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Abstract: Resistance to amikacin and other major aminoglycosides is commonly due to enzymatic
acetylation by the aminoglycoside 6′-N-acetyltransferase type I enzyme, of which type Ib [AAC(6′)-Ib]
is the most widespread among Gram-negative pathogens. Finding enzymatic inhibitors could be an
effective way to overcome resistance and extend the useful life of amikacin. Small molecules possess
multiple properties that make them attractive for drug development. Mixture-based combinatorial
libraries and positional scanning strategy have led to the identification of a chemical scaffold, pyrrolidine
pentamine, that, when substituted with the appropriate functionalities at five locations (R1–R5), inhibits
AAC(6′)-Ib-mediated inactivation of amikacin. Structure–activity relationship studies have shown that
while truncations to the molecule result in loss of inhibitory activity, modifications of functionalities and
stereochemistry have different effects on the inhibitory properties. In this study, we show that alterations
at position R1 of the two most active compounds, 2700.001 and 2700.003, reduced inhibition levels,
demonstrating the essential nature not only of the presence of an S-phenyl moiety at this location but
also the distance to the scaffold. On the other hand, modifications on the R3, R4, and R5 positions had
varied effects, demonstrating the potential for optimization. A correlation analysis between molecular
docking values (∆G) and the dose required for two-fold potentiation of the compounds described in this
and the previous studies showed a significant correlation between ∆G values and inhibitory activity.

Keywords: aminoglycoside resistance; structure–activity relationship; aminoglycoside-modifying
enzymes; acetyltransferase; Acinetobacter; small molecule inhibitor

1. Introduction

Multidrug resistance is one of the top concerns for human health. A growing number
of people are dying due to acquiring resistant infections. At the same time, the multidrug
resistance crisis has caused the cost of treatment to skyrocket [1–4], further compounding
the issue. The number of new antimicrobials being developed falls short of what would
be necessary for effectively managing the problem [5,6]. Furthermore, only one of the

Antibiotics 2024, 13, 672. https://doi.org/10.3390/antibiotics13070672 https://www.mdpi.com/journal/antibiotics

https://doi.org/10.3390/antibiotics13070672
https://doi.org/10.3390/antibiotics13070672
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://orcid.org/0000-0002-9904-7890
https://orcid.org/0000-0002-0744-8137
https://orcid.org/0000-0002-0999-4975
https://orcid.org/0000-0002-6298-7811
https://doi.org/10.3390/antibiotics13070672
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/article/10.3390/antibiotics13070672?type=check_update&version=1


Antibiotics 2024, 13, 672 2 of 20

recently approved antibiotics, cefiderocol, can be used against a bacterium included in
the WHO list of critical pathogens [5]. Therefore, repurposing or extending the useful life
of existing antimicrobials is essential to increase the armamentarium against the grow-
ing number of multidrug-resistant bacterial pathogens [7]. Aminoglycoside antibiotics
have been an instrumental component of the armamentarium in treating life-threatening
infections [8,9]. However, their spectrum of action is being diminished by the rise in re-
sistance, mainly due to enzymatic modification catalyzed by aminoglycoside-modifying
enzymes (AMEs) [8,10–12]. Significant efforts focused on designing new semisynthetic
aminoglycosides by altering those found in nature to produce molecules refractory to
the action AMEs [11,13]. While these efforts have resulted in the introduction of novel
aminoglycosides like amikacin or plazomicin, attempts to identify or design inhibitors of
the inactivating action of AMEs have been limited [11,12,14,15]. Consequently, no inhibitor
has yet been introduced at the clinical level. Finding one suitable for human use will permit
the design of effective combination therapies against resistant bacteria, thus extending the
useful life and scope of existing aminoglycosides [7].

Amikacin is an aminoglycoside of high clinical relevance, but resistance—usually caused
by the action of the aminoglycoside 6′-N-acetyltransferase type Ib [AAC(6′)-Ib]—abound in
numerous geographical regions [11,12,16,17]. Recent efforts to produce inhibitors of resistance
mediated by this enzyme include exploring antisense strategies to turn off the expression of
the aac(6′)-Ib gene and the identification of various chemicals that interfere with the acetylation
reaction [14,18–24]. In particular, small molecule inhibitors have the potential to serve as
inhibitors of enzyme-mediated antibiotic resistance [25–27]. Developing an inhibitor that
can be combined with amikacin could be an option to treat infections caused by multidrug-
resistant strains that can no longer be controlled by carbapenems or other antimicrobials [20].

