A Systematic Review on Antimicrobial Resistance in Ghana from a One Health Perspective
Abstract
:1. Introduction
2. Results
2.1. Search Results
2.2. Study Characteristics
2.3. Bacterial Agents and Antibiotic Resistance
2.4. Risk of Bias
3. Discussion
4. Methods
4.1. Preferred Reporting Items for Systematic Reviews (PRISMA) Guidelines
4.2. Search Strategy
4.3. Inclusion and Exclusion Criteria
4.4. Data Extraction and Analysis
4.5. Evaluation of Bias
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 10 Global Health Issues to Track in 2021. Available online: https://www.who.int/news-room/spotlight/10-global-health-issues-to-track-in-2021 (accessed on 22 May 2024).
- Salam, A.; Al-Amin, Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 6 June 2024).
- Pokharel, S.; Raut, S.; Adhikari, B. Tackling antimicrobial resistance in low-income and middle-income countries. BMJ Glob. Health 2024, 4, e002104. Available online: https://gh.bmj.com/content/4/6/e002104 (accessed on 1 November 2019). [CrossRef]
- Antimicrobial Resistance (AMR). Available online: https://www.healthdata.org/research-analysis/health-risks-issues/antimicrobial-resistance-amr (accessed on 11 July 2024).
- Yevutsey, S.K.; Buabeng, K.O.; Aikins, M.; Anto, B.P.; Biritwum, R.B.; Frimodt-Møller, N.; Gyansa-Lutterodt, M. Situational analysis of antibiotic use and resistance in Ghana: Policy and regulation. BMC Public Health 2017, 17, 896. [Google Scholar] [CrossRef] [PubMed]
- Duedu, K.O.; Offei, G.; Codjoe, F.S.; Donkor, E.S. Multidrug Resistant Enteric Bacterial Pathogens in a Psychiatric Hospital in Ghana: Implications for Control of Nosocomial Infections. Int. J. Microbiol. 2017, 2017, 9509087. [Google Scholar] [CrossRef] [PubMed]
- Ahiabu, M.-A.; Tersbøl, B.P.; Biritwum, R.; Bygbjerg, I.C.; Magnussen, P. A retrospective audit of antibiotic prescriptions in primary health-care facilities in Eastern Region, Ghana. Health Policy Plan. 2016, 31, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Jimah, T.; Fenny, A.P.; Ogunseitan, O.A. Antibiotics stewardship in Ghana: A cross-sectional study of public knowledge, attitudes, and practices among communities. One Health Outlook 2020, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Opoku, M.M.; Bonful, H.A.; Koram, K.A. Antibiotic prescription for febrile outpatients: A health facility-based secondary data analysis for the Greater Accra region of Ghana. BMC Health Serv. Res. 2020, 20, 978. [Google Scholar] [CrossRef] [PubMed]
- Hailat, E.; Amiri, M.; Debnath, N.; Rahman, M.; Islam, N.; Fatima, Z.; Khader, Y.; Al Nsour, M. Strengthening the One Health Approach in the Eastern Mediterranean Region. Interact. J. Med. Res. 2023, 12, e41190. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef] [PubMed]
- Sharan, M.; Vijay, D.; Yadav, J.P.; Bedi, J.S.; Dhaka, P. Surveillance and response strategies for zoonotic diseases: A comprehensive review. Sci. One Health 2023, 2, 100050. [Google Scholar] [CrossRef]
- Koduah, A.; Gyansa-Lutterodt, M.; Hedidor, G.K.; Sekyi-Brown, R.; Asiedu-Danso, M.; Asare, B.A.; Ackon, A.A.; Annan, E.A. Antimicrobial resistance national level dialogue and action in Ghana: Setting and sustaining the agenda and outcomes. One Health Outlook 2021, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Dekker, D.; Wolters, M.; Mertens, E.; Boahen, K.G.; Krumkamp, R.; Eibach, D.; Schwarz, N.G.; Adu-Sarkodie, Y.; Rohde, H.; Christner, M.; et al. Antibiotic Resistance and Clonal Diversity of Invasive Staphylococcus aureus in the Rural Ashanti Region, Ghana. BMC Infect. Dis. 2016, 16, 720. [Google Scholar] [CrossRef] [PubMed]
