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Abstract: Biofilm-associated infections account for a large proportion of chronic diseases and pose a
major health challenge. Metal nanoparticles offer a new way to address this problem, by impairing
microbial growth and biofilm formation and by causing degradation of existing biofilms. This
review of metal nanoparticles with antimicrobial actions included an analysis of 20 years of journal
papers and patent applications, highlighting the progress over that time. A network analysis of
relevant publications showed a major focus on the eradication of single-species biofilms formed
under laboratory conditions, while a bibliometric analysis showed growing interest in combining
different types of metal nanoparticles with one another or with antibiotics. The analysis of patent
applications showed considerable growth over time, but with relatively few patents progressing to
be granted. Overall, this profile shows that intense interest in metal nanoparticles as anti-biofilm
agents is progressing beyond the confines of simple laboratory biofilm models and coming closer to
clinical application. Looking to the future, metal nanoparticles may provide a sustainable approach
to combatting biofilms of drug-resistant bacteria.

Keywords: antimicrobial agents; biofilm; metallic nanoparticles; bimetallic nanoparticles; silver
nanoparticles

1. Introduction

A common treatment for bacterial infections is the administration of an antibiotic.
However, once the bacteria have organized themselves into a biofilm, the altered metabolic
state within the biofilm reduces the effectiveness of antibiotics and makes the emergence
or resistance more likely. Additionally, the extracellular polymeric substances (EPSs)
of the biofilm limit the penetration of large molecules such as antibiotics and certain
biocides, making those ineffective. Given these challenges, there is interest in using metallic
nanoparticles with antimicrobial properties to eradicate biofilms or prevent them from
forming. The high surface-area-to-volume ratio and ability to penetrate into microbial
biofilms make metal nanoparticles attractive as possible therapeutic agents.

According to the US Centers for Disease Control, up to two-thirds of common bacterial
infections involve multiple species [1], with more than one type of pathogenic bacteria
cooperating with others to form a biofilm [1,2]. In chronic bacterial infections, biofilms
may be found in up to 80% of cases [3]. In the biofilm state, the emergence of antimicrobial
resistance (AMR) is more likely, making antibiotics and traditional biocides ineffective [4].
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Biofilm Formation and the Interactions between Biofilm Components and Antimicrobial Agents

In the biofilm community, bacteria are embedded in EPSs [5], which is composed of
polysaccharides, glycopeptides, DNA, lipids, and proteins. Voids in the EPSs serve as
channels for the movement of water, nutrients, and waste products [6]. The EPSs protect
bacteria from various physical, chemical, biological, and environmental factors, including
extremes of temperature and pH, and host immune responses [7]. As a result, biofilms are
not easily disrupted.

Biofilms form from planktonic, autotrophic, and heterotrophic bacteria and archaea,
typically with more heterotrophic bacteria than autotrophic bacteria [8]. Once individual
microbes attach to a surface, they transition from the free-floating state and produce EPSs
to anchor them to the surface and to provide protection from the environment [9] (Figure 1).
Adhesion and colonization are then followed by maturation [6]. Bacteria transition from
reversible adhesion to the surface using van der Waals forces [10] to form stable anchorage,
using adhesins and fimbriae. The growth of the biofilm is coordinated through quorum
sensing (QS) [11]. From a mature biofilm, planktonic cells can be dispersed into the local
environment, to then form biofilms in new locations [7].
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Inter-species interactions are essential within the biofilm for its overall persistence and
for the survival of its inhabitants, and the term “Sociomicrobiology” coined in 2005 captures
this cooperation between inhabitants [12], which may include QS, signaling molecule
transmission, and horizontal gene transfer. Cooperation is beneficial for interacting bacteria,
providing the foundation for synergy [13].

Traditional methods used to treat bacterial and fungal biofilms use physical, chemical,
or biological agents. Physical agents include ultraviolet light and ionizing radiation, both
of which are dangerous for humans and animals. Biocides as chemical agents can pose a
risk to health from damage to healthy host tissues [14], while antibiotics can give rise to
allergies and systemic toxicity. These concerns have sparked interest in metal nanoparticles
with antimicrobial actions [15].

Nanoparticles have a size between 1 and 100 nanometers. Their small size gives them a
large surface area and enhanced chemical reactivity [16]. For antimicrobial actions, metallic
nanoparticles of silver, gold, copper, iron, and zinc, with a size of 100 nm or less [17], may
be suitable for antimicrobial applications [11] and for other health-related applications such
as drug delivery [18].
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Metal nanoparticles can interact with the EPSs of a biofilm. Metal nanoparticles are
usually positively charged, while the polymer molecules of EPSs carry mostly negative
charges [6]. As a result, the metal nanoparticles are attracted to the biofilm and can
penetrate into the biofilm and attach to the EPSs. Once bound to bacteria or fungi, they
cause disintegration of the biofilm matrix [6]. Eradication of existing biofilms will be
referred to in this paper as anti-biofilm activity.

