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Abstract: Hospital-acquired infections, also known as nosocomial infections, include bloodstream
infections, surgical site infections, skin and soft tissue infections, respiratory tract infections, and
urinary tract infections. According to reports, Gram-positive and Gram-negative pathogenic bacteria
account for up to 70% of nosocomial infections in intensive care unit (ICU) patients. Biofilm produc-
tion is a main virulence mechanism and a distinguishing feature of bacterial pathogens. Most bacterial
pathogens develop biofilms at the solid-liquid and air-liquid interfaces. An essential requirement
for biofilm production is the presence of a conditioning film. A conditioning film provides the first
surface on which bacteria can adhere and fosters the growth of biofilms by creating a favorable
environment. The conditioning film improves microbial adherence by delivering chemical signals or
generating microenvironments. Microorganisms use this coating as a nutrient source. The film gath-
ers both inorganic and organic substances from its surroundings, or these substances are generated
by microbes in the film. These nutrients boost the initial growth of the adhering bacteria and facilitate
biofilm formation by acting as a food source. Coatings with combined antibacterial efficacy and
antifouling properties provide further benefits by preventing dead cells and debris from adhering to
the surfaces. In the present review, we address numerous pathogenic microbes that form biofilms
on the surfaces of biomedical devices. In addition, we explore several efficient smart antiadhesive
coatings on the surfaces of biomedical device-relevant materials that manage nosocomial infections
caused by biofilm-forming microbial pathogens.

Keywords: biofilms; nosocomial infections; healthcare-associated infections; antibacterial; antifouling;
surface coatings

1. Introduction

There is a high incidence of nosocomial infections caused by contaminated medical
equipment, such as urinary catheters, intravascular catheters, and orthopedic implants,
which contain pathogenic bacteria [1]. These pathogens include methicillin-resistant Staphy-
lococcus aureus, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa [2].
Healthcare-associated infections (HAIs) are a global occurrence that leads to significant
increases in mortality and morbidity. These present serious issues in both underdeveloped
and highly developed European countries [3]. Numerous studies have shown that the
types of bacteria that cause HAIs vary depending on the type of medical implant the patient
has [4]. Accurate determination of whether the patient contracted the bacteria before hospi-
tal admission or during the hospital stay is crucial. Only infections that manifest in patients
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48 h after admission are classified as HAIs. Symptoms, including fever, chills, fatigue,
coughing, dyspnea, stomach pain, and loose stools, indicate that the patient is infected.
Inflammation and sepsis are typical symptoms [5]. Catheterization-related nosocomial
infections are often linked to antibiotic-resistant microorganisms, such as Staphylococcus,
Enterococcus, and different enterobacterial species, as well as fungi, such as Candida spp. [6].
Approximately 40,000 hospitalized patients die each year globally from HAIs, which ac-
count for over 25% of the ailments attained during the process of health care in developing
countries and up to 15% in wealthy countries [7]. Infections with different microorganisms
(including P. aeruginosa, Klebsiella pneumoniae, A. baumannii, and E. coli) can cause blood-
stream infections, which are a primary cause of death, prolonged hospital and Intensive
Care Unit (ICU) stays, and increased healthcare costs [8]. The majority of indwelling
central venous catheters are colonized by microorganisms embedded in a biofilm matrix,
as demonstrated by scanning electron microscopy [9].

