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Abstract: Intracellular bacterial pathogens pose significant public health challenges due to their ability
to evade immune defenses and conventional antibiotics. Drug repurposing has recently been explored
as a strategy to discover new therapeutic uses for established drugs to combat these infections.
Utilizing high-throughput screening, bioinformatics, and systems biology, several existing drugs
have been identified with potential efficacy against intracellular bacteria. For instance, neuroleptic
agents like thioridazine and antipsychotic drugs such as chlorpromazine have shown effectiveness
against Staphylococcus aureus and Listeria monocytogenes. Furthermore, anticancer drugs including
tamoxifen and imatinib have been repurposed to induce autophagy and inhibit bacterial growth
within host cells. Statins and anti-inflammatory drugs have also demonstrated the ability to enhance
host immune responses against Mycobacterium tuberculosis. The review highlights the complex
mechanisms these pathogens use to resist conventional treatments, showcases successful examples
of drug repurposing, and discusses the methodologies used to identify and validate these drugs.
Overall, drug repurposing offers a promising approach for developing new treatments for bacterial
infections, addressing the urgent need for effective antimicrobial therapies.

Keywords: drug repurposing/drug repositioning; intracellular bacterial pathogens; host-directed
therapy; antimicrobial resistance; high-throughput screening; multidrug resistance

1. Introduction

The global burden of infectious diseases caused by intracellular pathogens remains a
significant challenge to public health [1]. Pathogens such as Listeria monocytogenes, Mycobac-
terium tuberculosis, and Staphylococcus aureus have developed sophisticated mechanisms
to survive and replicate within host cells [2,3], evading both the host immune response
and traditional antimicrobial therapies. This evasion complicates treatment strategies and
underscores the urgent need for innovative approaches to combat these infections [4].

Drug repurposing, the process of identifying new therapeutic uses for existing drugs,
typically FDA-approved with established information on their toxicity, formulation, phar-
macology, and potential side effects [5,6], has emerged as a promising strategy to address
this challenge (Figure 1), especially pushed by the vast amount of information surrounding
approved drugs [7]. In that sense, the emergence of COVID-19 has accelerated the appli-
cation of drug repurposing strategies to find new and effective treatments for combating
diseases [8,9]. Drug repurposing had primarily been accidental, lacking a systematic ap-
proach; however, the discovery of Viagra as an effective treatment for erectile dysfunction,
instead of its original purpose as an antihypertensive drug, opened the door to a new
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and lucrative market, which was further propelled by the COVID-19 pandemic [10,11].
Repurposing offers a cost-effective and time-efficient alternative to the lengthy and ex-
pensive process of novel drug discovery [12] that reduces the investment needed for the
development of new treatments and makes repurposing an attractive alternative for phar-
maceutical companies [13]. Recent advances in high-throughput screening, bioinformatics,
and systems biology have facilitated the identification of candidate drugs with potential
efficacy against intracellular pathogens [14–16].
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It is crucial to acknowledge that drug repurposing faces several significant challenges,
with intellectual property barriers being foremost among them. From a profitability perspec-
tive, repurposed drugs often present difficulties, as generating profit can be challenging [10].
However, it is possible to secure patents and achieve profitability for a repurposed drug
when a novel medical use is demonstrated. This requires successfully completing clinical
trials to confirm the drug’s efficacy in its new application [10].

This review aims to provide a comprehensive overview of the current landscape of
drug repurposing efforts targeting intracellular bacterial pathogens, which is an evolving
field (Figure 2). We will discuss the mechanisms by which these pathogens evade conven-
tional therapies, highlight key examples of successfully repurposed drugs, and explore the
methodological approaches employed in identifying and validating these candidates.
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2. Staphylococcus aureus

Staphylococcus aureus is a significant human pathogen responsible for a variety of
infections. Approximately 30% of the human population is estimated to carry S. aureus,
and it is the leading cause of bacteremia [17,18]. This pathogen expresses numerous viru-
lence factors that aid in the colonization of eukaryotic cells. Attempts to develop vaccines
targeting various S. aureus virulence factors have failed due to the bacterium’s ability to
evade the immune response from multiple angles, rendering these vaccines ineffective [19].
Moreover, the misuse of antimicrobials has led to the emergence of multi-drug resistant
bacteria [20]. Methicillin-resistant S. aureus (MRSA), in particular, was responsible for
approximately 100,000 deaths related to antimicrobial resistance in 2019 [18]. The rapid
evolution of bacteria poses significant challenges for developing new antimicrobials, mak-
ing it often economically inefficient. Consequently, drug repurposing has emerged as a
viable alternative [21]. This strategy has shown promise, particularly in the treatment of
S. aureus infections.