- Afum, T.; Asandem, D.A.; Asare, P.; Asante-Poku, A.; Mensah, G.I.; Musah, A.B.; Opare, D.; Taniguchi, K.; Guinko, N.M.; Aphour, T.; et al. Diarrhea-Causing Bacteria and Their Antibiotic Resistance Patterns among Diarrhea Patients from Ghana. Front. Microbiol. 2022, 13, 894319. [Google Scholar] [CrossRef] [PubMed]
- Inusah, A.; Quansah, E.; Fosu, K.; Dadzie, I. Resistance Status of Bacteria from a Health Facility in Ghana: A Retrospective Study. J. Pathog. 2021, 2021, 6648247. [Google Scholar] [CrossRef] [PubMed]
- Attram, N.; Agbodzi, B.; Dela, H.; Behene, E.; Nyarko, E.O.; Kyei, N.N.A.; Larbi, J.A.; Lawson, B.W.L.; Addo, K.K.; Newman, M.J.; et al. Antimicrobial Resistance (AMR) and Molecular Characterization of Neisseria Gonorrhoeae in Ghana, 2012–2015. PLoS ONE 2019, 14, e0223598. [Google Scholar] [CrossRef] [PubMed]
- Sampane-Donkor, E.; Badoe, E.V.; Annan, J.A.; Nii-Trebi, N.I. Colonisation of Antibiotic Resistant Bacteria in a Cohort of HIV Infected Children in Ghana. Pan. Afr. Med. J. 2017, 26, 1937–8688. [Google Scholar] [PubMed Central]
- Bekoe, S.O.; Hane-Weijman, S.; Trads, S.L.; Orman, E.; Opintan, J.; Hansen, M.; Frimodt-Møller, N.; Styrishave, B. Reservoir of Antibiotic Residues and Resistant Coagulase Negative Staphylococci in a Healthy Population in the Greater Accra Region, Ghana. Antibiotics 2022, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Gnimatin, J.-P.; Weyori, E.W.; Agossou, S.M.; Adokiya, M.N. Bacterial Infections Epidemiology and Factors Associated with Multidrug Resistance in the Northern Region of Ghana. Sci. Rep. 2022, 12, 22069. [Google Scholar] [CrossRef] [PubMed]
- Sah, A.K.; Feglo, P.K. Plasmid-mediated quinolone resistance determinants in clinical bacterial pathogens isolated from the Western Region of Ghana: A cross-sectional study. Pan Afr. Med. J. 2022, 43, 207. [Google Scholar] [CrossRef] [PubMed]
- Quansah, E.; Amoah Barnie, P.; Omane Acheampong, D.; Obiri-Yeboah, D.; Odarkor Mills, R.; Asmah, E.; Cudjoe, O.; Dadzie, I. Geographical Distribution of β-Lactam Resistance among Klebsiella spp. from Selected Health Facilities in Ghana. Trop. Med. Infect. Dis. 2019, 4, 117. [Google Scholar] [CrossRef] [PubMed]
- Krumkamp, R.; Oppong, K.; Hogan, B.; Strauss, R.; Frickmann, H.; Wiafe-Akenten, C.; Boahen, K.G.; Rickerts, V.; Smith, I.M.; Groß, U.; et al. Spectrum of antibiotic resistant bacteria and fungi isolated from chronically infected wounds in a rural district hospital in Ghana. PLoS ONE 2020, 15, e0237263. [Google Scholar] [CrossRef] [PubMed]
- Abana, D.; Gyamfi, E.; Dogbe, M.; Opoku, G.; Opare, D.; Boateng, G.; Mosi, L. Investigating the virulence genes and antibiotic susceptibility patterns of Vibrio cholerae O1 in environmental and clinical isolates in Accra, Ghana. BMC Infect. Dis. 2019, 19, 76. [Google Scholar] [CrossRef] [PubMed]
