Risk Factors for 30-Day Mortality in Nosocomial Enterococcal Bloodstream Infections
Abstract
:1. Introduction
2. Results
2.1. VRE Annual Prevalence
2.2. Population Analysis According to Species and Vancomycin Susceptibility
2.3. Population Analysis According to Mortality
3. Discussion
4. Materials and Methods
4.1. Objectives of This Study
4.2. Study Design and Population
4.3. Data Collection and Definitions
4.4. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiner-Lastinger, L.M.; Abner, S.; Edwards, J.R.; Kallen, A.J.; Karlsson, M.; Magill, S.S.; Pollock, D.; See, I.; Soe, M.M.; Walters, M.S.; et al. Antimicrobial-Resistant Pathogens Associated with Adult Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 2020, 41, 1–18. [Google Scholar] [CrossRef]
- Healthcare-Associated Infections Acquired in Intensive Care Units—Annual Epidemiological Report for 2019. Available online: https://www.ecdc.europa.eu/en/publications-data/healthcare-associated-infections-intensive-care-units-2019 (accessed on 27 March 2024).
- García-Solache, M.; Rice, L.B. The Enterococcus: A Model of Adaptability to Its Environment. Clin. Microbiol. Rev. 2019, 32. [Google Scholar] [CrossRef]
- Monticelli, J.; Knezevich, A.; Luzzati, R.; Di Bella, S. Clinical Management of Non-Faecium Non-Faecalis Vancomycin-Resistant Enterococci Infection. Focus on Enterococcus Gallinarum and Enterococcus Casseliflavus/flavescens. J. Infect. Chemother. 2018, 24, 237–246. [Google Scholar] [CrossRef]
- Toc, D.A.; Pandrea, S.L.; Botan, A.; Mihaila, R.M.; Costache, C.A.; Colosi, I.A.; Junie, L.M. Enterococcus Raffinosus, Enterococcus Durans and Enterococcus Avium Isolated from a Tertiary Care Hospital in Romania-Retrospective Study and Brief Review. Biology 2022, 11, 598. [Google Scholar] [CrossRef]
- Șchiopu, P.; Toc, D.A.; Colosi, I.A.; Costache, C.; Ruospo, G.; Berar, G.; Șg, G.; Ghilea, A.C.; Botan, A.; Pană, A.G.; et al. An Overview of the Factors Involved in Biofilm Production by the Enterococcus Genus. Int. J. Mol. Sci. 2023, 24, 11577. [Google Scholar] [CrossRef]
- Cairns, K.A.; Udy, A.A.; Peel, T.N.; Abbott, I.J.; Dooley, M.J.; Peleg, A.Y. Therapeutics for Vancomycin-Resistant Enterococcal Bloodstream Infections. Clin. Microbiol. Rev. 2023, 36, e0005922. [Google Scholar] [CrossRef] [PubMed]
- Bonten, M.J.; Willems, R.; Weinstein, R.A. Vancomycin-Resistant Enterococci: Why Are They Here, and Where Do They Come From? Lancet Infect. Dis. 2001, 1, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Cassini, A.; Plachouras, D.; Monnet, D.L. Attributable Deaths Caused by Infections with Antibiotic-Resistant Bacteria in France—Authors’ Reply. Lancet Infect. Dis. 2019, 19, 129–130. [Google Scholar] [CrossRef] [PubMed]
- European Antimicrobial Resistance Collaborators. The Burden of Bacterial Antimicrobial Resistance in the WHO European Region in 2019: A Cross-Country Systematic Analysis. Lancet Public Health 2022, 7, E897–E913. [Google Scholar] [CrossRef]
- Engler-Hüsch, S.; Heister, T.; Mutters, N.T.; Wolff, J.; Kaier, K. In-Hospital Costs of Community-Acquired Colonization with Multidrug-Resistant Organisms at a German Teaching Hospital. BMC Health Serv. Res. 2018, 18, 737. [Google Scholar] [CrossRef]