S. aureus initially infects the skin and mucosal surfaces, and can eventually infect
internal organs, causing pneumonia, endocarditis, osteomyelitis, and bacteremia [19]. More
interestingly, S. aureus can act as both an extracellular and an intracellular pathogen, which
significantly increases the difficulty of treating S. aureus infections. Once inside the cells,
S. aureus can evade the phagosome and become free in the cytoplasm. Additionally, it
controls the host adaptive immune response through a complex system of virulence factors
expressed during infection [19]. For these reasons, S. aureus is a model for targeting host-
directed therapies (HDT), as reactivating the immune system could be an effective strategy
to kill intracellular bacteria.

A plethora of drugs target intracellular S. aureus, and interestingly, some have been
extensively used for other purposes and are now repurposed to target intracellular infec-
tions (Table 1). Chlorpromazine (CPZ), originally used to treat psychosis, was the first
drug discovered with anti-S. aureus activity among other intracellular pathogens [22]. It
was demonstrated that the drug accumulates in macrophages, particularly in lysosomes, at
higher concentrations than needed for its in vitro activity. The fusion between the phago-
some (where the bacteria are usually located) and the lysosome triggers the antimicrobial
activity of CPZ. However, the doses required for in vivo activity are beyond those clinically
achievable, and CPZ becomes toxic when used chronically. Fortunately, another neuroleptic
agent, thioridazine (TZ), has shown antimicrobial activity at clinically relevant doses with a
similar mechanism of action as CPZ [22,23]. Thioridazine, a phenothiazine, exhibits activity
in vitro against S. aureus and also acts against phagocytosed S. aureus by accumulating in
macrophages [22,24].

Antimicrobials active against cell walls or cell wall synthesis are commonly used.
Clomiphene, a fertility drug, antagonizes wall teichoic acid (WTA), showing activity against
S. aureus and synergism with cell-wall-targeting antimicrobials [25].

Repurposing antimicrobial agents against new targets is another strategy to utilize
existing compounds. Some agents are used alone or in combination with other antimi-
crobials to mitigate resistance. Interestingly, ebselen, a non-toxic seleno-organic drug
with anti-inflammatory, antioxidant, and anti-atherosclerotic properties, has demonstrated
activity against MRSA [26]. Additionally, while ebselen does not show activity against
Gram-negative bacteria, it is effective against intracellular MRSA, highlighting its potential
as a new anti-MRSA therapy [27].

The anthelmintic drug selamectin showed a Gram-positive antimicrobial profile with
high activity against S. aureus, a low toxicity profile, and an 81.3% reduction in intracellular
S. aureus loading, exhibiting a synergistic effect with ampicillin [28].

Celecoxib, an anti-inflammatory drug, inhibits cyclooxygenase-2 (COX-2) and also
inhibits multidrug efflux pumps in S. aureus, increasing sensitivity to other antimicrobials.
However, the antimicrobial mechanism of celecoxib remains unknown [29]. Diflunisal,
another anti-inflammatory drug and a prostaglandin synthetase inhibitor, acts on the Agr
quorum-sensing system, which plays a key role in pathological bone remodeling in S. aureus
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osteomyelitis [30]. Inactivation of the Agr system leads to significant bone destruction
reduction in osteomyelitis patients [30].

Repurposing anticancer drugs as antimicrobials has several advantages, primarily
due to their established safety spectrum and guaranteed intracellular activity. However,
repurposing drugs from cancer to antibacterial therapies shares a common handicap: the
appearance of resistance in both prokaryotic and eukaryotic cells [31]. Floxuridine, an
inhibitor of riboside phosphorylase, and streptozotocin, a DNA synthesis inhibitor, were
both repurposed to treat intracellular S. aureus. These compounds inhibit the SaeRS two-
component system and demonstrated a significant survival rate in S. aureus-infected mice
compared to the commonly used anthracycline antibiotic doxorubicin [32].