Research has demonstrated that bacterial adhesion and biofilm formation can occur
in various medical devices, including dental chair water lines, indwelling stents, uri-
nary catheters, intrauterine devices, and contact lenses [10]. There are multiple stages
in the establishment and growth of biofilms; single bacterial attachment (both reversible
and irreversible), bacterial aggregation, microcolony formation, maturation, and disper-
sion/detachment are the five main stages of bacterial attachment [11] (Figure 1). Quorum
sensing (QS), a key mechanism in bacterial communication, involves the production, release,
detection, and response to extracellular signaling molecules [12,13]. QS signaling enables
bacteria to collectively modify their behavior, including the production of virulence factors
and biofilms, in response to changes in cell density and community composition [12,14].
Since the beginning of time, bacteria have been on Earth in two states. Sessile bacteria
are said to be 500–5000 times more resistant to antibiotics than their planktonic counter-
parts [15]. The complex, multi-step, and usually cyclic process of biofilm formation involves
several bacterial species. Bacterial biofilms secrete extracellular polymeric material, which
is a mixture of polysaccharides, proteins (mostly composed of D-amino acids), fatty acids,
and different nucleic acids [16]. According to the National Institutes of Health, biofilms
can be responsible for up to 80% of human microbial infections. These infections include
meningitis, kidney infections, endocarditis, cystic fibrosis, periodontitis, rhinosinusitis,
osteomyelitis, non-healing chronic wounds, and infections related to prosthetic and im-
plantable devices [17]. The microbiological factors that control the development of biofilms
have been identified by in vitro analyses of biofilm infection [18].
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danger life [23]. Slimy “biofilm” coatings created by invading bacteria have been found 
on a number of gadgets that were discarded following problems due to microbial coloni-
zation [24]. Recalcitrance, a biofilm lifestyle trait that causes medication failure and infec-
tion recurrence, refers to the ability of pathogenic biofilms to thrive in the presence of high 
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rectly responsible for a number of therapeutic problems that arise in clinical settings and 
ultimately result in the death of patients [26]. It encompasses the idea of non-susceptibility 
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tibiotic resistance mechanisms, such as target modification, efflux pump expression, inac-
tivation of antibiotic substances, and target bypass [27] (Figure 2), the formation of bio-
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of antimicrobial-resistant genes between and within the species, protects against drug 
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Figure 1. Stages of biofilm formation and mechanism showing antibiotic resistance by pathogenic
bacterial strain. Reprinted from the [19], Copyright © 2023 by the authors and Licensee MDPI,
Basel, Switzerland.

The development of biofilms on the surfaces of medical devices is a major contributing
factor to the infections associated with these devices [20,21]. These biofilms provide a
protective barrier for bacteria, rendering them resistant to antimicrobial treatments and
increasing the risk of infection [19]. At least three intricate components are involved in
microbial colonization: the device, microbes, and the host environment (such as tissues
and immune cells). The surface properties of medical implants, such as their chemical
composition and morphology, play a crucial role in biofilm formation and bacterial adhe-
sion [22]. Microbial colonization is frequently difficult to identify. In certain situations,
it may go unnoticed for years; however, in other situations, it may be urgent enough to
endanger life [23]. Slimy “biofilm” coatings created by invading bacteria have been found
on a number of gadgets that were discarded following problems due to microbial coloniza-
tion [24]. Recalcitrance, a biofilm lifestyle trait that causes medication failure and infection
recurrence, refers to the ability of pathogenic biofilms to thrive in the presence of high doses
of antibiotics [25]. The word “recalcitrance” refers to a subgroup of biofilm-forming bacteria
that can survive in the presence of high doses of antibiotics (Figure 1). The distinct adaptive
antimicrobial resistance mechanism known as biofilm-forming bacteria is directly responsi-
ble for a number of therapeutic problems that arise in clinical settings and ultimately result
in the death of patients [26]. It encompasses the idea of non-susceptibility to (antimicrobial)
control of refractory biofilms [25]. Although bacteria have multiple antibiotic resistance
mechanisms, such as target modification, efflux pump expression, inactivation of antibiotic
substances, and target bypass [27] (Figure 2), the formation of biofilms exhibits an adaptive
resistance mechanism against antibiotics, as well as bypassing the host defense systems [28].
The biofilm matrix also prevents antibiotics from reaching the cells, contributing to the
overall resistance [29]. This structure also facilitates the flow of antimicrobial-resistant
genes between and within the species, protects against drug penetration, and increases
their persistence [30].
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Figure 2. Mechanisms of resistance to antibiotics and their effects. Reprinted from the [27], Copyright
© 2021 by the authors and Licensee, Frontiers in Microbiology (Lausanne. Switzerland).

