Whole-Genome Sequencing of Human and Porcine Escherichia coli Isolates on a Commercial Pig Farm in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Participant Recruitment, Sample Collection and Transportation
2.3. Isolation, Identification and Antibiotic Susceptibility Testing (AST) of E. coli
2.4. Total Genomic DNA Extractions and Whole-Genome Sequencing (WGS)
2.5. Bioinformatics Analysis
2.6. Statistical Analysis
3. Results
3.1. Participant Demographics and the Isolation Rate of E. coli
3.2. Phenotypic Antibiotic Resistance Testing
3.3. Genotypic Antibiotic Resistance Profiles
3.3.1. Aminoglycoside-Modifying Enzymes (AMEs)
3.3.2. ß-Lactam Resistance Genes
3.3.3. Quinolone Resistance Genes
3.3.4. Tetracycline Resistance Genes
3.4. Virulence Potential
3.4.1. Enteroaggregative E. coli (EAEC)
3.4.2. Enteropathogenic E. coli (EPEC)
3.4.3. Enterotoxigenic E. coli (ETEC)
3.4.4. Extraintestinal Pathogenic E. coli (ExPEC)
3.4.5. Shiga-Toxin-Producing E. coli (STEC)
3.4.6. Other Virulence Genes Detected That Are Not Associated with a Specific Pathovar
3.5. Phylogeny
3.5.1. Clermont Phylogroups
3.5.2. Multilocus Sequence Typing—Sequence Type Complexes
3.5.3. Core-Genome Multilocus Sequence Typing (cgMLST) and Hierarchical Clustering (HC)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial resistance in Escherichia coli. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Braz, V.S.; Melchior, K.; Moreira, C.G. Escherichia coli as a multifaceted pathogenic and versatile bacterium. Front. Cell. Infect. Microbiol. 2020, 10, 548492. [Google Scholar] [CrossRef]
- Hesp, A.; Veldman, K.; van der Goot, J.; Mevius, D.; van Schaik, G. Monitoring antimicrobial resistance trends in commensal Escherichia coli from livestock, the Netherlands, 1998 to 2016. Eurosurveillamce 2019, 24, 1800438-26. [Google Scholar] [CrossRef]
- WHO. Integrated Surveillance of Antimicrobial Resistance in Foodborne Bacteria: Application of a One Health Approach. Available online: https://apps.who.int/iris/bitstream/handle/10665/255747/9789241512411-eng.pdf?sequence=1 (accessed on 25 May 2021).
- Croxen, M.A.; Finlay, B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 2010, 8, 26–38. [Google Scholar] [CrossRef]
- Robins-Browne, R.M.; Holt, K.E.; Ingle, D.J.; Hocking, D.M.; Yang, J.; Tauschek, M. Are Escherichia coli pathotypes still relevant in the era of whole-genome sequencing? Front. Cell. Infect. Microbiol. 2016, 6, 141. [Google Scholar] [CrossRef]
- Denamur, E.; Clermont, O.; Bonacorsi, S.; Gordon, D. The population genetics of pathogenic Escherichia coli. Nat. Rev. Microbiol. 2021, 19, 37–54. [Google Scholar] [CrossRef]
- Riley, L.W. Distinguishing pathovars from nonpathovars: Escherichia coli. Microbiol. Spectr. 2020, 8. [Google Scholar] [CrossRef]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010, 8, 207–217. [Google Scholar] [CrossRef]
- Jang, J.; Hur, H.G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T.; Ishii, S. Environmental Escherichia coli: Ecology and public health implications—A review. J. Appl. Microbiol. 2017, 123, 570–581. [Google Scholar] [CrossRef]
- Brisola, M.C.; Crecencio, R.B.; Bitner, D.S.; Frigo, A.; Rampazzo, L.; Stefani, L.M.; Faria, G.A. Escherichia coli used as a biomarker of antimicrobial resistance in pig farms of Southern Brazil. Sci. Total Environ. 2019, 647, 362–368. [Google Scholar] [CrossRef]
- Wee, B.A.; Muloi, D.M.; van Bunnik, B.A.D. Quantifying the transmission of antimicrobial resistance at the human and livestock interface with genomics. Clin. Microbiol. Infect. 2020, 26, 1612–1616. [Google Scholar] [CrossRef] [PubMed]
- Hanage, W.P. Two health or not two health? That is the question. mBio 2019, 10, e00550-00510. [Google Scholar] [CrossRef]
- Hammerum, A.M.; Larsen, J.; Andersen, V.D.; Lester, C.H.; Skovgaard Skytte, T.S.; Hansen, F.; Olsen, S.S.; Mordhorst, H.; Skov, R.L.; Aarestrup, F.M.; et al. Characterization of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third- or fourth-generation cephalosporins. J. Antimicrob. Chemother. 2014, 69, 2650–2657. [Google Scholar] [CrossRef] [PubMed]
- Uelze, L.; Becker, N.; Borowiak, M.; Busch, U.; Dangel, A.; Deneke, C.; Fischer, J.; Flieger, A.; Hepner, S.; Huber, I.; et al. Toward an integrated genome-based surveillance of Salmonella enterica in Germany. Front. Microbiol. 2021, 12, 626941. [Google Scholar] [CrossRef] [PubMed]
- Leekitcharoenphon, P.; Johansson, M.H.K.; Munk, P.; Malorny, B.; Skarzynska, M.; Wadepohl, K.; Moyano, G.; Hesp, A.; Veldman, K.T.; Bossers, A.; et al. Genomic evolution of antimicrobial resistance in Escherichia coli. Sci. Rep. 2021, 11, 15108. [Google Scholar] [CrossRef] [PubMed]