- Deku, J.G.; Duedu, K.O.; Ativi, E.; Kpene, G.E.; Feglo, P.K. Occurrence and distribution of extended-spectrum β-lactamase in clinical Escherichia coli isolates at Ho Teaching Hospital in Ghana. Ghana Med. J. 2021, 55, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Agyepong, N.; Govinden, U.; Owusu-Ofori, A.; Essack, S.Y. Multidrug-resistant gram-negative bacterial infections in a teaching hospital in Ghana. Antimicrob. Resist. Infect. Control. 2018, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Deininger, S.; Gründler, T.; Deininger, S.H.M.; Lütcke, K.; Lütcke, H.; Agbesi, J.; Ladzaka, W.; Gyamfi, E.; Wichlas, F.; Hofmann, V.; et al. The Antimicrobial Resistance (AMR) Rates of Uropathogens in a Rural Western African Area—A Retrospective Single-Center Study from Kpando, Ghana. Antibiotics 2022, 11, 1808. [Google Scholar] [CrossRef] [PubMed]
- Osei, M.-M.; Dayie, N.T.K.D.; Azaglo, G.S.K.; Tettey, E.Y.; Nartey, E.T.; Fenny, A.P.; Manzi, M.; Kumar, A.M.V.; Labi, A.-K.; Opintan, J.A.; et al. Alarming Levels of Multidrug Resistance in Aerobic Gram-Negative Bacilli Isolated from the Nasopharynx of Healthy Under-Five Children in Accra, Ghana. Int. J. Environ. Res. Public Health 2022, 19, 10927. [Google Scholar] [CrossRef] [PubMed]
- Janssen, H.; Janssen, I.; Cooper, P.; Kainyah, C.; Pellio, T.; Quintel, M.; Monnheimer, M.; Groß, U.; Schulze, M.H. Antimicrobial-Resistant Bacteria in Infected Wounds, Ghana, 2014. Emerg. Infect. Dis. 2018, 24, 916. [Google Scholar] [CrossRef] [PubMed]
- Andoh, L.A.; Dalsgaard, A.; Obiri-Danso, K.; Newman, M.J.; Barco, L.; Olsen, J.E. Prevalence and antimicrobial resistance of Salmonella serovars isolated from poultry in Ghana. Epidemiol. Infect. 2016, 144, 3288–3299. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, J.; Hounmanou, Y.M.G.; Thomsen, L.E. Antimicrobial resistance among clinically relevant bacterial isolates in Accra: A retrospective study. BMC Res. Notes 2018, 11, 254. [Google Scholar] [CrossRef] [PubMed]
- Asafo-Adjei, K.; Mensah, J.E.; Labi, A.-K.; Dayie, N.T.K.D.; Donkor, E.S. Urinary Tract Infections among Bladder Outlet Obstruction Patients in Accra, Ghana: Aetiology, Antibiotic Resistance, and Risk Factors. Diseases 2018, 6, 65. [Google Scholar] [CrossRef] [PubMed]
- Donkor, E.S.; Muhsen, K.; Johnson, S.A.M.; Kotey, F.C.N.; Dayie, N.T.K.D.; Tetteh-Quarcoo, P.B.; Tette, E.M.A.; Osei, M.-M.; Egyir, B.; Nii-Trebi, N.I.; et al. Multicenter Surveillance of Antimicrobial Resistance among Gram-Negative Bacteria Isolated from Bloodstream Infections in Ghana. Antibiotics 2023, 12, 255. [Google Scholar] [CrossRef] [PubMed]
- Karikari, A.B.; Saba, C.K.; Yamik, D.Y. Reported Cases of Urinary Tract Infections and the Susceptibility of Uropathogens from Hospitals in Northern Ghana. Microbiol. Insights 2022, 15, 11786361221106108. [Google Scholar] [CrossRef] [PubMed]
- Asare, K.K.; Amoah, S.; Coomson, C.A., Jr.; Banson, C.; Yaro, D.; Mbata, J.; Aaron Arthur, R.; Mayeem, P.B.; Afrifa, J.; Bentsi-Enchill, F.; et al. Antibiotic-resistant pathogenic bacterial isolates from patients attending the outpatient department of university of Cape Coast hospital, Ghana: A retrospective study between 2013–2015. PLoS Glob. Public Health 2022, 2, e0000417. [Google Scholar] [CrossRef] [PubMed]
- Omenako, K.A.; Enimil, A.; Marfo, A.F.A.; Timire, C.; Chinnakali, P.; Fenny, A.P.; Jeyashree, K.; Buabeng, K.O. Pattern of Antimicrobial Susceptibility and Antimicrobial Treatment of Neonates Admitted with Suspected Sepsis in a Teaching Hospital in Ghana, 2021. Int. J. Environ. Res. Public Health 2022, 19, 12968. [Google Scholar] [CrossRef] [PubMed]