The formation of a biofilm when bacteria contaminate an indwelling medical device
depends on several factors [31]. Before permanently connecting, the microbes must cling for
a sufficient time to expose the tool surfaces. The type and number of cells influence the rate
of cell attachment in the liquid to which the device is exposed, the liquid flow rate through
the device, and the physicochemical characteristics of the surface [11]. It is possible for
liquid components to alter the surface properties as well as the pace of adhesion. The flow
rate, nutritional composition of the medium, concentration of the antimicrobial medicine,
and ambient temperature affect the pace of growth of these cells once they irreversibly
attach to and generate proteins found outside the cells to create a biofilm [32]. Biofilms
formed on three different types of indwelling medical devices were used to illustrate these
variables: central venous catheters, urine (Foley) catheters, and mechanical heart valves [33].
Different stages of biofilm adherence to the surface of medical devices have been reported
previously [34]. To strengthen the knowledge of possible strategies to control biomedical
device-associated infections, the present review aims to discuss (1) the clinical significance
of medical device-associated infections caused by biofilm-forming bacterial pathogens and
(2) possible treatment strategies for controlling biomedical devices associated with biofilms
using different materials.

2. Role of Biofilms in HAIs

The most prevalent biofilm-based illness caused by medical equipment is catheter-
associated urinary tract infection (CAUTI), which affects over 150 million individuals
worldwide annually [35]. Flexible multichannel endoscopes are a unique type of reusable
medical device. If reprocessing guidelines are not followed properly, biofilm growth may
occur. Biofilm production thrives in damp, nutrient-rich conditions inside the lumen of an
endoscope used on a patient [36]. A protein-containing coating is formed around an implant
or other device when it enters the body, facilitating bacterial colonization. After bacteria
attach to themselves, biofilms begin to form. When bacteria reach maturity, they begin
to spread, and some enter the bloodstream, potentially leading to serious infections [37].
Following a thorough examination of the data regarding bacterial adherence and device
surface change, the following five main principles are identified: (1) Different bacteria
could attach to the same device material in various ways; (2) the same bacteria may attach
to various device materials in different ways; (3) bacteria may attach differently to the
same device material under different environmental conditions, such as the type of flow
(stationary vs. dynamic), temperature, and the hydrophobic versus hydrophilic medium in
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which the device is placed; (4) the prevention of bacterial colonization of the device in vitro
cannot ensure anti-infective effectiveness in vivo; and (5) depending on the application,
different surface-modifying approaches may have different therapeutic benefit [38].

3. Pathogenesis of Biofilm-forming Microbes

Bacterial biofilms are prevalent in the human body and can have significant impacts
on health and disease [39]. Biofilms have been shown to grow on the surface of medical
equipment, and the distribution of both single and clustered cells implies a substantial risk
of microbial dissemination within the host and an elevated risk of infection. Hospitals,
assisted living facilities, and even patients’ homes can have bacteria that cause HAIs [40].
Perry and Tan [39] summarized the formation of bacterial biofilms in the human body
at different locations, such as the upper respiratory tract, middle ear, soft tissue wounds,
urinary tract, male and female reproductive tract, bone, oral cavity, cardiovascular system,
stomach, and colon.

The human oral cavity initially creates an aerobic environment where oxygen is first
consumed by facultative anaerobic bacteria (such as Actinomyces and Streptococcus spp.)
or aerobic bacteria (such as Neisseria spp.), creating an environment that is suitable for
the survival of obligate anaerobic bacteria. Anaerobic bacteria predominantly populate
the human oral cavity during biofilm formation [41]. When wound healing is disrupted,
exogenous infections usually occur during surgery or early postoperatively. Patients with
large hematomas typically present with this condition. Exogenous infections rarely develop
late in the healing process during arthrocentesis or after device-induced or spontaneous
skin rupture [42]. Spontaneous skin rupture occurs more frequently after osteosynthesis
than after joint replacement [43].