- Ludden, C.; Raven, K.E.; Jamrozy, D.; Gouliouris, T.; Blane, B.; Coll, F.; de Goffau, M.; Naydenova, P.; Horner, C.; Hernandez-Garcia, J.; et al. One Health genomic surveillance of Escherichia coli demonstrates distinct lineages and mobile genetic elements in isolates from humans versus livestock. mBio 2019, 10, e02693-18. [Google Scholar] [CrossRef] [PubMed]
- Ramatla, T.; Tawana, M.; Lekota, K.E.; Thekisoe, O. Antimicrobial resistance genes of Escherichia coli, a bacterium of “One Health” importance in South Africa: Systematic review and meta-analysis. AIMS Microbiol. 2023, 9, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Theobald, S.; Etter, E.M.C.; Gerber, D.; Abolnik, C. Antimicrobial resistance trends in Escherichia coli in South African poultry: 2009–2015. Foodborne Pathog. Dis. 2019, 16, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Iwu, C.J.; Iweriebor, B.C.; Obi, L.C.; Okoh, A.I. Occurrence of non-O157 Shiga toxin-producing Escherichia coli in two commercial swine farms in the Eastern Cape province, South Africa. Comp. Immunol. Microbiol. Infect. Dis. 2016, 44, 48–53. [Google Scholar] [CrossRef]
- Iwu, C.J.; Jaja, I.F.; Iweriebor, B.C.; Obi, L.C.; Okoh, A.I. Antibiotic resistance profiles of Escherichia coli O26, O145, and O157:H7 isolated from swine in the Eastern Cape province, South Africa. Asian Pac. J. Trop. Dis. 2017, 7, 553–559. [Google Scholar] [CrossRef]
- McIver, K.S.; Amoako, D.G.; Abia, A.L.K.; Bester, L.A.; Chenia, H.Y.; Essack, S.Y. Molecular epidemiology of antibiotic-resistant Escherichia coli from farm-to-fork in intensive poultry production in KwaZulu-Natal, South Africa. Antibiotics 2020, 9, 850. [Google Scholar] [CrossRef] [PubMed]
- Kanengoni, A.T.; Thomas, R.; Gelaw, A.K.; Madoroba, E. Epidemiology and characterization of Escherichia coli outbreak on a pig farm in South Africa. FEMS Microbiol. Lett. 2017, 364, fnx010. [Google Scholar] [CrossRef] [PubMed]
- Mbelle, N.M.; Feldman, C.; Osei Sekyere, J.; Maningi, N.E.; Modipane, L.; Essack, S.Y. The resistome, mobilome, virulome and phylogenomics of multidrug-resistant Escherichia coli clinical isolates from Pretoria, South Africa. Sci. Rep. 2019, 9, 16457. [Google Scholar] [CrossRef] [PubMed]
- DeFrancesco, A.S.; Tanih, N.F.; Samie, A.; Guerrant, R.L.; Bessong, P.O. Antibiotic resistance patterns and beta-lactamase identification in Escherichia coli isolated from young children in rural Limpopo Province, South Africa: The MAL-ED cohort. S. Afr. Med. J. 2017, 107, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Genthe, B.; Ndlela, L.; Madlala, T. Antimicrobial resistance screening and profiles: A glimpse from the South African perspective. J. Water Health 2020, 18, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Iwu, C.D.; Nontongana, N.; Iwu-Jaja, C.J.; Anyanwu, B.O.; du Plessis, E.; Korsten, L.; Okoh, A.I. Spatial diarrheal disease risks and antibiogram diversity of diarrheagenic Escherichia coli in selected access points of the Buffalo River, South Africa. PLoS ONE 2023, 18, e0288809. [Google Scholar] [CrossRef] [PubMed]
- Ratshilingano, M.T.; du Plessis, E.M.; Duvenage, S.; Korsten, L. Characterization of multidrug-resistant Escherichia coli isolated from two commercial lettuce and spinach supply chains. J. Food Prot. 2022, 85, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Richter, L.; du Plessis, E.M.; Duvenage, S.; Korsten, L. Occurrence, identification, and antimicrobial resistance profiles of extended-spectrum and AmpC β-lactamase-producing Enterobacteriaceae from fresh vegetables retailed in Gauteng province, South Africa. Foodborne Pathog. Dis. 2019, 16, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Mbanga, J.; Amoako, D.G.; Abia, A.L.K.; Allam, M.; Ismail, A.; Essack, S.Y. Genomic insights of multidrug-resistant Escherichia coli from wastewater sources and their association with clinical pathogens in South Africa. Front. Vet. Sci. 2021, 8, 636715. [Google Scholar] [CrossRef]
- Mbanga, J.; Abia, A.L.K.; Amoako, D.G.; Essack, S.Y. Longitudinal surveillance of antibiotic resistance in Escherichia coli and Enterococcus spp. from a wastewater treatment plant and its associated waters in KwaZulu-Natal, South Africa. Microb. Drug Resist. 2021, 27, 904–918. [Google Scholar] [CrossRef]
- Baloyi, T.; Duvenage, S.; Du Plessis, E.; Villamizar-Rodríguez, G.; Korsten, L. Multidrug resistant Escherichia coli from fresh produce sold by street vendors in South African informal settlements. Int. J. Environ. Health Res. 2022, 32, 1513–1528. [Google Scholar] [CrossRef] [PubMed]