- Puchter, L.; Chaberny, I.F.; Schwab, F.; Vonberg, R.-P.; Bange, F.-C.; Ebadi, E. Economic Burden of Nosocomial Infections Caused by Vancomycin-Resistant Enterococci. Antimicrob. Resist. Infect. Control. 2018, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Monticelli, J.; Di Bella, S.; Giacobbe, D.R.; Amato, G.; Antonello, R.M.; Barone, E.; Brachelente, G.; Busetti, M.; Carcione, D.; Carretto, E.; et al. Trends in the Incidence and Antibiotic Resistance of Enterococcal Bloodstream Isolates: A 7-Year Retrospective Multicenter Epidemiological Study in Italy. Microb. Drug Resist. 2021, 27, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.E.; Dolin, R.; Blaser, M.J. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases: 2-Volume Set; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780323482554. [Google Scholar]
- Del Turco, E.R.; Bartoletti, M.; Dahl, A.; Cervera, C.; Pericàs, J.M. How Do I Manage a Patient with Enterococcal Bacteraemia? Clin. Microbiol. Infect. 2021, 27, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Lagnf, A.M.; Zasowski, E.J.; Claeys, K.C.; Casapao, A.M.; Rybak, M.J. Comparison of Clinical Outcomes and Risk Factors in Polymicrobial versus Monomicrobial Enterococcal Bloodstream Infections. Am. J. Infect. Control. 2016, 44, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Beganovic, M.; Luther, M.K.; Rice, L.B.; Arias, C.A.; Rybak, M.J.; LaPlante, K.L. A Review of Combination Antimicrobial Therapy for Enterococcus Faecalis Bloodstream Infections and Infective Endocarditis. Clin. Infect. Dis. 2018, 67, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Salgado, C.D.; Farr, B.M. Outcomes Associated with Vancomycin-Resistant Enterococci: A Meta-Analysis. Infect. Control Hosp. Epidemiol. 2003, 24, 690–698. [Google Scholar] [CrossRef] [PubMed]
- DiazGranados, C.A.; Jernigan, J.A. Impact of Vancomycin Resistance on Mortality among Patients with Neutropenia and Enterococcal Bloodstream Infection. J. Infect. Dis. 2005, 191, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Prematunge, C.; MacDougall, C.; Johnstone, J.; Adomako, K.; Lam, F.; Robertson, J.; Garber, G. VRE and VSE Bacteremia Outcomes in the Era of Effective VRE Therapy: A Systematic Review and Meta-Analysis. Infect. Control Hosp. Epidemiol. 2016, 37, 26–35. [Google Scholar] [CrossRef]
- Kramer, T.S.; Remschmidt, C.; Werner, S.; Behnke, M.; Schwab, F.; Werner, G.; Gastmeier, P.; Leistner, R. The Importance of Adjusting for Enterococcus Species When Assessing the Burden of Vancomycin Resistance: A Cohort Study Including over 1000 Cases of Enterococcal Bloodstream Infections. Antimicrob. Resist. Infect. Control 2018, 7, 133. [Google Scholar] [CrossRef]