Biofilms have been found in the circulatory system of atherosclerotic arteries and
in heart infections (endocarditis). When bacteria, most frequently S. aureus, Streptococcus
species, and Enterococcus species, adhere to the heart valves or the inner lining of the heart
chambers, they can cause infectious endocarditis (Table 1). This condition usually affects
patients with congenital valve defects or damaged heart tissue [44]. Recent data imply
that planktonic bacteria have long been associated with acute respiratory illnesses, where
aggregate-type biofilms in sputum are commonly thought to be the predominant form, as
well as chronic lung infections, as is widely acknowledged [45].

The incidence of infections linked to medical device biofilms has become a significant
clinical issue because biofilms are resilient and resistant to antimicrobial therapy, and many
researchers are now focusing on the mechanisms by which they form and thrive using
standard antibacterial techniques [46]. Locally acquired host defense deficiency is the
primary cause of implanted devices that increase sensitivity to infection, and the rapid
development of a biofilm that is resistant to both host defense and antimicrobial treatments
is the main cause of persistence [47]. Patients in the ICU have a heightened vulnerability to
device-associated nosocomial infections owing to their compromised immune systems and
frequent contact with invasive medical equipment. The use of these devices increases the
incidence of ventilator-associated pneumonia (VAP), central line-associated bloodstream
infections (CLABSIs), and CAUTIs in patients admitted to the ICU [48].

Table 1. Various medical devices and common pathogens form biofilm.

Medical Device Common Pathogen References

Orthopedic devices Staphylococci, Gram-negative bacilli [49]

Endotracheal tubes Pseudomonas aeruginosa, Staphylococcus aureus [50]

Contact lenses Pseudomonas aeruginosa, Staphylococci [51]

Intravascular catheters Staphylococci, Enterococci, Gram-negative bacilli [52]

Valves, pacemaker Staphylococci, Streptococci [53]
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Table 1. Cont.

Medical Device Common Pathogen References

Respiratory equipment,
Indwelling catheters Acinetobacter baumanii [54]

Bronchoscopy Klebsiella pneumoniae [55]

UTIs devices,
Intravascular medical device Enterobacter spp. [56]

Respiratory device Aspergillus fumigatus [57]

Cardiac medical device Cryptococcus neoformans [58]

Urinary catheters Enterococcus faecalis [59]

Catheters, prosthetic devices Aspergillus fumigatus [60]

Central venous catheter Staphylococcus epidermidis [31]

Cerebrospinal shunts Staphylococcus aureus, Propionibacterium [61]

Dental implants Prevotella intermedia, Actinobacillus [62]

4. Establishment of the Biofilm on Biomedical Device Surfaces

The challenges in employing available antibiotics to treat biofilm-associated illnesses,
especially implant-associated infections, are exacerbated by bacterial biofilm tolerance and
resistance. In 36 countries in Latin America, Asia, Africa, and Europe, 422 ICUs were exam-
ined by the International Nosocomial Infection Control Consortium. The results indicated
7029, 6595, and 12,145 cases of CLABSIs, CAUTIs, and VAPs, respectively, between January
2004 and December 2009. Implant-associated infections have gained attention because of
the rapid development of implantable biomedical devices [63]. Significant increases in
economic losses, morbidity, and mortality are linked to HAIs, many of which are unavoid-
able. The most frequent hospital-acquired infections are surgical site-and device-associated
HAIs, including VAP, CLABSIs, and CAUTIs [64].