- Founou, L.L.; Founou, R.C.; Ntshobeni, N.; Govinden, U.; Bester, L.A.; Chenia, H.Y.; Djoko, C.F.; Essack, S.Y. Emergence and spread of extended spectrum beta-lactamase producing Enterobacteriaceae (ESBL-PE) in pigs and exposed Workers: A multicentre comparative study between Cameroon and South Africa. Pathogens 2019, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Bumunang, E.W.; McAllister, T.A.; Zaheer, R.; Ortega Polo, R.; Stanford, K.; King, R.; Niu, Y.D.; Ateba, C.N. Characterization of non-O157 Escherichia coli from cattle faecal samples in the North-West province of South Africa. Microorganisms 2019, 7, 272. [Google Scholar] [CrossRef] [PubMed]
- Strasheim, W.; Etter, E.M.C.; Lowe, M.; Perovic, O. Method to assess farm-level vaccine and antibiotic usage utilizing financial documentation: A pilot study in a commercial pig farm in South Africa from 2016 to 2018. Front. Vet. Sci. 2022, 9, 856729. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.0, 2023. Available online: http://eucast.org (accessed on 8 May 2023).
- National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS). Antimicrobial Agents Used for Susceptibility Testing for E. coli Isolates. 2023. Available online: https://www.cdc.gov/narms/antibiotics-tested.html (accessed on 8 May 2023).
- Kwenda, S.; Allam, M.; Khumualo, Z.T.H.; Mtshali, S.; Mnyameni, F.; Ismail, A. Jekesa: An Automated Easy-to-Use Pipeline for Bacterial Whole Genome Typing. Available online: https://github.com/stanikae/jekesa (accessed on 8 May 2023).
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, F.M. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 2014, 52, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Malberg Tetzschner, A.M.; Johnson, J.R.; Johnston, B.D.; Lund, O.; Scheutz, F. In silico genotyping of Escherichia coli isolates for extraintestinal virulence genes by use of whole-genome sequencing data. J. Clin. Microbiol. 2020, 58, e01269-01220. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Zankari, E.; Allesoe, R.; Joensen, K.G.; Cavaco, L.M.; Lund, O.; Aarestrup, F.M. PointFinder: A novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 2017, 72, 2764–2768. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Boisen, N.; Osterlund, M.T.; Joensen, K.G.; Santiago, A.E.; Mandomando, I.; Cravioto, A.; Chattaway, M.A.; Gonyar, L.A.; Overballe-Petersen, S.; Stine, O.C.; et al. Redefining enteroaggregative Escherichia coli (EAEC): Genomic characterization of epidemiological EAEC strains. PLoS Negl. Trop. Dis. 2020, 14, e0008613. [Google Scholar] [CrossRef] [PubMed]
- Gaytan, M.O.; Martinez-Santos, V.I.; Soto, E.; Gonzalez-Pedrajo, B. Type three secretion system in attaching and effacing pathogens. Front. Cell. Infect. Micro. 2016, 6, 129. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Yao, F.; Zhu, G. Major virulence factors of enterotoxigenic Escherichia coli in pigs. Ann. Microbiol. 2011, 62, 7–14. [Google Scholar] [CrossRef]
- Pakbin, B.; Bruck, W.M.; Rossen, J.W.A. Virulence factors of enteric pathogenic Escherichia coli: A review. Int. J. Mol. Sci. 2021, 22, 9922. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Russo, T.A. Molecular epidemiology of extraintestinal pathogenic Escherichia coli. EcoSal Plus 2018, 8. [Google Scholar] [CrossRef]
- Aldawood, E.; Roberts, I.S. Regulation of Escherichia coli group 2 capsule gene expression: A mini review and update. Front. Microbiol. 2022, 13, 858767. [Google Scholar] [CrossRef]
- Roer, L.; Tchesnokova, V.; Allesoe, R.; Muradova, M.; Chattopadhyay, S.; Ahrenfeldt, J.; Thomsen, M.C.F.; Lund, O.; Hansen, F.; Hammerum, A.M.; et al. Development of a web tool for Escherichia coli subtyping based on fimH alleles. J. Clin. Microbiol. 2017, 55, 2538–2543. [Google Scholar] [CrossRef]
- Beghain, J.; Bridier-Nahmias, A.; Le Nagard, H.; Denamur, E.; Clermont, O. ClermonTyping: An easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb. Genom. 2018, 4, e000192. [Google Scholar] [CrossRef]
- Waters, N.R.; Abram, F.; Brennan, F.; Holmes, A.; Pritchard, L. Easy phylotyping of Escherichia coli via the EzClermont web app and command-line tool. Access Microbiol. 2020, 2, acmi000143. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.F.; Mohamed, K.; Fan, Y.; Agama Study, G.; Achtman, M. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carrico, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef]
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation, R Package Version 1.0.6; 2021. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 8 May 2023).