- Eichel, V.M.; Last, K.; Brühwasser, C.; von Baum, H.; Dettenkofer, M.; Götting, T.; Grundmann, H.; Güldenhöven, H.; Liese, J.; Martin, M.; et al. Epidemiology and Outcomes of Vancomycin-Resistant Enterococcus Infections: A Systematic Review and Meta-Analysis. J. Hosp. Infect. 2023, 141, 119–128. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Dentali, F.; Foglia, E.; Campanini, M.; Menichetti, F.; Mazzone, A. Early Alert from the Microbiology Laboratory Improves the Outcome of Elderly Patients with Enterococcus Spp. Bloodstream Infection: Results from a Multicentre Prospective Study. J. Glob. Antimicrob. Resist. 2019, 18, 139–144. [Google Scholar] [CrossRef]
- Rottier, W.C.; Pinholt, M.; van der Bij, A.K.; Arpi, M.; Blank, S.N.; Nabuurs-Franssen, M.H.; Gjhm, R.; Tersmette, M.; Ossewaarde, J.M.; Groenwold, R.H.; et al. Attributable Mortality of Vancomycin Resistance in Ampicillin-Resistant Enterococcus Faecium Bacteremia in Denmark and the Netherlands: A Matched Cohort Study. Infect. Control Hosp. Epidemiol. 2022, 43, 719–727. [Google Scholar] [CrossRef]
- Reyes, K.; Bardossy, A.C.; Zervos, M. Vancomycin-Resistant Enterococci: Epidemiology, Infection Prevention, and Control. Infect. Dis. Clin. N. Am. 2016, 30, 953–965. [Google Scholar] [CrossRef]
- Ornstein, M.C.; Mukherjee, S.; Keng, M.; Elson, P.; Tiu, R.V.; Saunthararajah, Y.; Maggiotto, A.; Schaub, M.; Banks, D.; Advani, A.; et al. Impact of Vancomycin-Resistant Enterococcal Bacteremia on Outcome during Acute Myeloid Leukemia Induction Therapy. Leuk. Lymphoma 2015, 56, 2536–2542. [Google Scholar] [CrossRef]
- Di Bella, S.; Sanson, G.; Monticelli, J.; Zerbato, V.; Principe, L.; Giuffrè, M.; Pipitone, G.; Luzzati, R. Infection: History, Epidemiology, Risk Factors, Prevention, Clinical Manifestations, Treatment, and Future Options. Clin. Microbiol. Rev. 2024, 37, e00135-23. [Google Scholar] [CrossRef]
- Bartoletti, M.; Tedeschi, S.; Scudeller, L.; Pascale, R.; Del Turco, E.R.; Trapani, F.; Tumietto, F.; Virgili, G.; Marconi, L.; Ianniruberto, S.; et al. Impact on Mortality of a Bundle for the Management of Enterococcal Bloodstream Infection. Open Forum Infect. Dis. 2019, 6, ofz473. [Google Scholar] [CrossRef]
- Correa-Martínez, C.L.; Schuler, F.; Kampmeier, S. Sex Differences in Vancomycin-Resistant Enterococci Bloodstream Infections—A Systematic Review and Meta-Analysis. Biol. Sex Differ. 2021, 12, 36. [Google Scholar] [CrossRef]
- Ch’ng, J.H.; Chong, K.K.L.; Lam, L.N.; Wong, J.J.; Kline, K.A. Biofilm-Associated Infection by Enterococci. Nat. Rev. Microbiol. 2019, 17, 82–94. [Google Scholar] [CrossRef]
- Suppli, M.; Aabenhus, R.; Harboe, Z.B.; Andersen, L.P.; Tvede, M.; Jensen, J.U. Mortality in Enterococcal Bloodstream Infections Increases with Inappropriate Antimicrobial Therapy. Clin. Microbiol. Infect. 2011, 17, 1078–1083. [Google Scholar] [CrossRef]
- Russo, A.; Picciarella, A.; Russo, R.; d’Ettorre, G.; Ceccarelli, G. Time to Effective Therapy Is an Important Determinant of Survival in Bloodstream Infections Caused by Vancomycin-Resistant Enterococcus spp. Int. J. Mol. Sci. 2022, 23, 11925. [Google Scholar] [CrossRef]
- Chow, J.W.; Yu, V.L. Combination Antibiotic Therapy versus Monotherapy for Gram-Negative Bacteraemia: A Commentary. Int. J. Antimicrob. Agents 1999, 11, 7–12. [Google Scholar] [CrossRef]
- Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/pcsmanual_current.pdf (accessed on 31 March 2024).
