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Abstract: The airborne transmission of bacterial pathogens poses a significant challenge to public
health, especially with the emergence of antibiotic-resistant strains. This study investigated envi-
ronmental factors influencing the survival of airborne bacteria, focusing on the effects of different
carbon dioxide (CO2) and dust concentrations. The experiments were conducted in an atmospheric
simulation chamber using the non-resistant wild-type E. coli K12 (JM109) and a multi-resistant variant
(JM109-pEC958). Different CO2 (100 ppm, 800 ppm, 3000 ppm) and dust concentrations (250 µg m−3,
500 µg m−3, 2000 µg m−3) were tested to encompass a wide range of CO2 and dust levels. The
results revealed that JM109-pEC958 exhibited greater resilience to high CO2 and dust concentra-
tions compared to its non-resistant counterpart. At 3000 ppm CO2, the survival rate of JM109 was
significantly reduced, while the survival rate of JM109-pEC958 remained unaffected. At the dust
concentration of 250 µg m−3, JM109 exhibited significantly reduced survival, whereas JM109-pEC958
did not. When the dust concentration was increased to 500 and 2000 µg m−3, even the JM109-pEC958
experienced substantially reduced survival rates, which were still significantly higher than those
of its non-resistant counterpart at these concentrations. These findings suggest that multi-resistant
E. coli strains possess mechanisms enabling them to endure extreme environmental conditions better
than non-resistant strains, potentially involving regulatory genes or efflux pumps. The study under-
scores the importance of understanding bacterial adaptation strategies to develop effective mitigation
approaches against antibiotic-resistant bacteria in atmospheric environments. Overall, this study
provides valuable insights into the interplay between environmental stressors and bacterial survival,
serving as a foundational step towards elucidating the adaptation mechanisms of multi-resistant
bacteria and informing strategies for combating antibiotic resistance in the atmosphere.

Keywords: antimicrobial resistance; bio-aerosols; survival rate; environmental factors; atmospheric
simulation chamber

1. Introduction

The spread of bacterial pathogens through the air presents a significant challenge
to public health, particularly with the emergence and proliferation of antibiotic-resistant
strains [1]. Understanding the environmental factors that influence the survival of these
bacteria in aerosolized form is crucial for devising effective strategies to mitigate their
transmission and impact on human health.

Airborne bacterial survival is influenced by a myriad of environmental factors, both
abiotic and biotic [2–5]. Among these, temperature, relative humidity (RH), and exposure
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to UV radiation have been extensively studied [4,6–8]. Temperature and RH play pivotal
roles in bacterial viability, with warm temperatures and moderate RH levels generally
favoring bacterial survival and growth. Conversely, extreme temperatures or RH levels
outside the optimal range can lead to decreased viability and increased susceptibility to
environmental stressors [8–10]. UV radiation, particularly in the UV-C spectrum, is known
for its germicidal effects, effectively reducing bacterial viability upon exposure [11,12].

While much research has focused on understanding bacterial survival on solid sur-
faces or in liquid media, fewer studies have explored the dynamics of bacterial aerosols.
Analyzing influencing factors on bacterial survival to airborne scenarios requires careful
consideration of additional variables unique to aerosolized environments, including particle
size distribution, air flow dynamics, and the presence of atmospheric gases [4,13–15].

In this context, the influence of carbon dioxide (CO2) concentrations and dust levels on
bacterial survival in the air represents a relatively understudied area even though it might
play a significant role in climate change [16]. CO2, a natural constituent of the atmosphere,
can accumulate to elevated levels in indoor environments, particularly in poorly ventilated
spaces or areas with high occupant density [17]. It serves not only as a vital component of
cellular respiration for many organisms but also plays a role in modulating environmental
conditions. In laboratory settings, CO2 is often regulated to maintain physiological condi-
tions conducive to bacterial growth and viability in culture media [18,19]. It is routinely
supplied to incubators and growth chambers to maintain optimal pH conditions for cell
culture and bacterial growth and to enhance microbial proliferation [20]. However, the
implications of fluctuating CO2 concentrations on airborne bacterial survival remain poorly
understood. Investigating the influence of CO2 on airborne bacteria is essential not only
for understanding their survival dynamics in indoor environments but also for optimizing
laboratory conditions to accurately simulate real-world scenarios.