As an intracellular pathogen, S. aureus is exposed to reactive oxygen and nitro-
gen species (RONS), which usually reduce its viability [33]. Staphylotoxin, the golden
carotenoid pigment of S. aureus, aids in ROS detoxification during infection. Interest-
ingly, BPH-652, a cholesterol-lowering agent, binds to the dehydrosqualene synthase of
S. aureus, reducing staphylotoxin and restoring the toxic effect of ROS against S. aureus [34].
Artemisinin, extensively used as an antimalarial drug, exhibits antibacterial activity via
ROS generation; the addition of Cu+ ions enhances its activity through increased free
radical production and DNA damage [35].

Ebselen, which shows non-selective activity against different cysteine-containing
proteins, specifically inhibits thioredoxin reductase (TrxR) and thioredoxin (Trx) in S. aureus,
resulting in toxic bactericidal activity against MRSA [36]. Similarly, auranofin decreases
the reducing capacity of MRSA by inhibiting the TrxR system, making the bacteria more
sensitive to oxidative stress [37]. Auranofin, an FDA-approved organogold drug, has
proven effective in vivo against MRSA and intracellular M. tuberculosis at low micromolar
concentrations [37]. It clears over 60% of intracellular S. aureus, demonstrating significantly
higher efficacy compared to isoniazid and vancomycin, which only achieve a 30% clearance
of intracellular bacteria [38].

Another strategy to fight intracellular pathogens is the induction of autophagy in
infected cells, a treatment known as host-directed therapy [15,16]. Several compounds
exhibit this activity. Ibrutinib, used for lymphocytic leukemia, decreases intracellular
Mycobacterium tuberculosis and S. aureus, reducing MRSA viability by 90%. Ibrutinib in-
hibits the BTK/Akt/mTOR pathway during M. tuberculosis infections, triggering autophagy
in macrophages [39]. Ibrutinib’s activity was further analyzed with other host-directed ther-
apy compounds like dasatinib and crizotinib against S. aureus, acting as kinase inhibitors
and blocking bacterial infection and intracellular proliferation [15]. Interestingly, crizo-
tinib targets ATP production and presents broad-spectrum activity against Gram-positive
bacteria, showing a synergistic effect with clindamycin and gentamicin [15,40].

Raloxifene, an estrogenic receptor agonist, has been repurposed against intracellular
S. aureus due to its autophagy-inducing activity [41]. Raloxifene also prevents neutrophil
cell death in response to phorbol 12-myristate 13-acetate (PMA), inhibiting PMA-induced
ERK phosphorylation but not ROS production, which triggers the formation of neutrophil
extracellular traps (NETs), known to contain antimicrobial substances aiding in intracellular
pathogen clearance [41,42].

During infection, MRSA activates the MAPK/ERK pathway, which acts as a sensor for
cell energy homeostasis and amino acid deprivation. Intriguingly, S. aureus appears capable
of inducing autophagy to facilitate its own replication and proliferation [43]. Building on
this hypothesis, dorsomorphin, an AMPK inhibitor, has shown activity against S. aureus as
a host-directed therapy. It reduces autophagy and thereby decreases S. aureus intracellular
survival [43]. Similarly, thapsigargin, an inhibitor of the SERCA protein (a Ca2+ pump in
the endoplasmic reticulum), blocks autophagy, increases host cell viability, and reduces
intracellular MRSA survival by two-fold [16].
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Table 1. List of repurposed drugs against S. aureus: classification and mechanism of action.