A recent study using mixture-based combinatorial libraries and the positional scanning
strategy [28] identified a substituted pyrrolidine pentamine as a promising inhibitor of
AAC(6′)-Ib-mediated acetylation of amikacin and other aminoglycosides [22] (Figure 1A
and Table 1). However, recent work has revealed that some bacterial strains produce
AAC(6′)-Ib in quantities far exceeding those needed for clinical resistance [16,29]. This
finding highlights the necessity for an inhibitor with enough potency to effectively combat
a range of pathogenic bacteria, even in environments with high enzyme concentrations.
In addressing this challenge, we conducted further structure–activity relationship (SAR)
studies to investigate how changes in the compounds’ stereochemistry and substitutions
of functionalities impact their inhibitory effectiveness [23]. Expanding upon our previous
SAR analyses, this work aims to continue exploring the connection between molecular
modifications and their inhibitory effects. Such insights are instrumental for designing
a potent inhibitor that, in combination with amikacin, could overcome the resistance
conferred by AAC(6′)-Ib.

Table 1. Comparison of properties of compounds from different synthesis batches.

Checkerboard Analysis
Compound Concentration for Potentiation (µM)

2-Fold 3-Fold

Compound
Growth Inhibition (%) 1 SEM 50% 80% 50% 80%

Structure ID
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Figure 1. Compounds structures. (A) Chemical structure of compound 2700.001 (formerly 2637.001) 
showing the pyrrolidine pentamine scaffold with the two S-phenyl groups (blue and purple back-
ground), the S-hydroxymethyl group (orange background), and the 3-phenylbutyl group (yellow 
background) at the positions R1, R3, R4, and R5, respectively. Substitutions previously evaluated 
are shown in red over the corresponding color background. (B) Compounds resulting from trunca-
tions of various sizes to 2700.001. (C) Chemical structures of compounds assessed in this work. Sub-
stitutions with respect to 2700.001 are shown in red. 

Table 1. Comparison of properties of compounds from different synthesis batches. 

 
Checkerboard Analysis 

Compound Concentration for Potentiation (μM) 
2-Fold 3-Fold 

Compound Growth Inhibi-
tion (%) 1 

SEM 50% 80% 50% 80% 
Structure ID 

 
R1: S-phenyl 
R2: S-pyrrolidine 
R3: S-hydroxymethyl 
R4: S-phenyl 
R5: 3-phenylbutyl 

2637.001 60 4 3.0 4.2 6.7 9.4 

2700.001 52 4 6.5 10.4 8.8 12.9 

2637.003 20 3 N.D. N.D. N.D. N.D. 

H2N

HN

N
N
H

H
N

OH

R1: S-phenyl
R2: S-pyrrolidine
R3: S-hydroxymethyl
R4: S-phenyl
R5: 3-phenylbutyl

2637.001 60 4 3.0 4.2 6.7 9.4

2700.001 52 4 6.5 10.4 8.8 12.9



Antibiotics 2024, 13, 672 3 of 20

Table 1. Cont.
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Compound Concentration for Potentiation (µM)

2-Fold 3-Fold
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Growth Inhibition (%) 1 SEM 50% 80% 50% 80%
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Figure 1. Compounds structures. (A) Chemical structure of compound 2700.001 (formerly 2637.001)
showing the pyrrolidine pentamine scaffold with the two S-phenyl groups (blue and purple back-
ground), the S-hydroxymethyl group (orange background), and the 3-phenylbutyl group (yellow
background) at the positions R1, R3, R4, and R5, respectively. Substitutions previously evaluated are
shown in red over the corresponding color background. (B) Compounds resulting from truncations of
various sizes to 2700.001. (C) Chemical structures of compounds assessed in this work. Substitutions
with respect to 2700.001 are shown in red.
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2. Results