- Labi, A.-K.; Obeng-Nkrumah, N.; Addison, N.O.; Donkor, E.S. Salmonella blood stream infections in a tertiary care setting in Ghana. BMC Infect. Dis. 2014, 14, 3857. [Google Scholar] [CrossRef] [PubMed]
- Codjoe, F.S.; Donkor, E.S.; Smith, T.J.; Miller, K. Phenotypic and Genotypic Characterization of Carbapenem-Resistant Gram-Negative Bacilli Pathogens from Hospitals in Ghana. Microb. Drug Resist. 2019, 25, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Dwomoh, F.P.; Kotey, F.C.N.; Dayie, N.T.K.D.; Osei, M.-M.; Amoa-Owusu, F.; Bannah, V.; Alzahrani, F.M.; Halawani, I.F.; Alzahrani, K.J.; Egyir, B.; et al. Phenotypic and genotypic detection of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in Accra, Ghana. PLoS ONE 2022, 17, e0279715. [Google Scholar] [CrossRef] [PubMed]
- Vicar, E.K.; Alo, D.B.; Koyiri, V.C.; Opare-Asamoah, K.; Obeng-Bempong, M.; Mensah, G.I. Carriage of Antibiotic Resistant Bacteria and Associated Factors Among Food Handlers in Tamale Metropolis, Ghana: Implications for Food Safety. Microbiol. Insights 2023, 16, 11786361221150696. [Google Scholar] [CrossRef] [PubMed]
- Asamoah, B.; Labi, A.-K.; Gupte, H.A.; Davtyan, H.; Peprah, G.M.; Adu-Gyan, F.; Nair, D.; Muradyan, K.; Jessani, N.S.; Sekyere-Nyantakyi, P. High Resistance to Antibiotics Recommended in Standard Treatment Guidelines in Ghana: A Cross-Sectional Study of Antimicrobial Resistance Patterns in Patients with Urinary Tract Infections between 2017–2021. Int. J. Environ. Res. Public Health 2022, 19, 16556. [Google Scholar] [CrossRef] [PubMed]
- Agbeko, R.; Aheto, D.W.; Asante, D.K.; Asare, N.K.; Boateng, A.A.; Adinortey, C.A. Identification of molecular determinants of antibiotic resistance in some fish farms of Ghana. Heliyon 2022, 8, e10431. [Google Scholar] [CrossRef] [PubMed]
- Adinortey, C.A.; Aheto, D.W.; Boateng, A.A.; Agbeko, R. Multiple Antibiotic Resistance-Coliform Bacteria in Some Selected Fish Farms of the Central Region of Ghana. Scientifica 2020, 2020, 6641461. [Google Scholar] [CrossRef] [PubMed]
- Mensah, G.I.; Adjei, V.Y.; Vicar, E.K.; Atsu, P.S.; Blavo, D.L.; Johnson, S.A.M.; Addo, K.K. Safety of Retailed Poultry: Analysis of Antibiotic Resistance in Escherichia coli From Raw Chicken and Poultry Fecal Matter From Selected Farms and Retail Outlets in Accra, Ghana. Microbiol. Insights 2022, 15, 11786361221093278. [Google Scholar] [CrossRef] [PubMed]
- Boamah, V.E.; Agyare, C.; Odoi, H.; Adu, F.; Gbedema, S.Y.; Dalsgaard, A. Prevalence and antibiotic resistance of coagulase-negative Staphylococci isolated from poultry farms in three regions of Ghana. Infect. Drug Resist. 2017, 10, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Ohene Larbi, R.; Adeapena, W.; Ayim-Akonor, M.; Ansa, E.D.O.; Tweya, H.; Terry, R.F.; Labi, A.-K.; Harries, A.D. Antimicrobial, Multi-Drug and Colistin Resistance in Enterobacteriaceae in Healthy Pigs in the Greater Accra Region of Ghana, 2022: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 10449. [Google Scholar] [CrossRef] [PubMed]
- Adzitey, F.; Assoah-Peprah, P.; Teye, G.A.; Somboro, A.M.; Kumalo, H.M.; Amoako, D.G. Prevalence and Antimicrobial Resistance of Escherichia coli Isolated from Various Meat Types in the Tamale Metropolis of Ghana. Int. J. Food Sci. 2020, 2020, 8877196. [Google Scholar] [CrossRef] [PubMed]