Furthermore, infections are common and frequently associated with surfaces and de-
vices that have biofilms established on them [65]. Physiological gradients, matrix diffusion
restrictions, and innate and evolved resistance mechanisms make it challenging to control
biofilms formed on medical devices using antimicrobials. Together, these factors promote
antimicrobial resistance [66]. Cell adhesion, which is required for biofilm development
and other biological processes, is an essential component of interactions between cells and
surfaces. Surface wettability, rather than polymer type or surface topography, is a key factor
that influences cell attachment and proliferation [67]. Biofilm formation initiates the disease
process through various mechanisms, including the detachment of individual bacterial
cells or clusters of cell aggregates, the production of endotoxins, increased evasion from
host immune system surveillance, and the creation of a protective barrier that fosters the
emergence of immune-resistant organisms (Figure 3). When pathogens, such as P. aerugi-
nosa, attach themselves in real time to biomedical equipment in the clinic, biofilm formation
can be monitored. This allows timely antibiotic treatment or device removal when the first
signs of bacterial attachment are observed [68]. By doing this, the maturation of biofilms
can be stopped, and chronic infections and related difficulties can be lessened [69]. Early
action can stop biofilms from growing until they reach the dispersion stage of their life
cycle, leading to systemic infections. This strategy would reduce healthcare costs for each
patient while improving their health. Currently, symptoms are used to detect device-related
infections. However, to examine the developed biofilm, the device must be disassembled
for microscopic and microbiological examinations [70].

This laborious procedure postpones appropriate corrective measures to prevent the
worsening of the infection [71]. When a biofilm forms on a medical device, removing the
bacteria can be difficult and expensive because extensive hospital stays, surgeries, and
long-term antibiotic treatments are frequently required [72]. It is widely acknowledged
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that biofilm formation is one of the key virulence factors in infections linked to medical
devices [21].
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5. Recent Advancements in Antiadhesive or Antifouling Coating on the Surface of
Biomedical Devices

The development of a promising antibacterial coating on the surface of biomaterials
and biomedical devices is facilitated by the integration of bactericidal and antifouling
coatings, as both functions work synergistically to provide benefits [74]. The most popular
antimicrobial strategy involves the addition of bactericidal materials or reagents to a
surface and carrying out antimicrobial activities through release or contact killing, which
are referred to as releasable and non-releasable bactericidal compounds, respectively [75].
To effectively prevent microbial biofilms and biological biofouling infections caused by
biomaterials and biomedical devices, they must demonstrate not only superior growth-
inhibitory efficacy against pathogenic bacterial species but also the capacity to prevent
the adhesion of live or dead microbiological species and nonspecific platelets, proteins,
and other biological macromolecules [76]. By reducing the adhesion force between a
solid surface and bacteria, antiadhesive/antifouling surfaces enable bacteria to be readily
removed before a biofilm develops [77]. Barnacle cement has been successfully used as a
surface anchor to attach antifouling and antimicrobial polymer brushes to stainless steel [78].
This approach has been shown to be stable and effective, reducing protein adsorption
and bacterial adhesion [79]. Other studies have also explored the use of biomimetic
anchors, such as polydopamine layers, for the attachment of functional polymer brushes
to stainless steel, resulting in enhanced antifouling and anticorrosion properties [80]. A
one-step anchoring method using tannic acid-scaffolded bifunctional coatings has also been
developed, further improving resistance to protein adsorption and bacterial adhesion [81].
Recent studies have made significant strides in the development of antibacterial coatings to
combat orthopedic implant-associated infections (Figure 4). Wang et al. [82] and Akay and
Yaghmur [66] highlighted the potential of antibacterial hydrogel coatings and modified
implant surfaces to prevent biofilm formation. These coatings are designed to inhibit
bacterial attachment and colonization, thereby reducing the risk of infection. Wang et al. [83]
discussed the use of biodegradable alloy materials with inherent antibacterial properties
as orthopedic implant materials, thereby providing a promising alternative to traditional
implants. However, the need for further research and clinical testing of these coatings was
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emphasized by Wang et al. [83], underscoring the importance of continued advancements
in this field.