The high relevance of AAC(6′)-Ib as the cause of resistance to amikacin in pathogenic
Gram-negatives motivated the search for inhibitors of the enzymatic acetylation that
inactivates the aminoglycoside molecule. Utilizing mixture-based combinatorial libraries
and the positional scanning strategy, we identified compound 2637.001, which consists of a
pyrrolidine pentamine scaffold with two S-phenyl groups, an S-hydroxymethyl group, and
a 3-phenylbutyl group at positions R1, R3, R4, and R5, respectively, as shown in Figure 1A.
To study the potential interactions of compound 2637.001 with the AAC(6′)-Ib molecule and
its inhibitory activity, a series of compound 2637.001 analogs were analyzed. Figure 1A,B
graphically show the tolerance and effects of substituting the chemical groups at each
location, modifying the stereochemical conformation at R2, or reducing the size of the
molecule. Position R1 showed a low tolerance to modifications, including changing the
stereochemistry, replacing the phenyl with a methyl group, and increasing the distance
between the phenyl group and the scaffold.

Position R4 exhibited low tolerance to modifying the stereochemistry or replacing
the phenyl with a methyl group. To gain further insights into the contribution or effect
of substitutions at these positions in combination with substitutions at the R5 position,
which has high tolerance to modifications, we generated a collection of twelve analogs
with modifications at positions R1, R4, and R5 (Figure 1C, identified as 2700 series). The
R1 location was unmodified or modified to carry a heteroatom in the aromatic moiety, to
increase the distance between the phenyl or pyridine groups and the scaffold, or to replace
the aromatic moiety with an aliphatic one that occupies approximately the same space. The
R4 position was unmodified or modified to move the phenyl group away from the scaffold
by inserting a methylene moiety. The R5 position was unmodified or modified by replacing
the 3-phenylbutyl with a 4-phenylbutyl group.

Each compound’s efficacy as an amikacin resistance inhibitor was evaluated on A. bau-
mannii A155, a strain harboring the aac(6′)-Ib gene, at concentrations of 16 µg/mL amikacin
and 8 µM of the test compound. Previous results showed that A. baumannii A155 can grow
in 16 µg/mL amikacin containing Mueller–Hinton broth [23]. The growth curves of the
cultures were determined by measuring OD600 every 20 m, and the values after a 20 h
incubation, when the cultures were already in stationary phase, were used to calculate the
percentage of growth inhibition with respect to bacteria growing in media with the sole
addition of amikacin.

To ensure that the results obtained with compounds synthesized at different times
could be compared, an experiment was carried out to determine the inhibition levels of
three compounds synthesized first for the previous study [23] and then for the present study
(2637.001, now 2700.001; 2637.003, now 2700.002; 2637.011, now called 2700.003). Compar-
isons were carried out at a single dose and using checkerboard assays for higher accuracy
in the case of the two structures that showed more potent inhibition of amikacin resistance.
The results of these tests are shown in Table 1. The inhibition levels observed when using
compounds from both series were sufficiently close to confirm that the results obtained
with the most recently designed compounds can be compared to the previous analyses.

Considering the features of the two compounds with higher inhibiting activity (2700.001
and 2700.003), a collection of analogs was generated to gain deeper insights into the effect
of modifications at different positions. Inspection of the inhibition of amikacin resistance
exerted by these compounds showed that one out of the twelve newly designed analogs,
2700.004, appeared to restore resistance to amikacin at levels comparable to compounds
2700.001 and 2700.003 (Table 2).
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Table 2. Properties of 2700.001 analogs.

Compound Functionalities %Inhibition
(Average, n = 8) Standard Error

ID Structure R1 R2 R3 R4 R5

2700.001
2637.001
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Table 2. Cont.

Compound Functionalities %Inhibition
(Average, n = 8) Standard Error

ID Structure R1 R2 R3 R4 R5
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The effect of altering compound 2700.001 by making a single substitution at the R1
position was assessed. Subsequently, three analogs consisting of moving the aromatic
ring further from the scaffold (2700.002), replacing the aromatic ring with one containing a
heteroatom (2700.006), or by a hydroxy-substituted one (2700.011) were evaluated. All three
compounds with a single substitution at the R1 position showed reduced inhibition levels,
demonstrating the importance of the S-phenyl moiety in the context of compound 2700.001.
Single substitutions at the R1 position were also assessed utilizing 2700.003 as a starting
point. All these R1 substitutions, 2700.007 (the aromatic ring replaced with one containing
a heteroatom), 2700.009 (the aromatic ring moved further from the scaffold by inserting
a methylene group), 2700.012 (the aromatic ring replaced by a hydroxy-substituted one),
and 2700.014 (the aromatic ring replaced by a linear aliphatic group) (Table 2) resulted in a
significant reduction in inhibition levels, further confirming the importance of the S-phenyl
moiety in the R1 position for our lead compounds.