This review provides an overview of antimicrobial metallic nanoparticles and their
actions on planktonic bacterial cells and on biofilms. This is followed by an analysis of
recent publications and an assessment of recent patents.

2. Recent Advances in Nanometal Research

Key metallic nanoparticles of interest are silver, gold, copper, iron, and zinc, with the
most extensive literature on silver nanoparticles as antibacterial agents.

2.1. Types of Metallic Nanoparticles and Their Efficacy

Nanoparticles of silver, copper, gold, zinc, titanium, and nickel exert antibacterial
actions on both Gram-positive and Gram-negative bacteria [19–23]. They can disrupt
bacterial cell walls through oxidative and nitrite stress and impair bacterial metabolism by
inhibiting enzyme activity, gene expression, and ATP synthesis [15].

2.1.1. Silver Nanoparticles

Silver nanoparticles (AgNPs) have remarkable antibacterial properties. They inhibit
the formation of biofilms [24], including that for Escherichia coli, Staphylococcus aureus,
Enterococcus planus, and Pseudomonas aeruginosa [25]. Since AgNPs penetrate into the
biofilm matrix, this makes them candidates for carrying other actives (such as fungicides).
They can also be used in combination with antibiotics, such as erythromycin, penicillin, or
streptomycin [26].

Similar antibacterial activity to AgNPs is shown by silver oxide nanoparticles (AgONPs);
however. a common disadvantage of metal oxide nanoparticles from silver, zinc and copper
is their degradation by sunlight [27].

2.1.2. Gold Nanoparticles

Gold nanoparticles (AuNPs) penetrate bacterial biofilms, impair metabolic activities of
bacteria, and alter bacterial cell membranes [6]. They inhibit the production of EPSs. This
effect contributes to the eradication of biofilms of P. aeruginosa [6], E. coli [28], Pseudomonas
putidis, and Aeromonas hydrophila. The high price of gold makes these nanoparticles too
expensive to be a first-choice antimicrobial agent [6].

2.1.3. Copper Nanoparticles

Copper nanoparticles (CuNPs) are less expensive than silver or gold and have high
potency as antimicrobial agents. They release positively charged copper ions (Cu2+) that
bind to negatively charged carboxyl groups on the lipoproteins of bacterial cell membranes.
The resulting increased permeability allows Cu2+ ions to enter bacterial cells [27], where
they bind to large molecules containing sulfhydryl and phosphate residues, affecting the
structure of proteins and DNA, respectively. Normal biochemical activities are impaired,
leading to cell death [27]. Since copper is an essential element and is present in many en-
zymes in the human body, using CuNPs could destabilize normal physiological enzymatic
activity. This concern limits the application of CuNPs in humans.

2.1.4. Zinc Nanoparticles

Zinc oxide nanoparticles (ZnONPs) strongly inhibit the growth of both Gram-positive
and Gram-negative bacteria [27], due to the release of Zn2+ ions. ZnONPs can prevent
biofilm formation through released Zn2+ ions as well as by generating reactive oxygen
species (ROS), which are toxic for bacteria.
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2.1.5. Other Metallic Nanoparticles

Other metal nanoparticles of interest include iron and manganese. These have demon-
strated promising effects against Helicobacter pylori and against the fungal organism Candida
albicans [15].

2.2. Combinations of Metal Nanoparticles with Other Agents

Combining antibiotics with metallic nanoparticles is a topic of emerging interest. As
antibiotics act on different biochemical pathways, not all antibiotics can work synergistically
with metal nanoparticles. Combining AgNPs with visible blue light can enhance their
antibacterial activity [29,30], and extending this to AgNPs combined with blue light and
an antibiotic (amoxicillin) may further increase antimicrobial activity. This approach has
been used against methicillin-resistant Staphylococcus aureus [29]. However, it remains to
be determined whether this combination approach could still lead to the emergence of
resistance to the antibiotic [31].

Another approach is to combine two or three antimicrobial metals together, such
as silver with iron. Ag-Fe bimetallic nanoparticles interact with the thiol side chain in
cysteine, changing the primary structure of proteins, increasing the permeability of bacterial
cell walls, and causing bacterial death. At the same time, Ag+ ions released from the
nanoparticles into the cytoplasm induce oxidative stress and damage DNA [32]. Synergistic
effects may also occur in other bimetallic and trimetallic nanoparticles.