Year | E. faecium BSIs | VR E. faecium BSIs | Annual Prevalence |
---|---|---|---|
2014 | 31 | 2 | 6.45% |
2015 | 28 | 10 | 35.71% |
2016 | 27 | 11 | 40.74% |
2017 | 31 | 11 | 35.48% |
2018 | 12 | 5 | 41.67% |
2019 | 29 | 15 | 51.72% |
2020 | 36 | 15 | 41.67% |
2021 | 47 | 24 | 51.06% |
All years (2014–2021) | 241 | 93 |
Variable | E. faecalis VSE (n = 340) | E. faecium VSE (n = 148) | E. faecium VRE (n = 93) | p-Value |
---|---|---|---|---|
Age (years) | 73.7 ± 12.2 | 73.8 ± 12.2 | 71.4 ± 12.2 | 0.222 |
Gender (male) | 233 (68.5%) | 91 (61.5%) | 55 (59.1%) | 0.131 |
Charlson Comorbidity Index | 3.4 ± 2.5 | 3.4 ± 2.3 | 3.4 ± 2.4 | 0.998 |
Pitt bacteremia score | 2.4 ± 2.3 | 2.0 ± 2.4 | 2.7 ± 2.1 | 0.074 |
Previous glycopeptides exposure | 24 (7.1%) | 4 (2.7%) | 5 (5.4%) | 0.159 |
Previous chemotherapy | 17 (5.0%) | 24 (16.2%) | 15 (16.1%) | <0.001 |
Previous abdominal surgery | 52 (15.3%) | 35 (23.6%) | 21 (22.6%) | 0.052 |
Chronic immunosuppressive therapy | 23 (6.8%) | 22 (14.9%) | 14 (15.1%) | 0.006 |
Hospital LOS before BSI | 13.3 ± 22.7 | 16.6 ± 17.9 | 22.3 ± 24.2 | 0.002 |
Ward at BSI diagnosis | 0.056 | |||
Medical | 177 (52.1%) | 71 (48.0%) | 43 (46.2%) | |
Surgical | 89 (26.2%) | 46 (31.1%) | 18 (19.4%) | |
Intensive care unit | 74 (21.8%) | 31 (20.9%) | 32 (34.4%) | |
Source of infection | <0.001 | |||
Primary bacteremia | 72 (21.2%) | 27 (18.2%) | 14 (15.1%) | |
Bone/skin/soft tissue | 17 (5.0%) | 4 (2.7%) | 5 (5.4%) | |
Heart/cardiovascular devices | 72 (21.2%) | 41 (27.7%) | 31 (33.3%) | |
Intra-abdominal compartment | 88 (25.9%) | 63 (42.6%) | 33 (35.5%) | |
Urinary tract | 91 (26.8%) | 13 (8.8%) | 10 (10.8%) | |
Source control | 0.027 | |||
No | 77 (22.6%) | 19 (12.8%) | 14 (15.1%) | |
Yes | 173 (50.9%) | 94 (63.5%) | 59 (63.4%) | |
Not documented | 90 (26.5%) | 35 (23.6%) | 20 (21.5%) | |
Polymicrobial BSI | 118 (34.7%) | 44 (29.7%) | 24 (25.8%) | 0.209 |
Infective endocarditis | 28 (8.2%) | 3 (2.0%) | 3 (3.2%) | 0.014 |
Complicated BSI | 203 (59.7%) | 71 (48.0%) | 51 (54.8%) | 0.055 |
ID specialist consultation | 141 (41.5%) | 63 (42.6%) | 69 (74.2%) | <0.001 |
Interval BSI-empiric therapy (days) § | 0.6 ± 1.3 | 0.6 ± 1.4 | 0.4 ± 1.1 | 0.554 |
Interval BSI-active therapy (days) ¥ | 1.0 ± 1.8 | 1.7 ± 2.0 | 2.4 ± 2.9 | <0.001 |
Appropriate antimicrobial treatment | 224 (65.9%) | 55 (37.2%) | 26 (28.0%) | <0.001 |
30-days mortality | 79 (23.2%) | 47 (31.8%) | 34 (36.6%) | 0.016 |
Variable | Overall (n = 581) | Survived (n = 421) | Dead (n = 160) | p-Value |
---|---|---|---|---|
Age (years) | 73.3 ± 12.2 | 72.5 ± 12.5 | 75.4 ± 11.1 | 0.006 |
Gender (male) | 382 (65.2%) | 288 (67.9%) | 94 (58.0%) | 0.024 |
Charlson Comorbidity Index | 3.4 ± 2.4 | 3.3 ± 2.4 | 3.6 ± 2.4 | 0.188 |
Pitt bacteremia score | 2.4 ± 2.3 | 2.0 ± 2.0 | 3.3 ± 2.7 | <0.001 |
Previous glycopeptides exposure | 34 (5.8%) | 26 (6.1%) | 8 (4.9%) | 0.580 |
Previous chemotherapy | 56 (9.6%) | 35 (8.3%) | 21 (13.0%) | 0.083 |
Previous abdominal surgery | 108 (18.4%) | 84 (19.8%) | 24 (14.8%) | 0.163 |
Previous immunosuppressive therapy | 59 (10.1%) | 41 (9.7%) | 18 (11.1%) | 0.604 |
