.A.; Dontsova, O.A. Identification of novel antibacterials using machine learning techniques. Front. Pharmacol. 2019, 10, 3310–3389. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Luna, J.; Grisoni, F.; Weskamp, N.; Schneider, G. Artificial intelligence in drug discovery: Recent advances and future perspectives. Expert Opin. Drug Discov. 2021, 16, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Lluka, T.; Stokes, J.M. Antibiotic discovery in the artificial intelligence era. Ann. N. Y. Acad. Sci. 2023, 1519, 74–93. [Google Scholar] [CrossRef]
- Ho, W.H.; Huang, T.H.; Chen, Y.J.; Zeng, L.Y.; Liao, F.F.; Liou, Y.C. Prediction of vancomycin initial dosage using artificial intelligence models applying ensemble strategy. BMC Bioinform. 2021, 22, 637. [Google Scholar] [CrossRef]
- Wang, Z.; Ong, C.L.J.; Fu, Z. AI models to assist vancomycin dosage titration. Front. Pharmacol. 2022, 13, 801928. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, A.; Edwina, E.; Flint, R.B.; Allegaert, K.; Wildschut, E.D.; Koch, B.C.; De Hoog, M. Model-informed precision dosing of antibiotics in pediatric patients: A narrative review. Front. Pediatr. 2021, 9, 624639. [Google Scholar] [CrossRef] [PubMed]
- Mishi, R.D.; Stokes, M.A.; Campbell, C.A.; Plaxco, K.W.; Stocker, S.L. Real-Time Monitoring of Antibiotics in the Critically Ill Using Biosensors. Antibiotics 2023, 12, 1478. [Google Scholar] [CrossRef] [PubMed]
- Póvoa, P.; Moniz, P.; Pereira, J.G.; Coelho, L. Optimizing antimicrobial drug dosing in critically ill patients. Microorganisms 2021, 9, 1401. [Google Scholar] [CrossRef] [PubMed]
- Muenraya, P.; Sawatdee, S.; Srichana, T.; Atipairin, A. Silver nanoparticles conjugated with colistin enhanced the antimicrobial activity against gram-negative bacteria. Molecules 2022, 27, 5780. [Google Scholar] [CrossRef] [PubMed]
- Zagajewski, A.; Turner, P.; Feehily, C.; El Sayyed, H.; Andersson, M.; Barrett, L.; Oakley, S.; Stracy, M.; Crook, D.; Nellåker, C.; et al. Deep learning and single-cell phenotyping for rapid antimicrobial susceptibility detection in Escherichia coli. Commun. Biol. 2023, 6, 1164. [Google Scholar] [CrossRef] [PubMed]
- Weaver, D.T.; King, E.S.; Maltas, J.; Scott, J.G. Reinforcement Learning informs optimal treatment strategies to limit antibiotic resistance. Proc. Natl. Acad. Sci. USA 2024, 121, e2303165121. [Google Scholar] [CrossRef] [PubMed]
- Roggeveen, L.F.; Fleuren, L.M.; Guo, T.; Thoral, P.; de Grooth, H.J.; Swart, E.L.; Klausch, T.L.; van der Voort, P.H.; Girbes, A.R.; Bosman, R.J.; et al. Right dose right now: Bedside data-driven personalized antibiotic dosing in severe sepsis and septic shock—rationale and design of a multicenter randomized controlled superiority trial. Trials 2019, 20, 745. [Google Scholar] [CrossRef]
- Alabi, R.O.; Elmusrati, M.; Leivo, I.; Almangush, A.; Mäkitie, A.A. Machine learning explainability in nasopharyngeal cancer survival using LIME and SHAP. Sci. Rep. 2023, 13, 8984. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branda, F.; Scarpa, F. Implications of Artificial Intelligence in Addressing Antimicrobial Resistance: Innovations, Global Challenges, and Healthcare’s Future. Antibiotics 2024, 13, 502. https://doi.org/10.3390/antibiotics13060502
Branda F, Scarpa F. Implications of Artificial Intelligence in Addressing Antimicrobial Resistance: Innovations, Global Challenges, and Healthcare’s Future. Antibiotics. 2024; 13(6):502. https://doi.org/10.3390/antibiotics13060502
Chicago/Turabian StyleBranda, Francesco, and Fabio Scarpa. 2024. "Implications of Artificial Intelligence in Addressing Antimicrobial Resistance: Innovations, Global Challenges, and Healthcare’s Future" Antibiotics 13, no. 6: 502. https://doi.org/10.3390/antibiotics13060502
APA StyleBranda, F., & Scarpa, F. (2024). Implications of Artificial Intelligence in Addressing Antimicrobial Resistance: Innovations, Global Challenges, and Healthcare’s Future. Antibiotics, 13(6), 502. https://doi.org/10.3390/antibiotics13060502