The effect of making a single substitution at the R4 position of 2700.001 was assessed,
moving the phenyl moiety one carbon away from the scaffold. This modification sig-
nificantly reduced inhibition levels (2700.005) (Table 2). Of note, this modification was
well tolerated if made on the 2700.003 compound, when position R5 was occupied by a
4-phenylbutyl instead of the 3-phenylbutyl group present in compound 2700.004 (Table 2).
Thus, the inhibitory effect of R1 single substitution of 2700.004 was also assessed. These
four analog compounds, 2700.008, 2700.010, 2700.013, and 2700.015, showed significantly
reduced inhibition compared to 2700.004 (Table 2). The results obtained using this set
of analogs, taken together with those generated using the previous set [23], provide us
insights into the sensitivity of R group substitutions and indicate the potential for further
optimization with the R4 substitution of the 2700.001 and 2700.003 in future studies.

To assess the potentiating effect of amikacin by the compounds under investigation
with higher accuracy, we selected those that produced inhibition levels of higher than 20%
to carry out checkerboard experiments. Additionally, two compounds that inhibited at less
than 20% were selected as controls (2700.007 and 2700.013). Then, the compounds 2700.001,
2700.003, 2700.004, 2700.005, 2700.007, 2700.010, and 2700.013 were tested in checkerboard
assays carried out at 0, 4, 8, 16, and 32 µg/mL amikacin and 0, 2, 4, 8, 16, and 24 µM
compound. The raw experimental values obtained were adjusted using mixture modeling
(described in the Section 4) to account for any compound’s antimicrobial contribution to
growth inhibition. These values were used to calculate the concentration of potentiated
amikacin to achieve 50% and 80% bacterial inhibition of growth, the fold potentiation
(over amikacin alone) of each of these dose points associated with each compound at each
concentration, and the compound concentration needed to achieve 2- or 3-fold potentiation
of both the 50% and 80% inhibitory dose points (Table 3 and Figure S1, Supplementary
Materials). The checkerboard results indicate that the most potent inhibitor among the
compounds with newly synthesized structures within the 2700 series is inferior to those
already identified in the previous studies [22,23]. This includes 2700.004, for which single-
point potentiation assay results did not adequately demonstrate a difference from 2700.001.

Molecular dynamics simulations performed on AAC(6′)-Ib complexed with compound
2700.001, as well as AAC(6′)-Ib complexed with compound 2700.004, show very similar
hydrogen bond interactions. This is displayed in Table S1, which shows that the most
prominent interaction in both systems, during the last 100 ns of the 400 ns runs, occurs
between the compounds and the residue TYR65, followed by the residue GLN91 (Figure 2,
Table S1).

A correlation study between molecular docking values and checkerboard potentia-
tion was performed, integrating the results of the previous structure–activity relationship
study [23] and the compounds presented herein. The ∆G (Kcal/mol) values were de-
termined for the compounds across both sets for which checkerboard experiments were
carried out (Table 4). Figure 3 shows a regression analysis considering the ∆G values and
the compound dose required for a two-fold potentiation as determined by the checkerboard
assays. The results demonstrate a significant correlation between ∆G values and inhibitory
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activity (r = 0.76, p = 0.0004). The complex of compounds (2700.001, 2700.004, 2700.007,
and 2700.013) with AAC(6′)-Ib obtained from molecular docking are shown in Figure S2
(Supplementary Materials).

Table 3. Summary of checkerboard assays.