Several studies have demonstrated the application of antibacterial coatings consisting
of nanoparticles and lipids to minimize implant-related infections [84–86]. Nanoparticles
and lipid coatings play crucial roles in enhancing the performance of biomedical devices.
Both Luchini et al. [87] and Simović et al. [86] highlight the potential of lipid-coated in-
organic nanoparticles in improving the stability, performance, and biocompatibility of
lipid-based colloids, as well as in drug delivery systems. Jiménez-Jiménez et al. [88] further
emphasized the versatility of this technology, particularly in the use of cell membranes to
coat nanoparticles, which can improve their performance in various applications. Mashaghi
et al. [89] underscore the significance of lipid nanotechnology in these advancements, par-
ticularly in the fields of targeted drug delivery and bioimaging. These studies collectively
demonstrate the potential of nanoparticles and lipid coatings to enhance the functionality
and effectiveness of biomedical devices (Table 2). Numerous types of metal nanoparticles
have proven to be effective antibacterial agents [90–93]. The most frequently used antibac-
terial nano-agents are oxide-based nanoparticles of silver, gold, copper, titanium, nickel,
magnesium, and zinc [94].
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Table 2. Different types of antiadhesive or antibiofilm coating agents are employed on the biomedical device surface.

Name of Biomedical Devices Antibacterial Materials Antiadhesive or Antibiofilm Coating
Agents Types of Pathogens

Efficacy (Killing
of Attached
Cells in %)

References

Polydimethylsiloxane (PDMS), stainless steel
(SS) surface

Antibacterial surfaces that are smart
and photothermally activated Tannic acid(TA) and Fe3+ ion Escherichia coli >99 [96]

Blood-contacting medical devices metal–phenolic and catecholamine
CuII–GA/CySA coatings

copper ions (CuII)-gallic acid (GA)/
cystamine (CySA)

Escherichia coli,
Staphylococcus aureus ∼99 [97]

Surfaces made of a variety of materials,
including silicone, glass, poly(methyl

methacrylate) (PMMA) plates, metal surfaces,
polypropylene fiber, and filter paper

Electrostatic attraction, physically
rupturing cell walls

Coating with positively-charged
Zeolitic imidazolate frameworks(ZIF)

nano-dagger arrays
Staphylococcus aureus NA [98]

Silicon (Si), PDMS, and SS Gold nanoparticle layer(GNPL) Regenerable smart antibacterial
surfaces Escherichia coli >99 [99]

Implantable device Hydroxyethyl methacrylate(HEMA)
and quercetin(Qe) Dual-functional anti-biofilms surface Pseudomonas aeruginosa,

Staphylococcus aureus NA [100]

Metal materials surfaces
Poly (2-hydroxyethyl methacrylate)

hydrophilic polymer with
Quaternary ammonium salt(QAS)

Intelligent composite material surface
with titanium content

Staphylococcus aureus,
Escherichia coli 99.86 and 97.08 [101]

Biomedical catheters Sulfamethoxazole (SMZ) and
trimethoprim (TMP) Polyethylene glycol(PEG) Staphylococcus aureus,

Escherichia coli
80 (E. coli and S.

aureus cells) [102]

Urinary catheter
Poly(styrene sulfonate) (PSS),
quaternary ammonium, H2O2

enzyme

New zwitterionic copolymers
(PTMAEMA-co-PSPE) with different

proportions of sulfobetaine
Staphylococcus aureus 60 [103]

Foley catheters α-aminoisobutyric acid Biocompatible amino acids Escherichia coli, Bacillus
subtilis NA [104]

Catheters, stents, and
dialysis

equipment
Silver nanoparticles 2-Methacryloyloxyethyl

phosphorylcholine
Escherichia coli, Escherichia

coli K-12 >99 [105]

Dental implant Quaternized polyethyleneimine poly(glycidyl methacrylate) Staphylococcus aureus 95.6 [106]

Implant medical devices Gold nanoparticles built a mixed-metal-organic network
nanocluster Escherichia coli NA [107]
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Table 2. Cont.