Similarly, dust particles, comprising a complex mixture of organic and inorganic
materials, ubiquitous in indoor and outdoor air, have been implicated as carriers for
microbial contaminants, including bacteria and viruses [21]. Dust particles can originate
from various sources, including skin flakes, textile fibers, pollen, and soil particles, and
can harbor a diverse array of microbial species [22,23]. Dust can provide a substrate for
microbial attachment and growth, providing nutrients, and protection from environmental
stressors, and potentially prolonging the survival of airborne pathogens [21]. Furthermore,
the physicochemical properties of dust particles, including size, composition, and surface
characteristics, may influence microbial adhesion and survival dynamics [24]. Moreover,
dust particles can facilitate the dispersal of bacteria over long distances, contributing to
the transmission of infectious agents in both indoor and outdoor environments [25,26].
Despite the recognized role of dust in microbial dissemination, our understanding of its
interactions with airborne bacteria and its influence on their survival remains limited.

This work aims to bridge this knowledge gap by investigating the influence of varying
concentrations of CO2 and dust levels on the survival of two distinct bacterial strains:
non-resistant and multi-resistant Escherichia coli (E. coli). E. coli was used for this study
as it is a very common laboratory bacterial strain frequently employed in experiments,
including experiments on airborne bacteria due to the extensive knowledge available about
this species [8–12,27,28]. By systematically altering CO2 concentrations and dust levels
within an atmospheric simulation chamber with controlled settings, this study aims to
provide insights into the complex interplay between environmental factors and bacterial
survival in aerosolized form.

2. Results and Discussion
2.1. Effect of CO2 on the Survival Rate

The effect of three different concentrations of CO2 (100, 800, 3000 ppm) on the survival
rates of both strains (JM109 and JM109-pEC958) was assessed by comparing them to the
survival rates of the baseline experiments [29]. These specific concentrations were chosen to
encompass a wide range of CO2 levels in comparison to the global mean CO2 concentration
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of about 400 ppm, from very low to very high, to ensure that any potential effects on
survival rates could be distinctly observed. The results from experiments with CO2 set
to 100 ppm revealed a reduction in survival rates for both strains, approximately 58%
and 46%, respectively. (Figure 1), suggesting that very low CO2 concentrations might
notably decrease survival rates. CO2 plays a crucial role in bacterial metabolism, carbon
assimilation, pH regulation, and ecological interactions, with most bacteria requiring a
certain level of CO2 for survival [30–33]. The two primary biological processes reliant on
CO2 for bacteria are the biosynthesis of biomolecules and carbon fixation [34,35]. Although
E. coli is primarily heterotrophic and typically does not fix carbon from CO2, it requires
CO2 as a carbon source for the biosynthesis of essential biomolecules such as amino acids
and nucleotides [36–38]. Insufficient CO2 concentration (100 ppm) inside the chamber may
thus hinder growth and metabolism, explaining the observed reduction in survival rates
for both strains.
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Figure 1. Comparison of the survival rate at different CO2 concentrations of (a) the wild-type E. coli
K12 (JM109), (b) the modified E. coli K12 (JM109-pEC958); the numbers above the histograms are the
numbers of experiments.

While CO2 is typically essential for bacteria survival at appropriate levels, excessive
concentrations can be detrimental due to environmental acidification, disrupting bacterial
cellular processes, pH homeostasis, respiration, and membrane integrity [39].

Increasing CO2 to 800 ppm had no significant effect on either strain, while increasing
it to 3000 ppm significantly reduced the survival rate of JM109 by approximately 24%
(Figure 1). Conversely, the JM109-pEC958 was not significantly affected by this CO2
concentration, suggesting that JM109-pEC958 can withstand exceptionally high levels of
CO2 better than its non-resistant counterpart.