Drug Type Mechanism of Action Reference

Artemisinin Antimalarial Generates ROS and DNA damage [35]

Auranofin Anti-inflammatory Inhibits thioredoxin reductase [37]

BPH-652 Cholesterol-lowering Binds dehydrosqualene synthase (CrtM) [34]

Celecoxib Anti-inflammatory Inhibits multidrug efflux pumps [29]

Chlorpromazine Antipsychotic Accumulates in lysosomes, triggering antimicrobial activity [22]

Clomiphene Fertility Antagonizes wall teichoic acid [25]

Crizotinib Antitumoral ATP production [5,28]

Dasatinib Antitumoral Tyrosine kinase inhibitor [15]

Diflunisal Anti-inflammatory Inhibits the Agr system [30]

Dorsomorphin AMPK inhibitor Reduces autophagy and intracellular survival [43]

Ebselen Anti-inflammatory Inhibits thioredoxin reductase and thioredoxin [26]

Floxuridine Antitumoral Inhibits riboside phosphorylase [32]

Ibrutinib Antitumoral Controls the MEK/ERK/c-JUN signaling pathway [15]

Phenothiazine Antipsychotic Antagonism of dopamine D2 receptors [11,13]

Raloxifene Estrogen receptor agonist Induces autophagy and inhibits neutrophil cell death [41]

Selamectin Anthelmintic Shows high activity against S. aureus and M. tuberculosis [28,41]

Streptozotocin Antitumoral DNA synthesis inhibitor [28,32]

Thapsigargin Ca2+ endoplasmic pump inhibitor Increases host cell viability and reduces intracellular survival [16,32]

Thioridazine Antipsychotic Accumulates in macrophages, triggering antimicrobial activity [16,22,23]

3. Mycobacterium tuberculosis

M. tuberculosis is the bacterium responsible for tuberculosis (TB) and is considered
the leading cause of death due to bacterial infections [14,44]. M. tuberculosis is adept at
colonizing and surviving inside alveolar macrophages, modulating immune responses,
and controlling macrophage maturation. Its metabolism is adapted to the challenging
environment it encounters during infection. Recent reviews have focused on drug re-
purposing for M. tuberculosis treatment, specifically on drugs that can cross eukaryotic
membranes to target intracellular M. tuberculosis [12,14,26]. One of the most prominent
strategies includes host-directed therapies (Table 2) that have been extensively used against
M. tuberculosis [12,14,45–47].

During infection, M. tuberculosis controls lysosome protease fusion proteins, down-
regulating them to aid colonization. Saquinavir, an anti-HIV drug, has been proposed
as a repurposed drug against M. tuberculosis because it can restore cathepsin protease
activity, including cathepsin S, in a dose-dependent manner in M. tuberculosis-infected
macrophages [48]. Additionally, M. tuberculosis utilizes cholesterol, a crucial component
of mammalian cell membranes, as an energy source essential for colonization. Choles-
terol accumulation decreases membrane permeability to anti-tubercular drugs and blocks
phagosome maturation by direct cholesterol uptake [49]. Consequently, statins, which treat
hypercholesterolemia and atherosclerotic cardiovascular disease, have emerged as new anti-
tubercular drugs. Atorvastatin, a 3-hydroxy-3-methyl-glutaryl-coenzume A (HMG-CoA)
reductase inhibitor, enhances macrophage bactericidal effects [50]. Atorvastatin started a
phase 2 clinical trial (ref. NCT06199921) this year. Simvastatin, another HMG-CoA inhibitor,
reduces cholesterol uptake by M. tuberculosis, sensitizing the bacteria to other antimicrobial
compounds and showing synergy with isoniazid and rifampicin [51].

Inhibiting efflux pumps is another strategy to enhance antimicrobial effects. M. tuberculosis
detoxifies itself via a bacterial efflux pump-mediated process. Verapamil, an FDA-approved
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cardiovascular drug, has been successfully used as an adjuvant for TB treatment, acting as a
mycobacterial efflux pump inhibitor and increasing the toxicity of isoniazid and rifampicin [52];
this drug was used in a recently finished Phase 1/2 clinical trial (ref. IRCT20170210032478N1).
During M. tuberculosis infection, patients often suffer inflammatory responses, leading to tissue
damage from neutrophil infiltration. Anti-inflammatory drugs, such as ibuprofen, have shown
potential in reducing bacterial load in the lungs and improving survival in animal models,
despite having no direct effect on M. tuberculosis [53]. Ibuprofen has progressed to two distinct
Phase 2 clinical trials as an adjunctive treatment: one in combination with acetylsalicylic acid
(currently ongoing, ref. NCT02781909), and another as a standalone treatment, which was
completed in 2019 (ref. NCT03891901).