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests, R Package Version 0.7.2.; 2023. Available online: https://cran.r-project.org/web/packages/rstatix/index.html (accessed on 8 May 2023).
- Firke, S. Janitor: Simple Tools for Examining and Cleaning Dirty Data., R Package Version 2.2.0.; 2023. Available online: https://cran.r-project.org/web/packages/janitor/index.html (accessed on 8 May 2023).
- Al-Mustapha, A.I.; Raufu, I.A.; Ogundijo, O.A.; Odetokun, I.A.; Tiwari, A.; Brouwer, M.S.M.; Adetunji, V.; Heikinheimo, A. Antibiotic resistance genes, mobile elements, virulence genes, and phages in cultivated ESBL-producing Escherichia coli of poultry origin in Kwara State, North Central Nigeria. Int. J. Food Microbiol. 2023, 389, 110086. [Google Scholar] [CrossRef]
- Silva, A.; Silva, V.; Pereira, J.E.; Maltez, L.; Igrejas, G.; Valentao, P.; Falco, V.; Poeta, P. Antimicrobial resistance and clonal lineages of Escherichia coli from food-producing animals. Antibiotics 2023, 12, 1061. [Google Scholar] [CrossRef]
- Abdalla, S.E.; Abia, A.L.K.; Amoako, D.G.; Perrett, K.; Bester, L.A.; Essack, S.Y. From farm-to-fork: E. coli from an intensive pig production system in South Africa shows high resistance to critically important antibiotics for human and animal use. Antibiotics 2021, 10, 178. [Google Scholar] [CrossRef] [PubMed]
- Ateba, C.N.; Bezuidenhout, C.C. Characterisation of Escherichia coli O157 strains from humans, cattle and pigs in the North-West province, South Africa. Int. J. Food Microbiol. 2008, 128, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Iweriebor, B.C.; Iwu, C.J.; Obi, L.C.; Nwodo, U.U.; Okoh, A.I. Multiple antibiotic resistances among shiga-toxin producing Escherichia coli O157 in feces of dairy cattle farms in Eastern Cape of South Africa. BMC Microbiol. 2015, 15, 213. [Google Scholar] [CrossRef] [PubMed]
- Eagar, H.; Naidoo, V. Veterinary antimicrobial stewardship in South Africa. Int. Biol. Rev. 2017, 1, 1–14. [Google Scholar]
- Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 1121–1137. [Google Scholar] [CrossRef]
- Poirel, L.; Cattoir, V.; Nordmann, P. Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Front. Microbiol. 2012, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, H.; Ning, J.; Sajid, A.; Cheng, G.; Yuan, Z.; Hao, H. The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob. Resist. Infect. Control 2019, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Perez, F.; Rudin, S.D.; Marshall, S.H.; Coakley, P.; Chen, L.; Kreiswirth, B.N.; Rather, P.N.; Hujer, A.M.; Toltzis, P.; van Duin, D.; et al. OqxAB, a quinolone and olaquindox efflux pump, is widely distributed among multidrug-resistant Klebsiella pneumoniae isolates of human origin. Antimicrob. Agents Chemother. 2013, 57, 4602–4603. [Google Scholar] [CrossRef] [PubMed]
- Perreten, V.; Strauss, C.; Collaud, A.; Gerber, D. Colistin resistance gene mcr-1 in avian-pathogenic Escherichia coli in South Africa. Antimicrob. Agents Chemother. 2016, 60, 4414–4415. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, M.; Brink, A.; Gouws, J.; Mbelle, N.; Naidoo, V.; Pople, T.; Schellack, N.; van Vuuren, M.; Rees, H. The One Health stewardship of colistin as an antibiotic of last resort for human health in South Africa. Lancet Infect. Dis. 2018, 18, e288–e294. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, J.; Corcoran, C.; Prentice, E.; Moodley, M.; Mendelson, M.; Poirel, L.; Nordmann, P.; Brink, A.J. Emergence of plasmid-mediated colistin resistance (MCR-1) among Escherichia coli isolated from South African patients. S. Afr. Med. J. 2016, 106, 35–36. [Google Scholar] [CrossRef] [PubMed]