Inhibition (µM)

Compound ID 2-Fold 3-Fold

50% 80% 50% 80%

2700.001 6.5 10.4 8.8 12.9

2700.003 7.2 10.0 8.9 12.2

2700.004 19.3 23.4 >24 >24

2700.005 14.2 15.0 19.9 19.5

2700.007 >24 >24 >24 >24

2700.010 16.2 15.5 19.9 19.6

2700.013 >24 >24 >24 >24
Compound concentration needed to achieve 2- or 3-fold potentiation of the 50% and 80% inhibitory dose points.
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Figure 2. Molecular dynamics simulations. (A) RMSD evolution as a function of time for the AAC(6′)-
Ib enzyme only (black), AAC(6′)-Ib in complex with 2700.001 (red), and AAC(6′)-Ib in complex
with 2700.004 (blue). (B) 3-D representation of the hydrogen bond formation between 2700.001 and
residues of the enzyme. The enzyme is shown in the cartoon representation (white), while the ligand
and the important residues are shown in the stick representation.

The set of analogs analyzed in this study, in combination with the results obtained
using the previous set [23], provides us insights into the sensitivity of R group substitutions.
The data from this set of compounds highlight the importance of the R1 substitution of
the original compound, confirm potential alterations for the R5 position, and indicate that
there may still be opportunities to optimize the R3 and R4 substitutions of the 2700.001 and
2700.003 in future studies.

Low toxicity to the host is critical for any pharmacological tool. Therefore, three
representative compounds, alone and in combination with amikacin, were tested HEK293
cells. Figure 4 shows that none of the three compounds tested, 2700.001, 2700.003, and
2700.004, showed toxicity at concentrations up to 16 µM, alone or in the presence of
16 µg/mL amikacin. However, compounds 2700.003 and 2700.004 at 24 µM produced
significant mortality. These results show that despite the similarities among the different
compounds being studied, cytotoxicity must be carefully determined in each of those that
are promising inhibitors of AAC(6′)-Ib.
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Table 4. Summary of compounds tested on checkerboards.

Compound Functionalities
Delta G (Kcal/mol)

Dose for 2-Fold
Potentiation (µM)ID Structure R1 R2 R3 R4 R5

Series 2700

2700.001
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Table 4. Cont.

Compound Functionalities
Delta G (Kcal/mol)

Dose for 2-Fold
Potentiation (µM)ID Structure R1 R2 R3 R4 R5
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Table 4. Cont.

Compound Functionalities
Delta G (Kcal/mol)

Dose for 2-Fold
Potentiation (µM)ID Structure R1 R2 R3 R4 R5
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Figure 3. Predicted binding affinity vs. experimentally measured potentiation of the different
compounds. The x-axis shows the calculated ∆G average when the compound interacts with the
enzyme molecule. The y-axis shows the calculated efficacy for potentiation of the compounds based
on the experimental data. The regression line is included in the figure. The correlation is significant
(r = 0.76; p = 0.0004). The values utilized are those shown in the two rightmost columns of Table 4.
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alone (-) or in combination with amikacin and the indicated compound (+) on HEK293 cells was
assayed using a LIVE/DEAD kit as described in the Section 4.
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3. Discussion

Prolonging the life of available antibiotics is crucial. Designing or discovering ad-
juvants that inhibit the expression or activity of biomolecules responsible for resistance
can help prevent or slow the emergence of untreatable infections [1,7,30]. Such infections
could increase mortality rates not only from primary diseases but also by complicating
medical and dental procedures [25,31]. Although this strategy has been extraordinar-
ily successful in expanding the usefulness of β-lactams through the combination with
β-lactamase inhibitors [32], it has not yet progressed beyond research settings for amino-
glycosides [25]. Since the most widespread mechanism of resistance to aminoglycosides,
including amikacin, involves acetylation catalyzed by the AAC(6′)-Ib enzyme [12,16], find-
ing inhibitors of this enzyme could allow for the treatment of numerous life-threatening
infections, including those caused by carbapenem-resistant strains [20]. A proven method-
ology to identify bioactive compounds uses mixture-based combinatorial libraries and the
positional scanning approach, which allows for the identification of scaffold structures
and testing of large numbers of compounds simultaneously [22,33]. We recently iden-
tified a substituted pyrrolidine pentamine scaffold, compound 2700.001, an inhibitor of
the AAC(6′)-Ib enzymatic activity [22]. This compound was used as a starting point to
introduce modifications at different locations along the molecule, as well as to remove
portions of the molecule, as part of SAR studies. These analyses aimed to understand the
interaction between the potential inhibitors and the enzyme, as well as to identify more
potent inhibitors.