The activation of Toll-like receptors (TLR) is part of the innate defence against bacterial
infections, but M. tuberculosis downregulates TLR activity. Vitamin D, which activates
TLR, has shown anti-TB activity, highlighting the importance of sunlight in bacterial
infections [54]. Repurposing anticancer drugs is another strategy against M. tuberculosis.
Tamoxifen, an established anticancer drug, has been repurposed to induce autophagy
in infected cells, promoting bacterial degradation in lysosomes [55]. Fluspirilene and
pimozide, two diphenylbutylpiperidine-class antipsychotic drugs, elicit autophagy in
infected cells, promoting bacterial clearance. Pimozide also affects ROS generation and
inhibits STAT5, reducing the presence of cytokine-inducible SH2-containing protein on
infected phagosomes [56].

M. tuberculosis uses ABL and other related host tyrosine kinases for entry and intra-
cellular survival. Imatinib, a tyrosine kinase inhibitor used in cancer therapy, has been
successfully tested against M. tuberculosis in vitro and in vivo [57] and it was in a Phase 2
clinical trial testing its safety, pharmacokinetics and hematologic effect alone or in com-
bination with isoniazid and rifabutin, finishing the study in 2022 (ref. NCT03891901).
The development of kinase inhibitors has been pursued for years due to their importance
in intracellular pathogen colonization. Kuijl et al. (2007) have developed several kinase
inhibitors with good antimicrobial profiles against M. tuberculosis and Salmonella enterica
serovar Typhimurium [58].

Promoting autophagy in infected cells is a classic method to combat intracellular pathogens.
Bazedoxifene, a selective estrogen receptor modulator (SERM) used in cancer therapy, has been
repurposed against M. tuberculosis, reducing the intracellular growth of the bacteria in THP-1
macrophages [59]. Vitamin D also shows antimicrobial activity via autophagy induction by
activating the human cathelicidin microbial peptide (CAMP) [60]. Vitamin D3 induces antimi-
crobial activity through autophagy and nitric oxide production, acting through cathelicidin and
TLRs, which induce a nitric oxide burst [54,61]. The good activity shown against M. tuberculosis
opened the door to three different clinical trials (refs. NCT00507000 and NCT01130311); one of
them was finalized in 2023 (ref. NCT01992263).

Nitroimidazofurans, originally used as radiosensitizers in cancer chemotherapy, are bi-
cyclic molecules that show anti-TB activity in the nanomolar range, similar to isoniazid [62].
PA-824 has demonstrated activity in murine models treated orally with the compound, thus
PA-824 was used in a Phase 2 clinical trial that finalized in 2022 (ref. NCT02256696). Chronic
inflammation, often resulting from infection, aids M. tuberculosis infection [63]. Reducing
deleterious inflammation can make current antibiotherapies more effective. Metformin,
a biguanide used for type 2 diabetes, has emerged as a new HDT therapy by activating
a major energy-sensing kinase and reducing inflammation by limiting the proliferation
of inflammatory cells [63]. Metformin was in a Phase 1/2 clinical trial that finalized in
2023 (ref. NCT05215990). Metformin, in combination with statins, has shown synergistic
effects [64].

Once M. tuberculosis colonizes pulmonary tissues, it often forms granulomas charac-
terized by hypoxia and necrosis, similar to solid tumors. This induces the production of
vascular endothelial growth factor (VEGF), promoting new vessel formation and aiding TB
progression. Bevacizumab, a humanized monoclonal antibody used to neutralize VEGF
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in some cancers, has been used to reduce TB progression and disease lesions in animal
models [65].

Reintroducing “old” antimicrobials is an effective strategy against multidrug-resistant
bacteria due to their known pharmacokinetics and pharmacodynamics. Sulphonamides
have been studied as new TB therapies. Sulfadiazine, an analogue of para-aminobenzoic
acid, acts as a dihydropteroate synthase inhibitor, blocking the folic acid synthesis pathway
in M. tuberculosis and showing high in vitro activity, suggesting its potential as a second-line
antibiotic in combination with other treatments [66].