- Paintsil, E.K.; Ofori, L.A.; Akenten, C.W.; Zautner, A.E.; Mbwana, J.; Jaeger, A.; Lamshöft, M.; May, J.; Obiri-Danso, K.; Philipps, R.O.; et al. Antibiotic-resistant Campylobacter coli and Campylobacter jejuni in commercial and smallholder farm animals in the Asante Akim North Municipality of Ghana. Front. Microbiol. 2022, 13, 983047. [Google Scholar] [CrossRef] [PubMed]
- Dsani, E.; Afari, E.A.; Danso-Appiah, A.; Kenu, E.; Kaburi, B.B.; Egyir, B. Antimicrobial resistance and molecular detection of extended spectrum β-lactamase producing Escherichia coli isolates from raw meat in Greater Accra region, Ghana. BMC Microbiol. 2020, 20, 253. [Google Scholar] [CrossRef] [PubMed]
- Karikari, A.B.; Obiri-Danso, K.; Frimpong, E.H.; Krogfelt, K.A. Antibiotic Resistance of Campylobacter Recovered from Faeces and Carcasses of Healthy Livestock. BioMed Res. Int. 2017, 2017, 4091856. [Google Scholar] [CrossRef] [PubMed]
- Asuming-Bediako, N.; Kunadu, A.P.-H.; Jordan, D.; Abraham, S.; Habib, I. Prevalence and antimicrobial susceptibility pattern of Campylobacter jejuni in raw retail chicken meat in Metropolitan Accra, Ghana. Int. J. Food Microbiol. 2022, 376, 109760. [Google Scholar] [CrossRef]
- Eibach, D.; Dekker, D.; Boahen, K.G.; Akenten, C.W.; Sarpong, N.; Campos, C.B.; Berneking, L.; Aepfelbacher, M.; Krumkamp, R.; Owusu-Dabo, E.; et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in local and imported poultry meat in Ghana. Vet. Microbiol. 2018, 217, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Dekker, D.; Eibach, D.; Boahen, K.G.; Akenten, C.W.; Pfeifer, Y.; Zautner, A.E.; Mertens, E.; Krumkamp, R.; Jaeger, A.; Flieger, A.; et al. Fluoroquinolone-Resistant Salmonella enterica, Campylobacter spp., and Arcobacter butzleri from Local and Imported Poultry Meat in Kumasi, Ghana. Foodborne Pathog. Dis. 2019, 16, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Saba, C.K.S.; Naa-Inour, F.; Kpordze, S.W. Antibiotic resistance pattern of methicillin-resistant Staphylococcus aureus and Escherichia coli from mobile phones of healthcare workers in public hospitals in Ghana. Pan Afr. Med. J. 2022, 41, 259. [Google Scholar] [CrossRef] [PubMed]
- Odonkor, S.T.; Simpson, S.V.; Medina, W.R.M.; Fahrenfeld, N.L. Antibiotic-Resistant Bacteria and Resistance Genes in Isolates from Ghanaian Drinking Water Sources. J. Environ. Public Health 2022, 2022, 2850165. [Google Scholar] [CrossRef] [PubMed]
- Adomako, L.A.B.; Yirenya-Tawiah, D.; Nukpezah, D.; Abrahamya, A.; Labi, A.-K.; Grigoryan, R.; Ahmed, H.; Owusu-Danquah, J.; Annang, T.Y.; Banu, R.A.; et al. Reduced Bacterial Counts from a Sewage Treatment Plant but Increased Counts and Antibiotic Resistance in the Recipient Stream in Accra, Ghana—A Cross-Sectional Study. Trop. Med. Infect. Dis. 2021, 6, 79. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Zolfo, M.; Williams, A.; Ashubwe-Jalemba, J.; Tweya, H.; Adeapena, W.; Labi, A.-K.; Adomako, L.A.B.; Addico, G.N.D.; Banu, R.A.; et al. Antibiotic-Resistant Bacteria in Drinking Water from the Greater Accra Region, Ghana: A Cross-Sectional Study, December 2021–March 2022. Int. J. Environ. Res. Public Health 2022, 19, 12300. [Google Scholar] [CrossRef] [PubMed]
- Addae-Nuku, D.S.; Kotey, F.C.; Dayie, N.T.; Osei, M.-M.; Tette, E.M.; Debrah, P.; Donkor, E.S. Multidrug-Resistant Bacteria in Hospital Wastewater of the Korle Bu Teaching Hospital in Accra, Ghana. Environ. Health Insights 2022, 16, 11786302221130612. [Google Scholar] [CrossRef] [PubMed]