In a previous study testing a series of analogs, it was concluded that the integrity of
the pyrrolidine pentamine scaffold and the stereochemistry at positions R2, R3, and R4
were necessary for the compounds’ ability to act as inhibitors of resistance to amikacin
(Figure 1A,B) [23]. This analysis was expanded to explore the effects of additional modifi-
cations to the most active compounds identified to date (2700.001 and 2700.003). The new
compounds were designed, introducing one, two, or three substitutions at the R1, R4, or R5
positions (Figure 1C and Table 1). A preliminary analysis comparing the same compounds
from two independent synthesis events showed comparable results, thereby validating the
findings and ensuring consistency across different synthesis batches and different biologi-
cal activity determinations. Consistent with earlier results, a single substitution at the R1
position of compounds 2700.001 and 2700.003 led to a loss of inhibitory activity. Thus, the
S-phenyl moiety remains the most effective substituent known to date for a pyrrolidine
pentamine derivative to inhibit resistance. Substitutions at the R4 position of 2700.001 and
2700.003 resulted in a loss of inhibitory activity, with the only exception that replacing
the S-phenyl group by S-benzyl in the compound 2700.003 produced a compound with
activity comparable to that of compounds 2700.001 and 2700.003. The results obtained
with the latest group of analogs suggest that it may be possible to increase the inhibitory
activity, optimizing the R4 and R5 substitutions of the 2700.001 and 2700.003 compounds.
Since the purpose of the single dose analysis was to pre-identify candidates having high
inhibitory activity, we continued the study with checkerboard experiments. The activities of
the compounds with low inhibitory activity in the single-dose experiment were confirmed
by this checkerboard analysis. Among those compounds with high inhibitory activity,
2700.001, 2700.003, and 2700.004, only the lattermost did not show inhibition at high levels
in the checkerboard assays. These results indicate that single-dose experiments can be
an excellent pre-selection mechanism to eliminate compounds with low activity. Still, the
possibility of obtaining false positives makes confirmation by checkerboard studies an
essential component of the analysis. It was of interest that a regression analysis considering
the molecular docking values (∆G values) and the compound dose required for a two-fold
potentiation as determined by the checkerboard assays, including all compounds tested in
both this and the previous study, indicated a significant correlation between ∆G values and
inhibitory activity. These results validate docking analysis as an evidentially supportive
and potentially predictive tool for further modification that may result in more potent
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inhibitors. The preliminary results described in this article showed that similar compounds
can have different toxicity levels.

In conclusion, the results of the structure activity relationship studies indicate that
those compounds with the R1–R4 substitutions present in 2700.001 but have modifications
at R5 (except for 2-phenylbutyl) are candidates for further modifications at the R3 position.
Although no other compound with higher inhibitory activity than the original 2700.001 has
been identified, the structure–activity relationship studies have enhanced our understand-
ing of the characteristics and effects of substituting one or more R positions. Moreover, the
knowledge acquired directs future analysis to specifically focus on modifying R3, R4, and
R5 positions. Overall, the progress achieved in the identification of inhibitors of acetylation
mediated by AAC(6′)-Ib by mixture-based combinatorial libraries and application of the
positional scanning methodology, followed by structure–activity relationship studies with
the support of computational molecular modeling, together with excellent work by oth-
ers to find inhibitors of resistance to a variety of antibiotics [34–36], validate the general
strategy as a means to counter antibiotic resistance.