Species/vancomycin sensitivity | 0.016 | |||
E. faecalis/VSE | 340 (58.5%) | 261 (76.8%) | 79 (23.2%) | |
E. faecium/VSE | 148 (25.5%) | 101 (68.2%) | 47 (31.8%) | |
E. faecium/VRE | 93 (16.9%) | 59 (63.4%) | 34 (36.6%) | |
Ward at BSI diagnosis | <0.001 | |||
Medical | 291 (50.1%) | 219 (75.3%) | 72 (24.7%) | |
Surgical | 153 (26.3%) | 128 (83.7%) | 25 (16.3%) | |
Intensive care unit | 137 (23.6%) | 74 (54.0%) | 63 (46.0%) | |
Source of infection | 0.001 | |||
Primary bacteremia | 113 (19.4%) | 67 (59.3%) | 46 (40.7%) | |
Bone/skin/soft tissue | 26 (4.5%) | 20 (76.9%) | 6 (23.1%) | |
Heart/cardiovascular devices | 144 (24.8%) | 104 (72.2%) | 40 (27.8%) | |
Intra-abdominal | 184 (31.7%) | 133 (72.3%) | 51 (27.7%) | |
Urologic | 114 (19.6%) | 97 (85.1%) | 17 (14.9%) | |
Polymicrobial BSI | 187 (31.9%) | 133 (31.4%) | 54 (33.3%) | 0.648 |
Complicated BSI | 328 (56.0%) | 222 (52.4%) | 106 (65.4%) | 0.004 |
Interval BSI-empiric therapy (days) § | 0.6 ± 1.3 | 0.6 ± 1.3 | 0.6 ± 1.4 | 0.980 |
Interval BSI-active therapy (days) ¥ | 1.4 ± 2.1 | 1.3 ± 2.1 | 1.4 ± 2.1 | 0.576 |
Appropriate antimicrobial treatment | 306 (52.2%) | 239 (56.4%) | 67 (41.4%) | <0.001 |
Variable | HR (95% CI) | p-Value |
---|---|---|
Gender (male) | 0.666 (0.481–0.921) | 0.014 |
Age (years) | 1.022 (1.007–1.038) | 0.005 |
Pitt Bacteremia Score | 1.269 (1.192–1.350) | <0.001 |
Species/vancomycin sensitivity | ||
E. faecalis/VSE (reference) | 1.000 (/) | |
E. faecium/VSE | 1.492 (1.022–2.180) | 0.038 |
E. faecium/VRE | 2.065 (1.307–3.264) | 0.002 |
Complicated BSI | 1.818 (1.304–2.535) | <0.001 |
ID specialist consultation | 0.504 (0.352–0.719) | <0.001 |
Appropriate antimicrobial treatment Gender (male) | 0.682 (0.488–0.955) | 0.026 |
0.666 (0.481–0.921) | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zerbato, V.; Pol, R.; Sanson, G.; Suru, D.A.; Pin, E.; Tabolli, V.; Monticelli, J.; Busetti, M.; Toc, D.A.; Crocè, L.S.; et al. Risk Factors for 30-Day Mortality in Nosocomial Enterococcal Bloodstream Infections. Antibiotics 2024, 13, 601. https://doi.org/10.3390/antibiotics13070601
Zerbato V, Pol R, Sanson G, Suru DA, Pin E, Tabolli V, Monticelli J, Busetti M, Toc DA, Crocè LS, et al. Risk Factors for 30-Day Mortality in Nosocomial Enterococcal Bloodstream Infections. Antibiotics. 2024; 13(7):601. https://doi.org/10.3390/antibiotics13070601
Chicago/Turabian StyleZerbato, Verena, Riccardo Pol, Gianfranco Sanson, Daniel Alexandru Suru, Eugenio Pin, Vanessa Tabolli, Jacopo Monticelli, Marina Busetti, Dan Alexandru Toc, Lory Saveria Crocè, and et al. 2024. "Risk Factors for 30-Day Mortality in Nosocomial Enterococcal Bloodstream Infections" Antibiotics 13, no. 7: 601. https://doi.org/10.3390/antibiotics13070601
APA StyleZerbato, V., Pol, R., Sanson, G., Suru, D. A., Pin, E., Tabolli, V., Monticelli, J., Busetti, M., Toc, D. A., Crocè, L. S., Luzzati, R., & Di Bella, S. (2024). Risk Factors for 30-Day Mortality in Nosocomial Enterococcal Bloodstream Infections. Antibiotics, 13(7), 601. https://doi.org/10.3390/antibiotics13070601