The E. coli K12 genome contains several CO2 utilization-related genes such as those
encoding carbonic anhydrases [38]. Carbonic anhydrases are enzymes that catalyze the
interconversion between CO2 and HCO3

−, crucial for efficient utilization of CO2 as a
carbon source and intracellular pH regulation [40]. Although pEC958 does not provide
additional CO2 utilization-related genes, it might contain genes that could potentially
regulate the expression of the CO2 utilization-related genes on the chromosome, potentially
increasing carbonic anhydrases inside the cell and subsequently enhancing resilience to
high CO2 levels. Additionally, other genes on the plasmid, while not directly related to CO2
utilization, might indirectly impact the utilization of CO2. Further research is warranted to
fully elucidate the mechanism enabling better survival of resistant E. coli at exceptionally
high CO2 levels and how antibiotic resistance genes (ARGs) relate to it.

This finding is significant because it suggests that resistant strains of E. coli could
outcompete non-resistant ones in high CO2 environments, such as poorly ventilated indoor
areas, thereby posing a significant health risk.
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2.2. Effect of Dust on the Survival Rate

Arizona Road Dust comprises relatively large irregular-shaped particles, simulating
real-world environmental dust and air pollution scenarios [41]. The experiments were
conducted with three different dust concentrations: 250, 500 and 2000 µg m−3.

The survival rate of JM109 was significantly reduced, by approximately 26%, at a dust
concentration of 250 µg m−3 (Figure 2). At this dust concentration, the survival rate of
JM109-pEC958 was not yet significantly reduced. At a dust concentration of 500 µg m−3

both strains displayed a significant reduction in their survival rates with JM109-pEC958
exhibiting a remaining survival rate of approximately 53%, while that of JM109 was further
significantly reduced to 27% compared to the baseline survival rates. The difference in
survival rates between both strains was significant at this dust concentration (Figure 3),
indicating that the multi-resistant E. coli strain can maintain a significantly higher survival
rate at high dust concentrations, despite also experiencing a reduction in its own survival
rate. This phenomenon was even more pronounced in the experiments with 2000 µg m−3

dust, where JM109 exhibited only 13% survival, whereas JM109-pEC958 maintained an
approximately 60% survival rate.

These results suggest that while the survival rates of both strains decrease with
increasing dust concentrations, the effect starts at a lower dust concentration for the non-
resistant strain. Additionally, the degree of survival rate decrease is more severe for the
non-resistant strain compared to its multi-resistant counterpart at 500 and 3000 µg m−3.

The presence of dust in ambient air can impose various stressors on bacterial cells,
challenging their survival and metabolic activity, thereby explaining the observed reduction
in survival rates during our experiments [42]. Stressors may include oxidative stress
due to reactive oxygen species (ROS) contained in dust particles, chemical contaminants
accumulated in the dust, and physical damage to the bacteria cells through abrasion from
the particles’ abrasive surfaces [43–45]. Arizona Road Dust used in this study, derived
from road surfaces, may contain mineral dust, organic matter, and pollutants that might
have undergone photochemical reactions in sunlight, leading to the production of ROS
such as superoxide radicals (O2

−), hydroxyl radicals (OH−), and hydrogen peroxide
(H2O2) [43,46,47]. These ROS can induce oxidative stress and damage cellular components
in the bacterial cells [48]. Furthermore, the dust may contain various chemical contaminants
from vehicle emissions, industrial activities, and atmospheric deposition, such as heavy
metals and polycyclic aromatic hydrocarbons (PAHs) [44,49]. Exposure to such chemical
contaminants can exert toxic effects on cells and disrupt cellular functions. A combination
of these stressors in the dust particles might be responsible for survival reduction in the
strains during our study.
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The fact that JM109-pEC958 was less affected and maintained a higher survival rate
than its non-resistant counterpart may be attributed to efflux pumps encoded on the
plasmid. Efflux pumps can extrude chemical contaminants from cells, reducing intracellular
concentrations of harmful substances [50]. JM109 lacks the genes encoding efflux pumps,
whereas pEC958 contains tetA and its regulatory gene tetR, potentially increasing its ability
to remove contaminants from the cells and thus contributing to better survival than JM109
without pEC958 [51,52]. Further research is needed to identify the exact mechanisms
provided by pEC958 and potentially other plasmids and resistance genes for better survival
at high dust concentrations.