4. Materials and Methods
4.1. Bacterial Strains and Small Molecule Compounds

A. baumannii A155, a clonal complex 109 multidrug resistant strain that harbors aac(6’),
was isolated from a urinary sample at a hospital in the Autonomous City of Buenos Aires,
Argentina [37]. Solid and liquid routine cultures were carried out in Mueller–Hinton with
the addition or not of 2% agar. Cultures to determine levels of amikacin resistance to
amikacin were performed in Mueller–Hinton broth. The compounds were synthesized
at the Center for Translational Science at Florida International University, as described
previously [22]. Briefly, a polyamide scaffold was synthesized on a solid support using
standard Boc-protected chemistry. Then, the amide residues were reduced with borane, and
the compounds were removed from the solid support using hydrofluoric acid (Figure S3,
Supplementary Materials). The purity and identity of compounds were verified as be-
fore [23] using a Shimadzu 2020 Liquid chromatography–mass spectrometry (LCMS) sys-
tem (Shimadzu, Columbia, MD, USA). Chromatographic separations were carried out on
a Phenomenex Luna C18 analytical column (5 µm, 150 mm × 4.6 mm i.d.) with a Phe-
nomenex C18 column guard (5 µm, 4 × 3.0 mm i.d.). The equipment was controlled and
integrated with the Shimadzu LCMS solutions software version 5. The mobile phases A and
B for LCMS analysis were LCMS-grade water and LCMS-grade acetonitrile, respectively
(Sigma-Aldrich, (St. Louis, MO, USA) and Fisher Scientific (Waltham, MA, USA), both
with 0.1% formic acid for a pH of 2.7). The procedure for analyzing 5 µL aliquots was
identical to that described in our previous study [23]. Figures S4 and S5 (Supplementary
Materials) show the relevant information on the compounds’ characterization and degree
of purification. Figure S6 (Supplementary Materials) shows the Simplified Molecular Input
Line Entry System (SMILES) strings for each compound used in this study.

4.2. Initial Growth Inhibition Assays

An initial test to determine the levels of inhibition produced by the compounds was
performed by measuring OD600 after 20 h of growth in Mueller–Hinton broth supple-
mented with 16 µg/mL amikacin and 8 µM of the potential inhibitor. These concentrations
were selected based on previous studies using compounds with the same scaffold [22,23].
Each compound was tested in four separate experiments by duplicate. The data values,
expressed in percent inhibition based on the OD600 measurements, were adjusted using the
mixture-modeling described below to account for compound inhibition and averaged. The
standard error of the mean for n = 8 percentage growth inhibition values of each compound
was calculated. Each p-value for testing the difference in inhibitory activity between a
compound and 2700.001 was calculated using a two-sample t-test with Bonferroni–Holm
correction. A p-value of less than 0.05 was considered significant. All compounds that did
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not show a substantial reduction in inhibitory activity with respect to compound 2700.001
were used in checkerboard assays.

4.3. Checkerboard Assays

Checkerboard assays were performed in Mueller–Hinton broth as described previ-
ously [22,23]. Each compound was tested on at least three independent checkerboard
experiments, in which each dose combination was tested by duplicate. The variables were
the potential inhibitor (tested at 0, 2, 4, 8, 16, and 24 µM) and amikacin (tested at 0, 4, 8, 16,
and 32 µg/mL). Assays were carried out in microtiter plates using the BioTek Synergy 5
microplate reader (BioTek Synergy 5, Winooski, VT, USA). The data were analyzed applying
an approach that quantifies exact levels of synergy, i.e., eliminating any antibacterial effect
exerted by the inhibitor [22,23,38]. The model considers that amikacin and the potential
inhibitors have independent antibacterial mechanisms of action. The percent activity of the
mixture of the two chemicals was modeled as follows:

%amikacin & compound(x1,x2) = %amikacin(x1) + % compound(x2) −
%amikacin(x1)·% compound(x2)

(1)

where x1 and x2 are the amikacin and tested compound concentrations, respectively. The
effective percent activity of the antibiotic alone at a given concentration, after accounting
for compound activity, can be calculated using a rearrangement of the previous equation
as follows:

Eff%amikacin(x1) = [amikacin & compound(x1,x2) − %compound(x2)]/[1 −
%compound(x2)]

(2)

These calculations provide the actual change in amikacin resistance levels. The above
methodology was applied to the median of the values at each dose combination. Once
applied to the checkerboard data, the mean effective concentration of amikacin to achieve
50% and 80% inhibition (IC50/IC80) at each dose of the potentiating compound was
determined using pairwise interpolation. The fold potentiation of amikacin for each
dose of the compounds and each dose point was then calculated. Finally, the compound
concentration needed to achieve 2- and 3-fold potentiation for each of the two dose points
was determined using pairwise interpolation.