Targeting cell wall synthesis is a common strategy against bacterial infections. Arabi-
nosyl transferase (EmbC) is crucial for lipoarabinomannan biosynthesis, a major polysac-
charide in the cell envelope. Ethambutol, which targets EmbC, is part of TB treatment
but often encounters resistance. Terlipressin, originally a vasoactive drug for low blood
pressure, has been identified as a new anti-TB drug targeting EmbC in a different region
than ethambutol, showing high binding affinity and reduced resistance potential [67]. In
silico analysis has identified 29 compounds with anti-TB activity, with fluvastatin showing
intracellular activity at moderate concentrations, highlighting the power of bioinformatics
in antimicrobial discovery [68].

Anthelmintic drugs like avermectins, used against helminths, insects, and arachnids,
have shown activity against mycobacteria. Ivermectin, selamectin, and moxidectin have
demonstrated in vitro activity against MDR M. tuberculosis, showing high specificity and
oral activity, making them promising antimicrobial therapies [69]. Nitazoxanide, an FDA-
approved anthelmintic and antiparasitic drug, inhibits intracellular M. tuberculosis growth
by modulating host cell immune responses [70] and it was in a Phase 2 clinical trial to study
its bactericidal activity (ref. NCT02684240).

Phenothiazine-derived antipsychotic drugs have shown high antitubercular activity
with minimal side effects, showing no cytotoxicity in vitro and in vivo [71]. Carbapenems,
such as biapenem, which was involved in a Phase 1 clinical trial (ref. NCT01702649), and
tebipenem, have shown activity against M. tuberculosis by targeting L,D-transpeptidases, [72].
Faropenem has shown even better transpeptidase affinity and good in vivo antimicrobial
activity [72], results that opened the door to clinical trials; thus, Faropenem was used in a
Phase 3 clinical trial (ref. NCT01937832). Carbapenems show synergistic effects with rifampin,
with doripenem, biapenem, and rifampin combinations showing the best results [73].

Artemisinin and its derivative artesunate, known for their anti-malarial properties,
also show anti-TB activity with confirmed low toxicity and good pharmacokinetic profiles
in murine models [74]. Imidazopyridine amides, such as compound Q203, target the
cytochrome bc1 complex and have shown effective inhibition of M. tuberculosis in vitro
and in mouse models [75]. Moreover, Q203 was utilized in a Phase 2 clinical trial finished
in 2019 that evaluated its bactericidal activity, safety, tolerability, and pharmacokinetics
following multiple oral doses (ref. NCT03563599).

M. tuberculosis experiences oxidative stress inside macrophages, making its redox
mechanisms, including NADH dehydrogenase type II and thioredoxin reductase (TrxR),
critical. Chlorpromazine, an NADH inhibitor, and gatifloxacin, a fluoroquinolone, that was
in a Phase 3 clinical trial (ref NCT00216385), have shown effective synergistic antimicrobial
effects, indicating their potential as dual therapies [76]. Auranofin, a TrxR inhibitor, has
shown significant efficacy against both intracellularly replicating and non-replicating
M. tuberculosis [37]. In fact, Auranofin was used in a Phase 2 clinical trial (ref. NCT02968927)
that finalized in 2020.

Table 2. List of repurposed drugs against M. tuberculosis: classification and mechanism of action.

Drug Type Mechanism of Action Reference

Artemisinin Antimalarial Generates ROS and DNA damage [74]

Artesunate Antimalarial Unknown [74]

Atorvastatin Statin Enhances macrophage bactericidal effects [50]
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Table 2. Cont.

Drug Type Mechanism of Action Reference

Auranofin Anti-inflammatory Inhibits thioredoxin reductase [37]

Bazedoxifene Estrogen receptor modulator Reduces intracellular growth [59]

Bevacizumab Antitumoral Neutralizes VEGF [65]

Biapenem Antimicrobial Targets cell wall synthesis [72]

Chlorpromazine Antipsychotic NADH dehydrogenase type II inhibitor [76]

Faropenem Antimicrobial Targets cell wall synthesis [72]

Fluspirilene Antipsychotic Elicits autophagy [56]

Fluvastatin Statin Targets intracellular activity [68]

Gatifloxacin Antimicrobial DNA gyrase [76]

Ibuprofen Anti-inflammatory Reduces inflammatory response [53]

Ibrutinib Antitumoral Inhibits the BTK/Akt/mTOR pathway, triggering
autophagy [39]