- Founou, L.L.; Founou, R.C.; Allam, M.; Ismail, A.; Essack, S.Y. Genome analysis of ESBL-producing Escherichia coli isolated from pigs. Pathogens 2022, 11, 776. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, K.; Janecko, N.; Agunos, A.; Deckert, A.; Reid-Smith, R.; Gow, S.; Rubin, J. Evaluation of selective media in antimicrobial surveillance programs capturing broad-spectrum beta-lactamase producing Escherichia coli from chickens at slaughter. Can. Vet. J. 2021, 62, 608–610. [Google Scholar] [PubMed]
- Duggett, N.; AbuOun, M.; Randall, L.; Horton, R.; Lemma, F.; Rogers, J.; Crook, D.; Teale, C.; Anjum, M.F. The importance of using whole genome sequencing and extended spectrum beta-lactamase selective media when monitoring antimicrobial resistance. Sci. Rep. 2020, 10, 19880. [Google Scholar] [CrossRef]
- Gay, E.; Bour, M.; Cazeau, G.; Jarrige, N.; Martineau, C.; Madec, J.Y.; Haenni, M. Antimicrobial usages and antimicrobial resistance in commensal Escherichia coli from veal calves in France: Evolution during the fattening process. Front. Microbiol. 2019, 10, 792. [Google Scholar] [CrossRef]
- Mohlatlole, R.P.; Madoroba, E.; Muchadeyi, F.C.; Chimonyo, M.; Kanengoni, A.T.; Dzomba, E.F. Virulence profiles of enterotoxigenic, shiga toxin and enteroaggregative Escherichia coli in South African pigs. Trop. Anim. Health Prod. 2013, 45, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Hu, Z.; Li, Z.; Zhang, X.; Jia, C.; Li, T.; Dai, M.; Tan, C.; Xu, Z.; Wu, B.; et al. Antimicrobial resistance and population genomics of multidrug-resistant Escherichia coli in pig farms in mainland China. Nat. Commun. 2022, 13, 1116. [Google Scholar] [CrossRef] [PubMed]
- Muloi, D.M.; Wee, B.A.; McClean, D.M.H.; Ward, M.J.; Pankhurst, L.; Phan, H.; Ivens, A.C.; Kivali, V.; Kiyong’a, A.; Ndinda, C.; et al. Population genomics of Escherichia coli in livestock-keeping households across a rapidly developing urban landscape. Nat. Microbiol. 2022, 7, 581–589. [Google Scholar] [CrossRef]
- Dohmen, W.; Liakopoulos, A.; Bonten, M.J.M.; Mevius, D.J.; Heederika, D.J.J. Longitudinal study of dynamic epidemiology of extended spectrum beta-lactamase-producing Escherichia coli in pigs and humans living and/or working on pig farms. Microbiol. Spectr. 2023, 11, e0294722. [Google Scholar] [CrossRef]
Antibiotic Class | R MIC Breakpoint (µg/mL) | Human % (n = 63) | Pigs % (n =106) | Total % (n = 169) | p-Value |
---|---|---|---|---|---|
Penicillins | |||||
Ampicillin | ≥32 | 33.33 (21) | 94.34 (100) | 71.60 (121) | <0.05 |
Piperacillin | ≥128 | 31.75 (20) | 84.91 (90) | 65.09 (110) | <0.05 |
ß-lactam combination agents | |||||
Amoxicillin-clavulanate | ≥32/16 | 0.0 (0) | 0.0 (0) | 0.0 (0) | NS |
Ampicillin-sulbactam | ≥32/16 | 9.52 (6) | 40.57 (43) | 28.99 (49) | <0.05 |
Piperacillin-tazobactam | ≥128/4 | 0.0 (0) | 0.00 (0) | 0.0 (0) | NS |
Cephems | |||||
Cefepime | ≥16 | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
Cefotaxime | ≥4 | 0.0 (0) | 0.0 (0) | 0.0 (0) | NS |
Cefotaxime-clavulante | >0.5 | 0.0 (0) | 0.0 (0) | 0.0 (0) | NS |
Cefoxitin | ≥32 | 0.0 (0) | 0.0 (0) | 0.0 (0) | NS |
Ceftazidime | ≥16 | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
Ceftazidime-clavulante | >0.25 | 0.0 (0) | 0.0 (0) | 0.0 (0) | NS |
Cefuroxime | ≥32 | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
Monobactams | |||||