A summary of the literature on metal nanoparticles is provided in Table 1. This shows
antibacterial and antifungal actions, as well as anti-biofilm activity (i.e., destruction of
existing biofilms).

Table 1. Metallic nanoparticles as antimicrobial agents used alone and in complexes to treat planktonic
bacteria and to reduce or eradicate existing biofilms.

Metallic Nanoparticles
(Reference)

Size (nm) and
Shape

Synthesis
Resource

MIC (µg/mL)
Reduction Ratio
Inhibition Zone

(mm)
Microorganism Comments

Si
lv

er

Si
lv

er
(A

gN
Ps

)
[3

3] 50
Hexagonal

AgNO3 + leaves of
Geranium

0.18
-

8.5
P. aeruginosa
ATCC-27853 Antibacterial actions

Si
lv

er
(A

gN
Ps

)
[3

4] 100
Spherical

AgNO3 + malt
extract

3.75–15
60–100%

-
S. aureus

ATCC 25904

For standard strains and
MDR isolates and reduced

and eradicated biofilms.
Anti-biofilm actions.

Si
lv

er
(A

gN
Ps

)
[3

5] 1.2–62
Spherical

AgNO3 + L.
acapulcensis extract

0.06
99.9%

16
S. aureus

ATCC 49476 Significant antimicrobial
effects on S. aureus and

P. aeruginosa0.06
99.9%

15
P. aeruginosa
ATCC 27853

Si
lv

er
(A

gN
Ps

)
[3

6] 32.2
Spherical

AgNO3
+ starch broth

medium

-
10.7%
34.6%
39.08%
34.75%

-

P. aeruginosa
ATCC 9027

Antibacterial and
anti-biofilm actions

S. typhi
ATCC 12023

S. aureus
ATCC 6598

E. coli
ATCC 8739
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Table 1. Cont.

Metallic Nanoparticles
(Reference)

Size (nm) and
Shape

Synthesis
Resource

MIC (µg/mL)
Reduction Ratio
Inhibition Zone

(mm)
Microorganism Comments

Si
lv

er
ox

id
e

Si
lv

er
ox

id
e

(A
gO

N
Ps

)
[3

7] 10–25
Spherical

Fresh Telfairia
occidentalis leaves +

AgNO3

20
-

15

K. pneumoniae
isolated from

humans
Strong antibacterial

activity

Si
lv

er
ox

id
e

(A
gO

N
Ps

)
[3

8] 10–50
Spherical

Actinomycetes spp.
+ AgNO3

500
-

15
MDR

P. aeruginosa Antibacterial activity

Si
lv

er
-c

on
ta

in
in

g
na

no
pa

rt
ic

le
s

A
g–

Ti
O

2
N

Ps
[3

9] 31.3 ± 0.5 or 23.4
± 0.4

-

TiO2 nanopowder

150
-
-

B. subtilis
IC 12488

Antibacterial and
anti-biofilm activity

150
-

S. aureus
IC 13204

AgNO3

1200
-

E. coli
IC 13529

1200
-

K. pneumoniae
IC 13420

PSSA-co-MA 1200
-

P. aeruginosa
IC 13202

A
g-

Fe
N

Ps
[3

2] 13
-

G. jasminoides 65
-
-

C. albicans Growth inhibitionAgNO3

Fe(NO3)3

A
g-

N
in

an
op

ar
ti

cl
es

[4
0] 31.84–47.85

-

AgNO3

1.56
-
-

C. albicans
SC 5314

Growth inhibition and
anti-biofilm activity

Ni(NO3)2·6H2O Inhibition of
morphogenesis

Salvia officinalis
Reduced efflux

pump genes

ROS production

Fl
uo

ri
na

te
d

Ph
th

al
oc

ya
ni

ne
–s

ilv
er

N
Ps

[4
1]

15–20
-

Silver
nanoparticles

8
95–100%

-
P. aeruginosa
ATCC 27853 Antioxidant effects

Phthalonitrile
8

99–100%
-

E. coli
ATCC 25922

Antimicrobial and
anti-biofilm actions

Phthalocyanines
Antimicrobial

photodynamic therapy
activities

A
g-

Se
na

no
pa

rt
ic

le
s

[4
2] 66.5

-

AgNO3

62.5
90.7%

-
C. albicans

ATCC 10231
Antifungal

Sodium selenite

62.5
90.6%

-

Antibacterial activity

E. coli
ATCC 11229 Anti-biofilm actions

125
86.2%

-
P. aeruginosa
ATCC 6538 Free radical scavenging
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Table 1. Cont.