- Saba, C.K.S.; Amenyona, J.K.; Kpordze, S.W. Prevalence and pattern of antibiotic resistance of Staphylococcus aureus isolated from door handles and other points of contact in public hospitals in Ghana. Antimicrob. Resist. Infect. Control. 2017, 6, 44. Available online: https://aricjournal.biomedcentral.com/articles/10.1186/s13756-017-0203-2 (accessed on 10 May 2017). [CrossRef]
- Andoh, L.A.; Ahmed, S.; Olsen, J.E.; Obiri-Danso, K.; Newman, M.J.; Opintan, J.A.; Barco, L.; Dalsgaard, A. Prevalence and characterization of Salmonella among humans in Ghana. Trop. Med. Health 2017, 45, 3. [Google Scholar] [CrossRef] [PubMed]
- Baah, D.A.; Kotey, F.C.N.; Dayie, N.T.K.D.; Codjoe, F.S.; Tetteh-Quarcoo, P.B.; Donkor, E.S. Multidrug-Resistant Gram-Negative Bacteria Contaminating Raw Meat Sold in Accra, Ghana. Pathogens 2022, 11, 1517. [Google Scholar] [CrossRef]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One Health approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Badau, E. A One Health perspective on the issue of the antibiotic resistance. Parasite 2021, 28, 16. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Fatima, J.; Shakil, S.; Rizvi, S.M.D.; Kamal, M.A. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J. Biol. Sci. 2015, 22, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Alkofide, H.; Alhammad, A.M.; Alruwaili, A.; Aldemerdash, A.; A Almangour, T.; Alsuwayegh, A.; Almoqbel, D.; Albati, A.; Alsaud, A.; Enani, M. Multidrug-Resistant and Extensively Drug-Resistant Enterobacteriaceae: Prevalence, Treatments, and Outcomes—A Retrospective Cohort Study. Infect. Drug Resist. 2020, 13, 4653–4662. [Google Scholar] [CrossRef] [PubMed]
- Loayza, F.; Graham, J.P.; Trueba, G. Factors Obscuring the Role of E. coli from Domestic Animals in the Global Antimicrobial Resistance Crisis: An Evidence-Based Review. Int. J. Environ. Res. Public Health 2020, 17, 3061. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.; Silva, V.; Dapkevicius, M.d.L.E.; Caniça, M.; Tejedor-Junco, M.T.; Igrejas, G.; Poeta, P. Escherichia coli as Commensal and Pathogenic Bacteria among Food-Producing Animals: Health Implications of Extended Spectrum β-Lactamase (ESBL) Production. Animals 2020, 10, 2239. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Bai, Y.; Zha, L.; Ullah, N.; Ullah, H.; Shah, S.R.H.; Sun, H.; Zhang, C. Mechanism of the Gut Microbiota Colonization Resistance and Enteric Pathogen Infection. Front. Cell. Infect. Microbiol. 2021, 11, 716299. [Google Scholar] [CrossRef] [PubMed]
- Wareth, G.; Neubauer, H. The Animal-foods-environment interface of Klebsiella pneumoniae in Germany: An observational study on pathogenicity, resistance development and the current situation. Vet. Res. 2021, 52, 16. [Google Scholar] [CrossRef] [PubMed]
- Young, T.M.; Bray, A.S.; Nagpal, R.K.; Caudell, D.L.; Yadav, H.; Zafar, M.A. Animal Model To Study Klebsiella pneumoniae Gastrointestinal Colonization and Host-to-Host Transmission. Infect. Immun. 2020, 88, e00071-20. [Google Scholar] [CrossRef] [PubMed]
- Verdial, C.; Serrano, I.; Tavares, L.; Gil, S.; Oliveira, M. Mechanisms of Antibiotic and Biocide Resistance That Contribute to Pseudomonas aeruginosa Persistence in the Hospital Environment. Biomedicines 2023, 11, 1221. [Google Scholar] [CrossRef] [PubMed]
- Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, Food Safety and Food Handling Practices. Foods 2021, 10, 907. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, S.; Shrestha, P.; Adhikari, B. Antimicrobial use in food animals and human health: Time to implement ‘One Health’ approach. Antimicrob. Resist. Infect. Control 2020, 9, 181. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.A.; Elsohaby, I.; Elamin, A.M.; El-Ghafar, A.E.A.; Elsaid, G.A.; Elbarbary, M.; Mohsen, R.A.; El Feky, T.M.; El Bayomi, R.M. Extended-spectrum β-lactamase-producing E. coli from retail meat and workers: Genetic diversity, virulotyping, pathotyping and the antimicrobial effect of silver nanoparticles. BMC Microbiol. 2023, 23, 212. [Google Scholar] [CrossRef] [PubMed]
- Gambino, D.; Gargano, V.; Butera, G.; Sciortino, S.; Pizzo, M.; Oliveri, G.; Cardamone, C.; Piraino, C.; Cassata, G.; Vicari, D.; et al. Food Is Reservoir of MDR Salmonella: Prevalence of ESBLs Profiles and Resistance Genes in Strains Isolated from Food. Microorganisms 2022, 10, 780. [Google Scholar] [CrossRef]
- Igbinosa, E.O.; Beshiru, A.; Igbinosa, I.H.; Cho, G.S.; Franz, C.M.A.P. Multidrug-resistant extended spectrum β-lactamase (ESBL)-producing Escherichia coli from farm produce and agricultural environments in Edo State, Nigeria. PLoS ONE 2023, 18, e0282835. [Google Scholar] [CrossRef] [PubMed]
- Komodromos, D.; Kotzamanidis, C.; Giantzi, V.; Pappa, S.; Papa, A.; Zdragas, A.; Angelidis, A.; Sergelidis, D. Prevalence, Infectious Characteristics and Genetic Diversity of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus (MRSA) in Two Raw-Meat Processing Establishments in Northern Greece. Pathogens 2022, 11, 1370. [Google Scholar] [CrossRef]
- Popa, S.A.; Morar, A.; Ban-Cucerzan, A.; Tîrziu, E.; Herman, V.; Imre, M.; Florea, T.; Morar, D.; Pătrînjan, R.-T.; Imre, K. First study in the frequency of isolation and phenotypic antimicrobial resistance profiles of pig and cattle origin Campylobacter strains in Romania. Vet. Res. Commun. 2024, 1–7. Available online: https://link.springer.com/article/10.1007/s11259-024-10360-w (accessed on 6 June 2024). [CrossRef] [PubMed]
- Taneja, N.; Sharma, M. Antimicrobial resistance in the environment: The Indian scenario. Indian J. Med. Res. 2019, 149, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Ghosh, S.; Aleem, M.A.; Parveen, S.; Islam, M.A.; Rashid, M.M.; Akhtar, A.; Chowdhury, F. Antibiotic Usage and Resistance in Food Animal Production: What Have We Learned from Bangladesh? Antibiotics 2021, 10, 1032. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Silva, V.; Pereira, J.E.; Maltez, L.; Igrejas, G.; Valentão, P.; Falco, V.; Poeta, P. Antimicrobial Resistance and Clonal Lineages of Escherichia coli from Food-Producing Animals. Antibiotics 2023, 12, 1061. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing Heterogeneity in Meta-Analysis: Q Statistic or I 2 Index? Psychol. Methods 1998, 11, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. Available online: https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1411 (accessed on 11 June 2024). [CrossRef]
Bacteria Isolates | CIP | TET | GEN | AMP | SXT | CTX | CHL | References | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hu | An | En | Hu | An | En | Hu | An | En | Hu | An | En | Hu | An | En | Hu | An | En | Hu | An | En | ||
Acinetobacter spp. | 35–44 | - | - | 55 | - | - | 37–63 | - | - | 95 | - | - | 58–67 | - | - | 88–89 | - | - | - | - | - | [22,31,35] |