Aztreonam | ≥16 | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
Carbapenems | |||||
Doripenem | ≥4 | 0.0 (0) | 0.0 (0) | 0.0 (0) | NS |
Ertapenem | ≥2 | 0.0 (0) | 0.0 (0) | 0.0 (0) | NS |
Imipenem | ≥4 | 0.0 (0) | 0.0 (0) | 0.0 (0) | NS |
Meropenem | ≥4 | 0.0 (0) | 0.0 (0) | 0.0 (0) | NS |
Aminoglycosides | |||||
Amikacin | ≥64 | 0.0 (0) | 0.0 (0) | 0.0 (0) | NS |
Gentamicin | ≥16 | 0.0 (0) | 6.6 (7) | 4.14 (7) | NS |
Streptomycin # | ≥32 | 22.22 (14) | 28.3 (30) | 26.04 (44) | NS |
Tobramycin | ≥16 | 0.0 (0) | 3.77 (4) | 2.37 (4) | NS |
Tetracyclines | |||||
Tetracycline | ≥16 | 30.16 (19) | 95.28 (101) | 71.01 (120) | <0.05 |
Quinolones | |||||
Ciprofloxacin * | ≥1 | 1.59 (1) | 16.04 (17) | 10.65 (18) | <0.05 |
Levofloxacin | ≥2 | 0.0 (0) | 4.72 (5) | 2.96 (5) | NS |
Other | |||||
Chloramphenicol | ≥32 | 4.76 (3) | 35.85 (38) | 24.26 (41) | <0.05 |
Colistin #$ | >2 | 0.0 (0) | 0.0 (0) | 0.0 (0) | NS |
Fosfomycin | ≥256 | 0.0 (0) | 1.89 (2) | 1.18 (2) | NS |
Tigecycline # | 0.5 | 0.0 (0) | 0.94 (1) | 0.59 (1) | NS |
Trimethoprim-sulfamethoxazole | ≥4/76 | 39.68 (25) | 28.3 (30) | 32.54 (55) | NS |
Antibiotic Resistance Gene Class | Human % (n = 63) | Pigs % (n =106) | Total % (n = 169) | p-Value |
---|---|---|---|---|
Aminoglycoside-modifying enzymes | ||||
Acetyltransferases | ||||
ACC(3)-IId | 0.0 (0) | 0.94 (1) | 0.59 (1) | NS |
ACC(3)-IId; ACC-Ib-cr | 0.0 (0) | 5.66 (6) | 3.55 (6) | NS |
Not detected | 100.00 (63) | 61.11 (99) | 95.86 (162) | NS |
Nucleotidyltransferases | ||||
ANT(3″)-Ia | 19.05 (12) | 50.0 (53) | 38.46 (65) | <0.05 |
Not detected | 80.95 (51) | 50.0 (53) | 61.54 (104) | <0.05 |
Phosphotransferases | ||||
APH(3′)-Ia | 0.0 (0) | 12.26 (13) | 7.69 (13) | <0.05 |
APH(3″)-Ib; APH(6)-Id | 30.16 (19) | 22.64 (24) | 25.44 (43) | NS |
APH(3′)-Ia; APH(3″)-Ib; APH(6)-Id | 0.0 (0) | 11.32 (12) | 7.10 (12) | <0.05 |
Not detected | 69.84 (44) | 53.77 (57) | 59.76 (101) | NS |
ß-lactam resistance genes | ||||
blaTEM-1A | 1.59 (1) | 2.83 (3) | 2.37 (4) | NS |
blaTEM-1B | 28.57 (18) | 76.42 (81) | 58.58 (99) | <0.05 |
blaTEM-1C | 0.0 (0) | 2.83 (3) | 1.78 (3) | NS |
ß-lactam resistance genes | ||||
blaTEM-1B and blaOXA-1 | 0.0 (0) | 5.66 (6) | 3.55 (6) | NS |
Multiple blaTEM variants | 1.59 (1) | 1.89 (2) | 1.78 (3) | NS |
Not detected | 68.25 (43) | 10.38 (11) | 31.95 (54) | <0.05 |
Colistin | ||||
pmrB(V161G) | 0.0 (0) | 0.94 (1) | 0.59 (1) | NS |
Macrolides | ||||
mdfA | 95.24 (60) | 97.17 (103) | 96.45 (163) | NS |
mdfA, mphA | 4.76 (3) | 2.83 (6) | 3.55 (6) | NS |
Phenicols | ||||
catA1 | 0.00 (0) | 1.89 (2) | 1.18 (2) | NS |
cmlA1 | 1.59 (1) | 4.72 (5) | 3.55 (6) | NS |
cmlA1, catB3 | 0.0 (0) | 0.94 (1) | 0.59 (1) | NS |
cmlA1, catB4, floR | 0.0 (0) | 4.72 (5) | 2.96 (5) | NS |
floR | 0.0 (0) | 1.89 (2) | 1.18 (2) | NS |
Not detected | 98.41 (62) | 85.85 (91) | 90.53 (153) | <0.05 |
Quinolones | ||||
Chromosomal mutations | ||||
gyrA (S83A) | 4.76 (3) | 5.66 (6) | 5.33 (9) | NS |
gyrA (S83L) | 6.35 (4) | 23.58 (25) | 17.16 (29) | <0.05 |
parC (A56T) | 1.59 (1) | 2.83 (3) | 2.37 (4) | NS |
parC (S80I) | 1.59 (1) | 0.94 (1) | 1.18 (2) | NS |
parE (I355T) | 1.59 (1) | 0.94 (1) | 1.18 (2) | NS |
Plasmid-mediated | ||||
OqxAB | 3.17 (2) | 32.08 (34) | 21.30 (36) | <0.05 |
OqxAB, acc-(6′)-Ib-cr, qnrS2 | 0.0 (0) | 4.72 (5) | 2.96 (5) | NS |
OqxAB, qnrS1 | 0.0 (0) | 6.60 (7) | 4.14 (7) | NS |
OqxAB, qnrS2 | 0.0 (0) | 0.94 (1) | 0.59 (1) | NS |
qnrS1 | 7.94 (5) | 6.60 (7) | 7.10 (12) | NS |
Not detected | 88.89 (56) | 49.06 (52) | 63.91 (108) | <0.05 |
Rifampicin | ||||