Metallic Nanoparticles
(Reference)

Size (nm) and
Shape

Synthesis
Resource

MIC (µg/mL)
Reduction Ratio
Inhibition Zone

(mm)
Microorganism Comments

Si
lv

er
–c

ur
cu

m
in

N
Ps

[4
3]

30
-

AgNO3 3
-
-

P. aeruginosa
PA01

Antibacterial and
anti-biofilm actions

Gallic acid

Curcumin 50
-
-

S. aureus
ATCC 25923PVP

A
g-

Z
nO

N
Ps

[4
4] 28

-

E. scaber leaves 0.125
62.5%

-

S. aureus Antibacterial actions

Zinc nitrate
B. subtilis

Anti-biofilm actions

AgNO3 Antioxidant

G
ol

d

G
ol

d
(A

uN
Ps

)
[4

5] 5–50
Spherical

Trisodium citrate
HAuCl4·4H2O

18.71
80.4%

6.3

S. marcescens
Clinical

collection

Antibacterial and
anti-biofilm activity,
through production

of ROS

G
ol

d(
A

uN
Ps

)
[4

6] 20–100
Hexagonal

Marine alga G.
elongate

HAuCl4 aqueous
solution

-
-

13–17
K. pneumoniae
ATCC 27738 Antibacterial activity

G
ol

d(
A

uN
Ps

)
[4

7] 18
Spherical

HAuCl4·4H2O
Trisodium citrate

solution

-
-
-

S. aureus
collected from

volunteer
/

G
ol

d(
A

uN
Ps

)
[4

8] 11 ± 3
Spherical

Cinnamaldehyde
HAuCl4·4H2O

-
93%

-
C. albicans
DAY185 Anti-biofilm actions

G
ol

d(
A

uN
Ps

)
[4

9]

43
Spherical Chloroauric acid

Citrate

120
-
-

E. coli
ATCC25992

Antibacterial and
anti-biofilm

actions

S. epidermidis
1301

1
-

15.5
C. krusei

not determined

1
-

20.5
C. glabrata

not determined

C
op

pe
r

C
op

pe
r

(C
uN

Ps
)

[5
0] 28.3 (C), 43.8 (M)

Spherical

Cassia fistula (C)
and Melia

azedarach (M)
leaves + cupric

nitrate trihydrate

1000
99.8%,92.5%

15.13
K. pneumonia

from collection
center Antibacterial and

anti-biofilm actions
toward both species1000

100%,99.5%
2.6

H. pylori
from collection

center

C
op

pe
r

ox
id

e

C
op

pe
r

ox
id

e
(C

uO
N

Ps
)

[5
1]

80–300
Spherical

Cu2O
microparticles +

ethanol

-
98%

-
MDR E. coli

Antibacterial and
anti-biofilm actions-

99.2%
-

MDR S. aureus
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Table 1. Cont.

Metallic Nanoparticles
(Reference)

Size (nm) and
Shape

Synthesis
Resource

MIC (µg/mL)
Reduction Ratio
Inhibition Zone

(mm)
Microorganism Comments

C
op

pe
r

ox
id

e
(C

uO
N

Ps
)

[5
2]

10–12
Spherical

Copper sulfate
T. chebula extract

1000
–

15.67
E. coli

not determined

Antibacterial and
anti-biofilm actions

1000
-

16
S. aureus

not determined

750
-

17
P. aeruginosa

not determined

C
op

pe
r

ox
id

e(
C

uO
N

Ps
)

[5
3] 28–33

Spherical

Copper sulfate
solution

Leaf extract

125
-

12–13
A. baumannii
MH 605335

Antibacterial and
anti-biofilm actions

C
op

pe
r

ox
id

e(
C

uO
N

Ps
)

[5
4] 20

Spherical

Copper sulfate
(CuSO4·5H2O)

Cell free
supernatant

1000
96%

-
E. coli

from mat Anti-biofilm actions

Z
in

c
ox

id
e

Z
in

c
ox

id
e

(Z
nO

N
Ps

)
[5

5] 40–130
Spikes

Zinc acetate
Dihydrate

DDW
CTAB

800
80–85%

-
P. aeruginosa

PAO 1 Anti-biofilm actions and
inhibition of QS for

resistant P. aeruginosa500
80%

-
C. violaceum

CVO26

Z
in

c
ox

id
e–

X
an

th
an

na
no

co
m

po
si

te
[5

6] 16
Rod

Zn(NO3)2·6H2O +
xanthan gum +

NaOH

256
70%

-
C. violaceum
ATCC 12472

Anti-biofilm actions256
75%

-
S. marcescens
ATCC 13880

Z
in

c
ox

id
e

(Z
nO

N
Ps

)
[5

7]

4.4
Spherical
hexagonal

Zn(Ac)2·2H2O
Anhydrous
methanol

KOH

500
98.5%

-
S. aureus
SH 1000 Antibacterial and

anti-biofilm
actions500

-
-

E. coli
UT 189

Z
in

c
ox

id
e

(Z
nO

N
Ps

)
[5

8]

24.62
Spherical

spheroidal
Plumbago zeylanica L.