4.4. Molecular Docking

To prepare the receptor for docking experiments, the x-ray crystal structure of AAC(6′)-
Ib complexed with kanamycin C and AcetylCoA [39] was obtained from the protein data
bank (PDB 1V0C). Kanamycin C was removed from the AAC(6′)-Ib protein structure, and
the final structure was converted to pdbqt format using AutoDockTools 4.2 [40]. The cavity
where kanamycin C was bound to the protein was selected as the target site for virtual
screening. Again, using AutoDockTools 4.2, residues W49, Y65, E73, V75, Q91, Y93, S98,
D100, W103, D115, D152, and D179 were converted to flexible residues to allow for flexible
binding. Next, the ligands were prepared by converting the structures of the compounds
to 3D with polar hydrogen bonds and finally in pdbqt format using Open Babel 2.4.0 [41].
Molecular docking and screening were performed using AutoDock Vina 1.2 [42]. The
docking scores were sorted and ranked based on their predicted binding energies (delta G,
Kcal/mol), with the lowest score representing the best binding. LigPlot+ 2.2 [43] was used
to generate a 2D ligand–protein interaction map. PyMol 2.3 [44] was used for visualization
and rendering.

4.5. Molecular Dynamics (MD) Simulations

All atom MD simulations were performed using the NAMD simulation package [45]
for the AAC(6′)-Ib (PDB: 1V0C) enzyme as well as for the AAC(6′)-Ib in complex with
compound 2700.001 and with compound 2700.004. First, the parameter and topology
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files for the compounds were generated using CGENFF through the CHARMM-GUI web
server [46–48]. The complexes were prepared for MD simulations using the solution
builder tool in CHARMM-GUI. Each system was solvated in a cubic box of dimension
90 × 90 × 90 Å with TIP3P water model and neutralized by adding NaCl at 0.150 M.
The resulting systems for AAC(6′)-Ib only, AAC(6′)-Ib in complex with 2700.001, and in
complex with 2700.004 contained 33,230, 33,295, and 34,865 atoms, respectively. Simulations
were performed with the NAMD simulation package [45] using CHARMM36m force
field [49], with the temperature kept constant by using Langevin temperature coupling
with a damping coefficient of 1/ps, and the pressure kept constant by using a Nose−Hoover
Langevin piston [50] with a 50 fs period and 25 fs decay. All systems were minimized for
10,000 steps and equilibrated at 303.15 K and 1 atm pressure in the NVT ensemble for 250 ps
at a 2 fs/step with the enzyme heavy-atoms restrained. Finally, 400 ns of unconstrained
production simulations were performed with 2 fs/step for each system in the NPT ensemble.
The particle mesh Ewald method [51] was used for long-range electrostatic interactions
with periodic boundary conditions and a non-bonded cut-off set at 12 Å. The covalent
bonds involving hydrogen atoms were constrained by ShakeH [52]. Visual molecular
dynamics [53] was used to analyze the trajectories. Hydrogen bonds were calculated with
a 3.5 Å distance and 30◦ angle cutoff.

4.6. Cytotoxicity Assays

One thousand HEK293 cells [54] per well were cultured on flat-bottom black 96 well
microtiter plates for 24 h at 37 ◦C before addition of the test compounds and incubating for
another 24 h. After this treatment, the cells were washed with sterile D-PBS, resuspended in
LIVE/DEAD reagent (2 µM ethidium homodimer 1 and 1 µM calcein-AM), and incubated
for 30 min at 37 ◦C. Fluorescence levels indicative of live (530 nm) and dead (645 nm) cells
were measured. The percentage of dead cells was calculated relative to the control cells
incubated with 0.1% dimethylsulfoxide. Values were obtained by averaging results from 6
to 12 repetitions. Maximum toxicity was calculated by treating cells with 70% methanol
for 20 min. Results were expressed as mean ± SE. LIVE/DEAD reagent and HEK293 cells
were purchased from Molecular Probes (Eugene, OR, USA) and BEI Resources (Manassas,
VA, USA, catalog number NR-9313), respectively.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics13070672/s1, Figure S1: checkerboard assays; Figure S2:
Molecular docking; Figure S3: Synthetic method; Figure S4: Compound synthesis, purification, and
characterization; Figure S5: Liquid chromatography-mass spectrometry analysis; Figure S6: SMILES
strings; Table S1: AAC(6′)-Ib residues that form hydrogen bonds with 2700.001 and 2700.004.
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