arr-3 | 0.0 (0) | 5.66 (6) | 3.55 (6) | NS |
Not detected | 100.00 (63) | 94.34 (100) | 96.45 (163) | NS |
Sulphonamides | ||||
sul1 | 4.76 (3) | 12.26 (13) | 9.47 (16) | NS |
sul1, sul2 | 11.11 (7) | 3.77 (4) | 6.51 (11) | NS |
sul1, sul3 | 0.0 (0) | 0.94 (1) | 0.59 (1) | NS |
sul2 | 22.22 (14) | 10.38 (11) | 14.79 (25) | NS |
sul2, sul3 | 0.0 (0) | 1.89 (2) | 1.18 (2) | NS |
sul3 | 1.59 (1) | 10.38 (11) | 7.10 (12) | NS |
Not detected | 60.32 (38) | 60.38 (64) | 60.36 (102) | NS |
Tetracyclines | ||||
tetA | 15.87 (10) | 43.40 (46) | 33.14 (56) | <0.05 |
tetA, tetM | 0.0 (0) | 4.72 (5) | 2.96 (5) | NS |
tetB | 12.70 (8) | 34.91 (37) | 26.63 (45) | <0.05 |
tetB, tetM | 0.0 (0) | 11.32 (12) | 7.10 (12) | <0.05 |
tetA, tetB | 0.0 (0) | 0.94 (1) | 0.59 (1) | NS |
Not detected | 71.43 (45) | 4.72 (5) | 29.59 (50) | <0.05 |
Trimethoprim | ||||
drfA1 | 9.52 (6) | 2.83 (3) | 5.33 (9) | NS |
drfA1, drfA14 | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
drfA12 | 3.17 (2) | 25.47 (27) | 17.16 (29) | <0.05 |
drfA12, drfA21 | 0.0 (0) | 3.77 (4) | 2.37 (4) | NS |
drfA14 | 12.70 (8) | 4.72 (5) | 7.69 (13) | NS |
drfA17 | 4.76 (3) | 2.83 (3) | 3.55 (6) | NS |
drfA21 | 0.0 (0) | 0.94 (1) | 0.59 (1) | NS |
drfA5 | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
drfA7 | 4.76 (3) | 0.0 (0) | 1.78 (3) | NS |
drfA7, drfA14 | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
Not detected | 60.32 (38) | 59.43 (63) | 59.76 (101) | NS |
Virulence Gene Combinations | Human % (n = 63) | Pigs % (n =106) | Total % (n = 169) | p-Value |
---|---|---|---|---|
Enteroaggregative E. coli (EAEC) | ||||
Dispersin (aap) | 12.70 (8) | 0.0 (0) | 4.73 (8) | <0.05 |
Dispersin transporter protein (aatA) | 9.52 (6) | 0.0 (0) | 3.55 (6) | <0.05 |
aaiC, ORF4 and ORF4 | 4.76 (3) | 0.0 (0) | 1.78 (3) | NS |
aaiC | 0.0 (0) | 0.94 (1) | 0.59 (1) | NS |
Biogenesis of AFA-III | ||||
afaABCDE | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
afaABCDE8 | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
afaD | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
Biogenesis of AAF-I | ||||
aggACD | 3.17 (2) | 0.0 (0) | 1.18 (2) | NS |
aggABCD | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
AggR transcriptional activation | ||||
aggR and aar | 4.76 (3) | 0.0 (0) | 1.78 (3) | NS |
Other genes associated with EAEC | ||||
air | 7.94 (5) | 0.94 (1) | 3.55 (6) | NS |
pet | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
pic | 4.76 (3) | 0.0 (0) | 1.78 (3) | NS |
sat | 15.87 (10) | 0.0 (0) | 5.92 (10) | <0.05 |
sigA | 14.29 (9) | 0.0 (0) | 5.33 (9) | <0.05 |
Enteropathogenic E. coli (EPEC) | ||||
Genes harbored on LEE pathogenicity island | ||||
eae | 1.59 (1) | 3.77 (4) | 2.96 (5) | NS |
espB | 0.0 (0) | 1.89 (2) | 1.18 (2) | NS |
espA | 1.59 (1) | 3.77 (4) | 2.96 (5) | NS |
espF | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
tccP | 0.00 (0) | 0.94 (1) | 0.59 (1) | NS |
tir | 1.59 (1) | 3.77 (4) | 2.96 (5) | NS |
Non-LEE effectors | ||||
cif | 1.59 (1) | 3.77 (4) | 2.96 (5) | NS |
espJ | 1.59 (1) | 3.77 (4) | 2.96 (5) | NS |
nleA | 1.59 (1) | 3.77 (4) | 2.96 (5) | NS |
nleB | 1.59 (1) | 3.77 (4) | 2.96 (5) | NS |
Enterotoxigenic E. coli (ETEC) | ||||
astA | 11.11 (7) | 17.92 (19) | 15.38 (26) | NS |
F18 fimbriae (fedAF) | 0.0 (0) | 0.94 (1) | 0.59 (1) | NS |
ltcA | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
mcbA | 1.59 (1) | 0.94 (1) | 1.18 (2) | NS |
STb toxin (stb) | 0.00 (0) | 3.77 (4) | 2.37 (4) | NS |
Extraintestinal E. coli (ExPEC) | ||||