Zinc acetate

-
52.69%

-
E. coli

ATCC 25922

Inhibition of biofilm
growth and anti-biofilm

actions

-
59.79%

-
S. aureus

MTCC 3160

-
67.22%

-
P. aeruginosa

PAO 1
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Table 1. Cont.

Metallic Nanoparticles
(Reference)

Size (nm) and
Shape

Synthesis
Resource

MIC (µg/mL)
Reduction Ratio
Inhibition Zone

(mm)
Microorganism Comments

Z
in

c-
co

nt
ai

ni
ng

na
no

pa
rt

ic
le

s Z
n-

do
pe

d
C

uO
N

Ps
[5

9]

-
-

Copper
zinc acetates

-
91%

-
E. coli

ATCC 25922

Inhibition of biofilm
formation and

anti-biofilm actions

Aqueous
ammonium
hydroxide

-
92%

-
S. aureus

ATCC 29213

Ethanol
-

95%
-

P. mirabilis
not determined

C
ur

cu
m

in
-Z

nO
N

Ps
[6

0] 110.51
-

Zinc nitrate
hexahydrate 62.5

45–90%
-

P. aeruginosa
PAO 1 Anti-biofilm actions

2-Thiobarbituric
acid

Z
nM

gO
N

Ps
[6

1] 10
-

MgO
-

61%
-

E. coli
BL21 DE3

Antibacterial actions

ZnO
-

25%
-

B. subtilis 168

Z
nC

uF
e

N
Ps

[6
2] 42

-

Zinc acetate
dihydrate 150

85%
-

E. coli
from chronic

infection Antibacterial and
anti-biofilm

activity

Copper acetate
hydrate

Iron nitrate
nonahydrate 150

55%
-

E. faecalis
from chronic

infectionn-propyl amine

Z
nO

-A
u

hy
br

id
N

Ps
[6

3] 30
-

ZnO -
90%

-

S. aureus
not determined

Antibacterial effects
AuCl4−

E. coli
not determined

C
ob

al
t-

co
nt

ai
ni

ng
na

no
pa

rt
ic

le
s

C
oF

e 2
O

4
N

Ps
[6

4] 10
-

Iron nitrate
5000

-
-

C. albicans
ATCC 10231

Antimicrobial effects and
anti-biofilm actionsCobalt nitrate

5000
-
-

P. aeruginosa
ATCC 27853

Eucalyptus plant
extract

5000
-
-

E. coli
ATCC 25922

Ir
on

ox
id

e

Ir
on

ox
id

e
N

Ps
[6

5] 10–11
Spherical

Ferrous chloride
tetrahydrate

(FeCl2·4H2O) 50
-
-

E. coli
not determined

Antimicrobial effects and
anti-biofilm actions

Ferric chloride
hexahydrate

(FeCl3·6H2O)

Ti
ta

ni
um

D
io

xi
de

Ti
O

2
N

Ps
[6

6] 39.2
Rods

Titanium rods,
Chitosan,

Alginic acid
sodium salt

400
-
-

S. aureus
DNC274

ATCC 29213
Antibacterial and

anti-biofilm actions
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Table 1. Cont.

Metallic Nanoparticles
(Reference)

Size (nm) and
Shape

Synthesis
Resource

MIC (µg/mL)
Reduction Ratio
Inhibition Zone

(mm)
Microorganism Comments

Se
le

ni
um

Se
N

Ps
[6

7] 23.47
Red spherical

Sodium selenite
DPPH

Sodium
borohydride

25
-
-

C. albicans
IFRC 1873

Antifungal activity against
tested fungi strains

F. proliferatum
IFRC 1871

F. equiseti
IFRC 1872

T. mentagrophytes
FR5_22130

A. fumigatus
IFRC 1649

M
ag

ne
si

um
ox

id
e

M
gO

N
Ps

[6
8] 50–70

spherical
NaOH, NaNO3,

MgCl2

250
82.9%

28 ± 0.33 mm
(2000 µg/mL)
21 ± 0.288 mm
(1000 µg/mL)

17.5 ± 0.288 mm
(500 µg/mL)

E. coli
KT273995

Antibacterial activity and
anti-biofilm actions

125
82.9%

35.5 ± 0.33 mm
(2000 µg/mL)

35.5 ± 0.288 mm
(1000 µg/mL)

30.5 ± 1.90 mm
(500 µg/mL)

Klebsiella
pneumoniae
KT273996

500
82.9%

25.5 ± 0.268 mm
(2000 µg/mL)

23.5 ± 1.32 mm
(1000 µg/mL)

20.5 ± 2.18 mm
(500 µg/mL)

Staphylococcus
aureus

KT250728

[69]

50–100
irregular but

spherical
particle-like

shapes

Purchased from
Sigma Aldrich
Chemical Co.