Name of Biomedical Devices Antibacterial Materials Antiadhesive or Antibiofilm Coating
Agents Types of Pathogens

Efficacy (Killing
of Attached
Cells in %)

References

Soft contact lens Polyelectrolytes
Diclofenac sodium salt, doxifloxacin

hydrochloride, and chlorhexidine
diacetate monohydrate

Pseudomonas aeruginosa,
Staphylococcus aureus NA [108]

Dental implants Zinc (Zn) nanoparticles
Electrohydrodynamic deposition

Nanoparticles of hydroxyapatite
(nHA) and zinc oxide (nZnO) Streptococcus spp. NA [109]

Sinus Stents Ciprofloxacin nanoparticle Poly-l-lactic acid (PLLA), ciprofloxacin Pseudomonas aeruginosa NA [110]

Bone implant devices Combined vancomycin and Melittin Chitosan, bioactive
glass, and melittin Staphylococcus aureus NA [111]

Orthopedic implants
Liposome-encapsulated

photosensitizers (PS), IR780, and
perfluorohexane (PFH),

Lecithin, cholesterol
and PEGylated DSPE

Escherichia coli,
Staphylococcus aureus 99.62 and 99.63 [112]

Subcutaneous implants Nitric oxide (NO) NO-releasing xerogel coatings of
silicone rubber Staphylococcus aureus 82 [113]

Biomedical Implants Black phosphorus
Black phosphorus nanosheets with

N,N′-
dimethyl propylene urea (DMPU)

Bacillus subtilis 99.69 [114]

Implantable medical devices Titanium, titanium binding peptides
(TiBP)

Chimeric peptide
(TiBP(S)1–3 and

E14LKK/H14LKK
motifs.)

Streptococcus mutans,
Staphylococcus

epidermidis, Escherichia coli
NA [115]

Biomedical implants Nanoparticles of (silver and
zinc pyrithione, ZnP)

Silver-based organomodified layered
silicate additives nanoclays Staphylococcus aureus NA [116]

NA, Not available.
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6. Conclusions and Future Perspectives

Antimicrobial coatings are widely used; however, the standards for these coatings
are particularly strict in biomedical applications, which is the subject of this study. The
most common methods involve the prevention of bacterial adherence and killing microbes
through surface-associated mechanisms or coatings that emit antibacterial chemicals. To
combat the growing resistance to conventional antibiotics, metal and metal oxide nanopar-
ticles, as well as 2D nanomaterials, have provided innovative substitutes for antibiotic
treatments of hospital-acquired illnesses linked to biofilms. To prevent medical implants
linked to infections, antimicrobial-releasing coatings have undergone the most research.
The search for innovative anti-infective biomaterials might raise reasonable hope for avert-
ing infection problems, which are connected to both long-term medical implant use and
surgical treatment. Future developments may involve customized coatings depending on
the requirements of specific patients or the microbiological environment, given variations
in patient reactions to biomaterials. Customizing coatings to target particular bacteria
known to cause issues in a given patient may improve the effectiveness of antibacterial
strategies. Future research perspectives are recommended to detect biofilms on biomedical
device surfaces and to prevent biofilm formation on the surface.

• Early biofilm detection will undoubtedly aid patient treatment and reduce costs.
However, this is only possible if detection procedures and techniques are continu-
ously improved, which might be accomplished with the use of artificial intelligence
tools [117].

• Mixed-species biofilms exhibit notable differences in growth rate, gene expression,
living habits, and structural appearance compared with those of single species. These
differences are primarily manifested in enhanced biofilm metabolic capacity, resilience
to environmental stress, and community-level signaling. Further studies on mixed-
species biofilms are required [118].

• Mixed-species biofilms predominate in nature and are common in human hosts,
such as the lungs and oral cavities of individuals with cystic fibrosis. Therefore,
further studies are required to define the interactions within multispecies biofilms and
the consequences of these interactions on biofilm community growth, makeup, and
longevity [119].

• An antibiofilm or antiadhesive coating could be developed to prevent biofilm for-
mation that works upon three lines of defense with antiadhesive, bactericidal, and
anti-quorum sensing properties, adapting to the bacterial biofilm formation mecha-
nism. Further research is required on such antibiofilm coatings [120].
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