Group II capsule | ||||
Only kpsE | 1.59 (1) | 1.89 (2) | 1.78 (3) | NS |
kpsM | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
kpsMII | 1.59 (1) | 3.77 (4) | 2.96 (5) | NS |
K1 | 7.94 (5) | 0.0 (0) | 2.96 (5) | NS |
K5 | 7.94 (5) | 0.0 (0) | 2.96 (5) | NS |
K23 | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
K52 | 4.76 (3) | 0.0 (0) | 1.78 (3) | NS |
neuC | 15.87 (10) | 0.0 (0) | 5.92 (10) | <0.05 |
Group III capsule | ||||
K96 | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
K98 | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
Shiga-toxin-producing E. coli (STEC) | ||||
Stx-2 (stx2AB) | 0.00 (0) | 1.89 (2) | 1.18 (2) | NS |
Phylogroups | Human | Pigs | Total | p-Value |
---|---|---|---|---|
% (n = 63) | % (n = 106) | % (n =169) | ||
A | 46.03 (29) | 73.58 (78) | 63.31 (107) | <0.05 |
B1 | 31.75 (20) | 17.92 (19) | 23.08 (39) | NS |
B2 | 4.76 (3) | 0.0 (0) | 1.78 (3) | NS |
C | 0.0 (0) | 0.94 (1) | 0.59 (1) | NS |
Cryptic | 1.59 (1) | 0.94 (1) | 1.18 (2) | NS |
D | 11.11 (7) | 1.89 (2) | 5.33 (9) | <0.05 |
E | 1.59 (1) | 1.89 (2) | 1.78 (3) | NS |
F | 1.59 (1) | 0.94 (1) | 1.18 (2) | NS |
U/cryptic | 1.59 (1) | 1.89 (2) | 1.78 (3) | NS |
STc * | Human % (n = 63) | Pigs % (n = 106) | Total % (n = 169) | p-Value |
---|---|---|---|---|
10 * | 30.16 (19) | 37.74 (40) | 34.91 (59) | NS |
23 (ST23) | 0.0 (0) | 0.94 (1) | 0.59 (1) | NS |
32 (ST137) | 0.0 (0) | 1.89 (2) | 1.18 (2) | NS |
69 (ST69) | 6.35 (4) | 0.0 (0) | 2.37 (4) | <0.05 |
86 (ST453; ST641; ST877) * | 6.35 (4) | 6.60 (7) | 6.51 (11) | NS |
95 (ST95; ST12411) * | 3.17 (2) | 0.0 (0) | 1.18 (2) | NS |
101 (ST101) | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
155 (ST155) | 3.17 (2) | 0.0 (0) | 1.18 (2) | NS |
156 (ST12350) | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
165 (ST165; ST1114; ST1178; ST5455) | 0.0 (0) | 6.60 (7) | 4.14 (7) | NS |
168 (ST93; ST484) | 1.59 (1) | 2.83 (3) | 2.37 (4) | NS |
206 (ST793; ST4995) * | 1.59 (1) | 0.94 (1) | 1.18 (2) | NS |
278 (ST336; ST795) * | 1.59 (1) | 1.89 (2) | 1.78 (3) | NS |
394 (ST394) | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
399 (ST399) | 3.17 (2) | 0.0 (0) | 1.18 (2) | NS |
467 (ST480; ST2325) * | 0.0 (0) | 2.83 (3) | 1.78 (3) | NS |
469 (ST162) | 1.59 (1) | 0.94 (1) | 1.18 (2) | NS |
522 (ST3075) | 1.59 (1) | 0.0 (0) | 0.59 (1) | NS |
Complex not assigned * | 34.92 (22) | 36.79 (39) | 36.09 (61) | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strasheim, W.; Lowe, M.; Smith, A.M.; Etter, E.M.C.; Perovic, O. Whole-Genome Sequencing of Human and Porcine Escherichia coli Isolates on a Commercial Pig Farm in South Africa. Antibiotics 2024, 13, 543. https://doi.org/10.3390/antibiotics13060543
Strasheim W, Lowe M, Smith AM, Etter EMC, Perovic O. Whole-Genome Sequencing of Human and Porcine Escherichia coli Isolates on a Commercial Pig Farm in South Africa. Antibiotics. 2024; 13(6):543. https://doi.org/10.3390/antibiotics13060543
Chicago/Turabian StyleStrasheim, Wilhelmina, Michelle Lowe, Anthony M. Smith, Eric M. C. Etter, and Olga Perovic. 2024. "Whole-Genome Sequencing of Human and Porcine Escherichia coli Isolates on a Commercial Pig Farm in South Africa" Antibiotics 13, no. 6: 543. https://doi.org/10.3390/antibiotics13060543
APA StyleStrasheim, W., Lowe, M., Smith, A. M., Etter, E. M. C., & Perovic, O. (2024). Whole-Genome Sequencing of Human and Porcine Escherichia coli Isolates on a Commercial Pig Farm in South Africa. Antibiotics, 13(6), 543. https://doi.org/10.3390/antibiotics13060543