(Saint Louis, MO,
USA)

200
93.40 to 95.60%

14.30 mm

R. solanacearum
from infected

tobacco

Bacteriostatic at low
concentrations and
anti-biofilm activity

[70]

4
square and
polyhedral

shape

Mg(CH3COO)2,
Aerogel AP-MgO

625
99.9%

-
E. coli

not determined
Antibacterial effects and

anti-biofilm activity625
95%

-
S. aureus

not determined

N
ic

kl
e

ox
id

e

N
iO

N
Ps

[7
1] 14 ± 5.8

polymorphic
Eucalyptus leaf
extract (ELE),

Ni(NO3)2·6H2O

800
-

15

Methicillin
sensitive S.
aureus-06

Antibacterial and
anti-biofilm activity

against the tested strains

800
-

13

Methicillin
sensitive S.
aureus-02

800
-

15
P. aeruginosa-48

800
-

14
P. aeruginosa-64

1600
-

17
E. coli-60
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Table 1. Cont.

Metallic Nanoparticles
(Reference)

Size (nm) and
Shape

Synthesis
Resource

MIC (µg/mL)
Reduction Ratio
Inhibition Zone

(mm)
Microorganism Comments

N
ic

kl
e

ox
id

e

N
iO

N
Ps

[7
1] 14 ± 5.8

polymorphic

Eucalyptus leaf
extract (ELE),

Ni(NO3)2·6H2O

800
-

17
E. coli-52

Antibacterial and
anti-biofilm activity

against the tested strains

800
-

15

Methicillin-
resistant S.
aureus-10

800
-

14

Methicillin-
resistant S.
aureus-31

Of the various types of metal nanoparticles, AgNPs are amongst the most potent
antimicrobial agents, both in terms of antibacterial actions on planktonic bacterial cultures
and the prevention of biofilm formation, with the lowest MIC (0.06–20 µg/mL). Other
non-silver nanoparticles are less active.

Most reported metallic nanoparticles have sizes below 100 nm, especially in the range
of less than 50 nm, which is smaller than most peptides [72]. As summarized in Table 1, most
metallic nanoparticles were synthesized by chemical methods, including green synthesis
using plant extracts.

2.3. Biofilm Inhibition by Metallic Nanoparticles

As shown in Table 1, metallic nanoparticles can impair the growth of bacteria and
fungi and the formation of biofilms. They can also cause the destruction of existing biofilms,
as an anti-biofilm action. These antimicrobial functions are influenced by nanoparticle
type, shape, and size, since these influence their ability to create stress on cell membranes
and generate ROS [73,74]. As already noted, metallic nanoparticles also release metal ions,
which in turn can impair the functions of various organelles in bacteria. Mitochondrial dys-
function reduces ATP levels, while ribosome dysfunction can lead to enzyme inactivation
and protein denaturation (Figure 2) [75].
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2.4. Methods for the Synthesis of Silver Nanoparticles

Since AgNPs are currently the most extensively explored type of metal nanoparticle
for treating biofilms or preventing their formation, they serve as an exemplar for other
metallic nanoparticles. Such particles can be synthesized or fabricated using a range of
approaches, which can be divided into “top-down” or “bottom-up” (Figure 3) [76]. In the
former method, large particles are reduced in size to particles in the nanoscale range. The
second method, also known as the self-assembly method, involves forming nanoparticles
from atoms or ions of the metal [77,78]. This can be conducted in a chemical reaction in a
laboratory vessel or inside a plant or microorganism. Methods using extracts of plants are
becoming popular for “green synthesis” since they may use waste products.
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Methods for Synthesis of AgNPs

A. Chemical methods

In bottom-up chemical synthesis methods, precursors (e.g., silver ions) are transformed
using reducing agents [79]. The precursor material (usually silver nitrate) is relatively
expensive. The characteristics of the AgNPs that are produced vary according to the
starting materials that are selected (precursor, reducing agent, solvent, and stabilizer or
end-sealer) [76] and their concentrations, as well as the temperature [80]. Stabilizers or
capping agents are usually included to ensure the stability of the AgNPs. Attention must
also be paid to by-products that are generated by the synthesis reaction [81]. These issues
have driven interest in synthesis methods that are simpler and less expensive and that are
still capable of producing AgNPs of a suitable size and that have high stability [82].