3. Material and Methods
3.1. Preparation of Bacterial Strains

To assess the disparity in survival between multi-resistant bacteria and their non-
resistant counterparts, we utilized the reference strain E. coli K12. E. coli K12 is a well-
studied non-pathogenic E. coli strain commonly employed in laboratory settings [53]. For
this study, two distinct variants of the strain were utilized: the wild-type E. coli K12
and a genetically modified variant containing the plasmid pEC958, which encodes multi-
resistance genes. The pEC958 plasmid is derived from the highly resistant E. coli variant
ST131, which is responsible for numerous infection outbreaks in hospitals [51].

The JM109 High Efficiency Competent Cells (Promega, Madison, WI, USA) served as
the non-resistant wild-type strain. To generate the multi-resistant strain, the JM109 strain
underwent a transformation by integrating the pEC958 plasmid, following the standard
transformation protocol for single-use cells from the competent cells’ manufacturer. The
pEC958 plasmid was previously extracted from a clinical sample of E. coli ST131 using
Qiaprep spin miniprep kit (Qiagen, Hilden, Germany).
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3.2. Preparation of Bacterial Suspension

To prepare the bacterial suspension for the injection into the chamber, the bacterial
strain was cultured overnight on a petri dish containing appropriate media: LB (Merck
KgaA, Darmstadt, Germany) media plates for JM109 and LB media plates spiked with
1 mL ampicillin (100 mg mL−1, Sigma-Aldrich, Burlington, MA, USA) per liter of agar for
JM109-pEC958. Subsequently, the bacterial cells were suspended in 25 mL of LB broth
and incubated at 37 ◦C with continuous shaking until they reached the logarithmic (log)
phase of growth. The log phase was determined by achieving an OD600nm (Shimadzu 1900,
Columbia, MD, USA) reading of 0.6 [54,55].

Subsequently, 20 mL of the bacterial suspension was centrifuged at 4000 rpm for
10 min, and the resulting pellet was resuspended in 20 mL 0.9% NaCl solution.

3.3. Chamber Operations

The experiments were conducted in the Chamber for Aerosol Modelling and Bio-
aerosol Research (ChAMBRe) [56–58], an atmospheric simulation chamber installed at the
National Institute of Nuclear Physics in Genoa, Italy, in collaboration with the Environmen-
tal Physics Laboratory of the Physics Department of the University of Genoa. The chamber
has a total volume of 2.2 m3 and is equipped with several in- and outlets that facilitate
aerobiological simulations under controlled conditions. Photos of the setup and a scheme
of the experimental procedure can be found in Figures 4 and S1, while a recent detailed
description of the facility can be found in [59].
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The bacterial cells suspended in 0.9% NaCl were injected into the chamber using the
SLAG nebulizer (Sparging Liquid Aerosol Generator, CH Technologies, Westwood, NJ,
USA) and an automatic syringe pump (NE-300 Just Infusion™ Syringe Pump, New Era,
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Farmingdale, NY, USA). The injection process typically lasted 5 min, with a working airflow
of 3.5 Lpm. These parameters were automatically controlled by a mass flow controller
(MFC, Bronkhorst, Ruurlo, The Netherlands; model F201C-FA) managed via NI LabViewTM

SCADA (Supervisory Control And Data Acquisition). The syringe rate was set at 0.4 mLpm,
resulting in the nebulization of 2 mL of the bacterial suspension. Thereby, a bacterial cell
concentration of approximately 106 colony-forming unit (CFU) mL−1 inside the ChAMBRe
was achieved.

The concentration of the total bacteria inside the ChAMBRe was monitored using a
waveband-integrated bio-aerosol sensor (WIBS-NEO; Droplet Measurement Technologies,
Longmont, CO, USA), which utilizes fluorescence signals to identify and differentiate
bio-aerosol components. A custom procedure for WIBS data reduction, written in Igor
PRO 8.0 and previously published by Vernocchi et al. (2023) [59], optimized for the JM109
strain, was employed to retrieve the time series of bacteria concentration throughout
the experiment.