Imatinib Antitumoral Inhibits tyrosine kinases [57]

Imidazopyridine amides (Q203) Antimicrobial Cytochrome bc1 complex [61]

Ivermectin Anthelmintic Inhibits intracellular growth [69]

Metformin Antidiabetic Activates energy-sensing kinase and reduces inflammation [63]

Moxidectin Anthelmintic Unknown mechanism of action [55]

Nitroimidazofuran (PA-824) Antimicrobial Bacterial nitroreduction [49]

Nitazoxanide Anthelmintic Modulates host immune responses [70]

Phenothiazine Antipsychotic NADH inhibitor [57,62]

Pimozide Antipsychotic Affects ROS generation and inhibits STAT5 [56]

Saquinavir Antiviral Restores cathepsin protease activity [48]

Selamectin Anthelmintic Unknown mechanism of action [55]

Simvastatin Statin Reduces cholesterol uptake, showing synergy with
antimicrobials [51]

Sulfadiazine Antimicrobial Inhibits folic acid synthesis [66]

Tamoxifen Antitumoral Induces autophagy [55]

Tebipenem Antimicrobial Targets cell wall synthesis [72]

Terlipressin Vasoactive Targets EmbC for cell wall synthesis [67]

Verapamil Cardiovascular Inhibits bacterial efflux pump [39]

Vitamin D Vitamin Activates TLR and induces autophagy [54]

4. Listeria monocytogenes

Listeria monocytogenes (LMO) is a Gram-positive, saprophytic bacterium that can
exist both intracellularly and extracellularly, categorizing it as a facultative intracellular
pathogen. It is the causative agent of listeriosis, a serious infection typically leading to
meningitis, septicemia, and neonatal death [77]. Upon infection, LMO penetrates the
intestinal epithelial barrier and migrates to the lamina propria [78]. LMO enters host
cells via endocytosis; once inside the phagosome, it escapes into the cytoplasm where it
can reside [79]. LMO infection triggers an inflammatory response, apoptosis, necrosis,
pyroptosis, and autophagy in the infected cells [78]. As a host response, both major
histocompatibility complex (MHC) I and II molecules produce immune responses involving
CD4 and CD8 T cells and the production of interferon γ (IFN γ).

Given the high fatality rate of LMO among food-borne pathogens (13%) and a 97.1% hospital
ization rate [80], repurposing drugs to combat LMO infections could be a cost-effective strategy.
Similar to other intracellular pathogens like S. aureus and M. tuberculosis, LMO can control infection
by modulating the host-cell immune response, making host-directed therapies (HDT) potentially
effective alone or in combination with antimicrobials for new treatments.
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Neurological compounds have shown promise against LMO (Table 3). In a screening
of 68 neurological compounds, 26 exhibited inhibitory effects on LMO internalization in
eukaryotic cells. Notably, thioridazine (an antipsychotic) and bepridil (a calcium channel
inhibitor) inhibited LMO’s escape from the vacuole, resulting in bacterial death [81]. Pi-
mozide, previously reported, blocks LMO entry into host cells, phagosome escape, and
cell-to-cell spread, indicating its potential as an effective treatment by targeting multiple
stages of infection [82]. However, no in vivo results for pimozide have been reported.

Table 3. List of repurposed drugs against L. monocytogenes: classification and mechanism of action.

Drug Type Mechanism of Action Reference

Bepridil Antitumoral Inhibits calcium channel inhibitor [67]

Griseofulvin Antifungal Disruptor of microtubules [69]

Pimozide Antipsychotic Dopamine D2 receptor antagonist [68]

Thioridazine Antipsychotic Dopamine D2 receptor antagonist [67]

Repurposing antimicrobials is another strategy against LMO (Table 3). Griseofulvin,
an antifungal drug, has demonstrated activity against LMO, although it lacks activity
against S. aureus or Bacillus subtilis. This discovery has led to modifications of its struc-
ture to increase the activity of various derivatives [83]. These compounds preferentially
target GyrB, DNA topoisomerase IV, and thymidylate kinase, showing low or negligible
cytotoxicity [83]. Despite these efforts, no in vivo studies have been conducted on these
compounds, and their stability remains untested.