B. Physical methods

These are top-down methods and include using heat [83], plasma [84], electromagnetic
radiation [85], arc discharge, and lithography [86]. Physical methods are considered labor-
intensive and costly.
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C. Biological methods including green synthesis

As shown in Table 1, a range of methods using plant extracts and microorganisms
have been used to convert silver ions into AgNPs. These methods do not require complex
equipment and are considered to be more environmentally friendly and lower in cost than
physical or chemical methods [87–89]. The use of green synthesis methods to prepare metal
nanoparticles is an emerging trend in nanotechnology [90].

2.5. Biosafety of AgNPs When Applied onto the Human Body

Unlike zinc, iron, copper, and cobalt, which are essential trace elements in the human
body, silver is not an essential component of the human diet and does not play a role
in normal human physiological processes. Ingestion of modest amounts of ionic silver
can lead to silver accumulation in the human body. For example, a dose of 4.1 g of
silver arsphenamine (0.6 g silver) can cause visible discoloration of the skin, known as
argyria [91], due to accumulation of silver in the skin [92]. Once ingested, silver may also
reach tissues other than the skin [93], including the kidneys and the respiratory system [93],
the gastrointestinal system [93,94], the female genitourinary system [95], and the brain [94].

AgNPs applied topically to the skin may penetrate through normal intact tissues. For
example, AgNPs smaller than 10 nanometers can pass through the pores of the stratum
corneum easily, while AgNPs around 7–20 nm in size can only penetrate sweat glands and
at hair follicle sebaceous glands. AgNPs of 20–200 nm tend to stay at the opening of hair
follicles and tend not to penetrate the skin [93].

Adverse effects from prolonged exposure to silver are dose-related [94]. Ingestion of
AgNPs and ionic silver can lead to liver and kidney damage. The toxicity of AgNPs is
influenced by particle size, particle shape, and the presence of a capping or end-sealing
agent [92]. Oral toxicity tests using adult male rats have shown that ingested AgNPs can
alter the gut microbiome [96], which could have downstream health impacts.

Retained silver in the human body following its ingestion can cause issues, with a
notable example being from particles in renal glomeruli [97]. The most clinically noticeable
effects are those seen in the skin (Figure 4); however, the accumulation of AgNPs in anyone
site of the body is a concern in terms of toxicity [98]. Despite occasional reports of argyria,
most studies have concluded that silver does not cause significant injuries that could lead
to death [92].
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2.6. Analysis of the Literature from 2004 to 2024

An analysis of 20 years of the literature on metallic nanoparticles for antimicrobial
treatment was undertaken following the PRISMA model. Searches were made on Sci-
enceDirect, Scopus, and Web of Science databases (Figure 5). After removing duplicates
and irrelevant or incomplete reports, this led to 35 publications over the period which were
highly related to the topic.
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Several trends in publications on metallic nanoparticles are evident over 20 years.
There was a steady increase each year in papers on monometallic and bimetallic nanoparti-
cles, with more sharply rising interest in the latter from 2019 onwards (Figure 6).
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A patent search for metallic nanoparticles used for anti-biofilm actions was made
using the Espacenet patent database for the period of 2003 to 2023 (Figure 7). The number of
patent family applications per year rose over the period, with the cumulative count reaching
over 3000 by the year 2023. This shows sustained activity in developing and protecting
intellectual property around the use of metallic nanoparticles as antimicrobial agents.
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Figure 7. The yearly and cumulative patent trend in last two decades. Data is obtained from searching
the Espacenet database.

An analysis of the inventor country or origin for patent families is shown in Figure 8.
Major areas were the US, the EU, and China. A large number of patents (over 2000) had
reached the international phase (WO/World Intellectual Property Organization).
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Figure 8. Metallic nanoparticle patent numbers by jurisdiction. This figure was prepared using Prism
10 software.

Figure 9 presents a summary of patent applications (“reports”) and granted patents
over the 20-year period of interest, for metallic nanoparticles used for antimicrobial treat-
ments. This shows strong growth in patent applications, with a relatively steady number of
granted patents each year over the most recent decade.
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Figure 9. Patent applications (“reports”) and granted patents per year from 2004 to 2024 for metallic
nanoparticles used for antimicrobial treatments. This figure was prepared using Prism 10 software.