Aeromonas spp. | - | - | 13 | - | - | 23 | - | - | 17 | - | - | - | - | - | - | - | - | - | - | - | - | [58] |
Campylobacter spp. | - | 44–75 | - | - | 70–100 | - | - | - | - | - | 81–96 | - | - | 56 | - | - | - | - | - | 88 | - | [50,53,55] |
Citrobacter spp. | 22–80 | - | 100 | 78–93 | 53 | - | 22.2–66.7 | 5 | 97 | - | 100 | 100 | 50 | - | 100 | 78 | 45 | - | - | 58 | - | [18,23,29,34,44,60] |
E. coli | 46–89 | 2–54 | 6–17 | 25–92 | 45–100 | 37 | 17–62 | 0–39 | 3.7–27 | 88–100 | 100 | 100 | 69–92 | 8–21 | 66–100 | 49- 78 | 0–17 | 34–100 | 9–83 | 0–46 | - | [17,18,22,23,25,29,31,34,35,37,41,43,44,46,48,49,51,56,58,59,60] |
Enterobacter spp. | 11–73 | - | - | 87–100 | 82 | - | 25.9–47 | 0 | - | 100 | 100 | - | 37–68 | - | - | 52–68 | 45 | - | - | 36 | - | [22,23,31,34,44] |
Enterococcus spp. | - | - | - | 100 | - | - | - | - | - | 0 | - | - | 58–100 | - | - | - | - | - | 44 | - | - | [25,31] |
Klebsiella spp. | 14–76 | - | 12 | 71–89 | 55 | - | 29–83 | 14 | 0 | 100 | 100 | 100 | 48–95 | - | 46 | 64–91 | 36 | - | 50–92 | 55 | - | [18,22,23,24,25,31,34,35,41,43,44,60] |
Moraxella spp. | 69 | - | - | 50–90 | - | - | 28 | - | - | - | - | - | 67 | - | - | - | - | - | - | - | - | [18,22] |
Neisseria gonorrhoeae | 82 | - | - | 100 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | [19] |
Proteus spp. | 5–100 | - | - | 80–100 | 50 | - | 5–100 | 0 | - | 70–90 | 100 | - | 43–75 | - | - | - | 50 | - | 64 | 0 | - | [18,25,29,31,34,44] |
Pseudomonas spp. | 15–100 | - | 5–100 | 80–100 | - | - | 10–40 | - | 11–100 | 96 | - | 100 | 92 | - | 100 | - | - | - | - | - | - | [18,22,23,29,31,34,35,59,60] |
Staphylococcus spp. | 0–71 | - | 5–9 | 57–100 | 24 | 28–64 | 4–67 | 0 | 9 | - | 100 | 13 | 32–100 | - | 11 | - | - | - | 60–71 | - | 81.8 | [16,18,21,29,34,44,56,61] |
Salmonella spp. | 0–67 | 63–65 | - | 35 | 60–100 | - | 0–67 | 0 | - | 33–57 | 26–80 | - | 17–66 | 69 | - | 0–22 | 20 | - | 34 | 6–20 | - | [17,23,32,34,44] |
Serratia spp. | - | - | - | >90 | - | - | - | - | - | >90 | - | - | - | - | - | >90 | - | - | >90 | - | - | [18] |
Shigella spp. | - | - | - | 90–100 | 67–100 | - | - | 0 | - | - | 98–100 | - | 39 | - | - | - | 100 | - | - | 100 | - | [17,18,44,45] |
Streptococcus spp. | - | - | - | - | 17 | - | - | 17 | - | 100 | 83 | - | - | - | - | - | - | - | 63 | - | - | [25,44] |
Vibrio spp. | 25–90 | - | - | 65 | - | - | - | - | - | - | - | - | 38 | - | - | 83.3 | - | - | 50 | - | - | [17,26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donkor, E.S.; Odoom, A.; Osman, A.-H.; Darkwah, S.; Kotey, F.C.N. A Systematic Review on Antimicrobial Resistance in Ghana from a One Health Perspective. Antibiotics 2024, 13, 662. https://doi.org/10.3390/antibiotics13070662
Donkor ES, Odoom A, Osman A-H, Darkwah S, Kotey FCN. A Systematic Review on Antimicrobial Resistance in Ghana from a One Health Perspective. Antibiotics. 2024; 13(7):662. https://doi.org/10.3390/antibiotics13070662
Chicago/Turabian StyleDonkor, Eric S., Alex Odoom, Abdul-Halim Osman, Samuel Darkwah, and Fleischer C. N. Kotey. 2024. "A Systematic Review on Antimicrobial Resistance in Ghana from a One Health Perspective" Antibiotics 13, no. 7: 662. https://doi.org/10.3390/antibiotics13070662
APA StyleDonkor, E. S., Odoom, A., Osman, A. -H., Darkwah, S., & Kotey, F. C. N. (2024). A Systematic Review on Antimicrobial Resistance in Ghana from a One Health Perspective. Antibiotics, 13(7), 662. https://doi.org/10.3390/antibiotics13070662