A series of “baseline” experiments (i.e., in clean air) was carried out to assess the
stress induced by the experimental procedure on the bacteria and to determine, through
comparison, the effects of atmospheric components or pollutants on the bacteria viability.
“Clean” air was introduced into the chamber through the following procedure [56]: first
the chamber was evacuated at least down to 10−2 mbar, then, pure N2 from a compressed
gas cylinder was flushed in, until a pressure of 5 mbar was reached, and then the ambient
air re-entered the chamber through an absolute HEPA filter (Kurt J. Lesker, Dresden,
Germany, model: PFIHE842, NW25/40 Inlet/Outlet—25/55 SCFM, 99.97% efficient at
0.3 µm) and a zeolite trap (right before the HEPA filter). The ambient conditions during
each baseline experiment were set at atmospheric pressure, with CO2 concentrations at
400 ppm, temperatures around 20 ◦C and relative humidity ranging from 60 to 70%. Other
gases (O3, NOx and SOx) and the dust concentration were maintained below the minimum
detectable level (MDL) of the respective detector/monitor [56].

Subsequently, the effects of different CO2 and dust concentrations were evaluated by
maintaining the chamber conditions identical to those during the baseline experiments,
except for varying CO2 or dust concentrations.

During CO2 experiments, the gas concentration was kept constant thanks to an auto-
matic feedback control system [59], and monitored by a non-dispersive carbon monoxide
and dioxide analyzer (CO12e, ENVEA, Poissy, France). CO2 levels that were tested were
100, 800 and 3000 ppm.

For experiments involving exposure to dust, an OPS (Optical Particle Sizer, model
3330, TSI Inc., Shoreview, MI, USA) was utilized to obtain the dust mass concentration
inside the chamber. The dust was generated using a solid particle disperser (Palas, model
RBG 1000, Karlsruhe, Germany), which injected Arizona Road Dust (ISO 12103-1, A1) [60]
a typical laboratory dust, into the chamber [41,61]. Three different dust concentrations
were tested, 250, 500 and 2000 µg m−3.

A fan installed at the bottom of the chamber, operating constantly at 5 Hz, ensured
homogenization of the concentration and proper mixing within the chamber.

Bacteria were collected via gravitational settling on four petri dishes filled with the
appropriate culture medium (LB or LB+ampicillin), positioned at the bottom of the chamber
via an automated shelf. The typical duration of an experiment was approximately 5 h. The
extracted petri dishes were then incubated overnight at 37 ◦C, and CFUs were counted the
following day.

3.4. Determination of Survival Rates

The amount of the bacteria injected into the chamber varied from experiment to
experiment. Therefore, a proper correlation procedure was needed to determine the
survival rates. First, the concentration of bacterial cells inside the chamber was determined
through the following steps:
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(1) Measurement of OD600nm of the suspended cells in 0.9% NaCl solution to assess the
total bacterial concentration injected into the chamber. OD600nm is proportional to the
bacteria concentration, thus the equation below was employed to determine the total
bacterial concentration:(

cells
ml

)
estimated

= ODmeasured × 8·108 cells
ml

, (1)

based on the empirical relation that 1 OD600nm = 8 × 108 cells mL−1 for E. coli [62].
This method determines the total number of cells, irrespective of viability, providing
information solely about the total amount of cells injected into the chamber.

(2) Preparation of appropriate serial dilutions of the bacterial suspension in 0.9% NaCl,
followed by plating on LB culture medium-filled petri dishes (LB media plates for
JM109 and LB media plates spiked with ampicillin for JM109-pEC958). After overnight
incubation at 37 ◦C, CFUs were counted the next morning to estimate the viable
fraction of the bacterial suspension in terms of CFU mL−1.

(3) Calculation of the dead bacteria concentration by subtracting the viable bacterial
concentration from step 2 from the total bacterial concentration obtained in step 1.