A further approach was to use VOS Viewer network visualization software
(version 1.6.20) to identify the bibliometric network for the 35 included papers from the
PRISMA screening process. The first analysis was for silver nanoparticles (Figure 10). Two
colors were used to denote clusters. Red represents key words around AgNP properties,
such as physicochemical characterization and synthesis, while blue represents performance
aspects relevant to safety and effectiveness, such as antimicrobial potency, cytotoxicity,
and metabolism.
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Figure 10. Network analysis for silver nanoparticles, showing nodes for nanoparticle characterization
(red) and for antimicrobial potency aspects (blue). This figure was prepared using VOS Viewer.

A parallel visualization was prepared for zinc-containing nanoparticles (Figure 11),
following the same color coding.

Antibiotics 2024, 13, x FOR PEER REVIEW 16 of 22 
 

were used to denote clusters. Red represents key words around AgNP properties, such as 
physicochemical characterization and synthesis, while blue represents performance 
aspects relevant to safety and effectiveness, such as antimicrobial potency, cytotoxicity, 
and metabolism.  

 
Figure 10. Network analysis for silver nanoparticles, showing nodes for nanoparticle 
characterization (red) and for antimicrobial potency aspects (blue). This figure was prepared using 
VOS Viewer. 

A parallel visualization was prepared for zinc-containing nanoparticles (Figure 11), 
following the same color coding. 

 
Figure 11. Network analysis for zinc nanoparticles showing characterization (red) and performance 
(blue). This figure was prepared using VOS Viewer software. 

Figure 11. Network analysis for zinc nanoparticles showing characterization (red) and performance
(blue). This figure was prepared using VOS Viewer software.

The third visualization was prepared for copper-containing nanoparticles (Figure 12).
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Looking across the networks, the busiest networking visualization is for silver-containing
nanoparticles, which reflects the more extensive literature on this topic when compared to
other metallic nanoparticles.

A common theme across all the network analyses was that assessments of the antibac-
terial activity of metal nanoparticles were mostly confined to in vitro studies, especially
using single-species biofilm models. This reinforces the need for more complex assessments
including complex biofilms in the laboratory, followed by appropriate animal studies and
human clinical trials.

3. Conclusions and Future Directions

Potential candidates for eradicating biofilms, and preventing their development, in-
clude nanoparticles of silver, gold, copper, iron, manganese, nickel, and zinc, and their
oxides, used singly or in various combinations. Of these, AgNPs have been the most
extensively investigated and appear to have the greatest potency as anti-biofilm agents.
Metal nanoparticles are a promising way to prevent the growth of bacteria and fungi, and
their formation of biofilms. In addition, metal nanoparticles exhibit useful anti-biofilm
actions that lead to the eradication of established biofilms.

More attention should be directed to exploring how well metal nanoparticles penetrate
into biofilms of different types and whether they provide any long-term influence on biofilm
characteristics, such as through the slow generation of metal ions over long periods of time.
Likewise, more exploration into how metal nanoparticles interact with quorum-sensing
mechanisms is needed.

Multiple methods exist for synthesizing metal nanoparticles, and the choice of syn-
thesis parameters determined key properties of nanoparticles such as their size and shape.
Green synthesis methods offer low cost and simplicity and are used widely. Nanopar-
ticle characteristics can be tuned to optimize antimicrobial actions, whilst maximizing
biocompatibility and minimizing toxicity.

Within a biofilm, metal nanoparticles can interact with microorganisms as well as with
EPSs. It is possible to combine metal nanoparticles with one another, or with antibiotics, to
increase their effects on established biofilms. A review of two decades of literature showed
growing interest in bimetallic nanoparticles.

The question of whether metal nanoparticles avoid altogether the problems of re-
sistance requires further study, especially since some nanoparticles are known to bind
to bacterial DNA [6], as well as to bacterial cell membranes. The extent to which the
same nanoparticles can enter human cells and influence human DNA also requires close
examination [15].

A network analysis of publications showed that most research was conducted in
laboratory settings using single-species biofilms. The actions of metal nanoparticles as
anti-biofilm agents must be tested with more complex biofilms in the laboratory setting
and then in animal models and in human clinical trials. In the latter, issues with AgNPs
could arise if these are in prolonged contact for sufficient time for the particles to penetrate
into the body. Hence, there is a need for careful evaluation of their effects on human health.

The analysis of patent applications and granted patents shows strong interest inter-
nationally in extending knowledge regarding metal nanoparticles as antimicrobial agents.
There is strong interest in targeted therapies that combine metal nanoparticles with antibi-
otics to combat drug-resistant infections [92]. This drive to enhance effectiveness must be
accompanied by careful exploration of safety aspects, especially mucosal surface absorption
and the accumulation of metal nanoparticles in organs, as part of the studies of the safety
of using metal nanoparticles as therapeutic agents [15]. An emphasis on establishing com-
prehensive data on safety aspects is essential before considering their clinical application in
human health care.
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