(4) Determination of a correlation factor, Cf, using the following equation:

C f =
β

1 + β
(2)

where:
β =

viable bacteria concentration
dead bacteria concentration

(3)

(5) Determination of the total airborne bacteria concentration inside the ChAMBRe by
the WIBS data analysis as # cm−3, considering data at 3 min after the injection’s
conclusion to ensure proper mixing within the chamber volume.

(6) Calculation of the airborne viable bacteria concentration (# cm−3) inside the chamber
using the measured airborne bacterial concentrations from step 5 and the correlation
factor from step 4:

(
cells
cm3 )viable airborne bacteria

= C f × (
cells
cm3 )total airborne bacteria

(4)

This represents the final calculated airborne concentration of viable bacterial cells
inside the chamber exposed to different ambient conditions tested during the experiments
(see Section 3.3).

Next, the fraction of bacterial cells that survived the 5 h period of each experiment
was determined through the following steps:

(1) Using the bacteria culturable fraction collected on the four petri dishes inside the
chamber (see Section 3.3), determined by CFU visual counting and inserted into the
following equation to determine the ratio of the fraction of surviving bacteria:

Ratio =
CFUspetri dishes inside the chamber

( cells
cm3 )viable airborne bacteria

(5)

(2) Calculation of the survival rate (%) of the bacterial cells under specific environmental
conditions by comparing the ratios during those experiments to the ratios obtained
during baseline experiments:

Survival rate (%) =
ratioexperiment

ratiobaseline
× 100 (6)
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The results were presented as percentages. The baseline survival rate is considered
100%, and the survival rates obtained during experiments with varying concentrations of
CO2 and dust were compared to assess their effect on the survival of the bacterial cells.
Several repetitions of each experiment were conducted to increase statistical significance.
The variation in the number of repetitions between experiments arose because some ex-
periments reached statistical significance with fewer repetitions, while others required
more repetitions to achieve the same level of significance. More details about the baseline
determination as well as limitations and challenges of this study can be found in S2.

3.5. Statistical Analysis

All statistical analyses and graphical visualizations were conducted using Graphpad
Prism (v10.0.2, available at https://www.graphpad.com/, accessed on 2 April 2024). The
results were deemed statistically significant when p ≤ 0.05.

4. Conclusions

To our knowledge, this study represents the first investigation into the impact of vary-
ing CO2 and dust concentrations on the survival of airborne bacteria, with a comparative
analysis between non-resistant and multi-resistant bacterial strains.

The results suggest that multi-resistant E. coli strains exhibit greater resilience to high
CO2 and dust levels compared to their non-resistant counterparts. Notably, at CO2 concen-
trations of 3000 ppm, the survival rate of JM109 was significantly reduced by approximately
24%, whereas the survival rate of JM109-pEC958 remained unaffected. This disparity was
even more pronounced during the dust experiments. JM109 experienced a 26% reduction
in survival rate already at 250 µg m−3, whereas the multi-resistant counterpart showed a
significant reduction with the dust concentration at or higher than 500 µg m−3. At this con-
centration, the non-resistant strain exhibited a survival rate of 27%, which further decreased
to 20% at 2000 µg m−3. In contrast, the multi-resistant strain maintained significantly higher
survival rates, approximately 55% at high dust concentrations.

These findings suggest that the JM109-pEC958 strain possesses mechanisms enabling it
to endure extreme ambient conditions such as high CO2 and dust concentrations better than
its non-resistant counterpart. These mechanisms may include regulatory genes or genes
encoding efflux pumps. Further research is warranted to elucidate the precise mechanisms
underlying this enhanced resilience.

Understanding their mechanisms is crucial for developing effective mitigation strate-
gies to prevent the enrichment and dissemination of antibiotic-resistant bacteria in the air.
Additionally, future studies could explore the impact of other environmental factors, such
as additional gases and UV light, to determine if similar effects are observed when compar-
ing non-resistant and multi-resistant bacterial strains. Such investigations would provide
valuable insights into the adaptation strategies employed by multi-resistant bacteria in
response to various environmental stressors, and this study represents the initial step in
that direction.
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