5. Salmonella enterica Serovar Typhimurium

Salmonella Typhimurium is a Gram-negative bacterium that causes gastroenteritis and
severe systemic infections in humans and other animals. It infects both epithelial cells and
macrophages. Epithelial cell infection is primarily driven by the Salmonella Pathogenic-
ity Island 1 (SPI-1), whereas infection of macrophages and neutrophils occurs through
phagocytosis, leading to the formation of a modified phagosome known as the Salmonella-
containing vacuole (SCV) [84]. Within host cells, S. Typhimurium releases various effectors
to aid its intracellular survival [85]. Additionally, S. Typhimurium infection alters host
cholesterol biosynthesis [86].

The use of host-directed therapies (HDT) is widely applied for Salmonella due to its
role as a model for host-pathogen interactions [86] (Table 4). Statins, which affect host
cholesterol metabolism, have been shown to negatively impact bacterial growth. For
instance, lovastatin blocked intracellular proliferation of S. Typhimurium in macrophages
and murine models [86].

Anti-inflammatory drugs are another powerful tool for repurposing against
S. Typhimurium as they modulate the host-cell response. Diclofenac sodium, an anti-
inflammatory drug that inhibits prostaglandin G/H synthase 1 and 2, exhibited antimi-
crobial activity against S. Typhimurium and other bacteria both in vitro and in vivo. This
compound, alone or in combination with other drugs, showed significant antimicrobial
activity against several pathogens, including Shigella spp. and Salmonella spp. Diclofenac
sodium demonstrated a synergistic effect with streptomycin and trifluoperazine, reducing
mortality in mice from 100% without treatment to less than 10% in treated groups [87].

High-throughput screening (HTS) of various compounds has been a promising method
for identifying effective repurposed drugs against S. Typhimurium. Doxapram, amoxapine,
and trifluoperazine were identified using this technique. Trifluoperazine, a dopamine
D2 receptor blocker used as an antipsychotic, accumulates in macrophages and reduces
S. Typhimurium intracellular survival by potentially targeting the host autophagy path-
way [88]. In the same line, loperamide, an antidiarrheal drug, blocked the intracellular
replication of S. Typhimurium not by directly affecting the bacteria, but by inducing au-
tophagy in S. Typhimurium-infected cells [89].
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Bioinformatic tools are also utilized to identify inhibitors of specific bacterial proteins
or virulence factors. For instance, Joshi et al. (2022) analyzed over 1900 compounds as
potential S. Typhimurium dihydrofolate reductase inhibitors. From this, eight compounds
were further analyzed, and four (duvelisib, amenamevir, lifitegrast, and nilotinib) were
identified as the most promising inhibitors [90].

HTS of different antimicrobials against intracellular S. Typhimurium yielded interest-
ing results. Since antimicrobials can have different effects in vitro versus during infection,
a new technique was developed to evaluate the activity of 1600 antimicrobials against in-
tracellular S. enterica. Nucleoside analogs, including doxifluridine, fluorouracil, azacitidine,
and carmofur, were among the most effective. Additionally, bromperidol, metergoline,
ciclopirox and ethopropazine showed significant activity at the lowest concentration of
64 µg/mL [84]. Metergoline, the most promising agent, disrupted the cytoplasmic mem-
brane potential decreasing ATP levels. This alkaloid, produced by fungi, was effective in
murine models, particularly in the spleen, liver, cecum, and colon [84].

Table 4. List of repurposed drugs against S. enterica: classification and mechanism of action.

Drug Type Mechanism of Action Reference

Amoxapine Antidepressant Increase the levels of norepinephrine and serotonin [74]
Amenamevir Antiviral Inhibits helicase-primase complex [75]
Azacitidine Antitumoral Disrupts cytoplasmic membrane potential [84]

Bromperidol Antipsychotic Dopamine D2 receptor antagonist [70]
Carmofur Antitumoral Inhibitor dihydropyrimidine dehydrogenase [84]
Ciclopirox Antifungal Inhibits iron-dependent enzymes [70]

Diclofenac sodium Anti-inflammatory Inhibits prostaglandin G/H synthase [74]
Doxapram Respiratory stimulant Stimulates respiratory chemoreceptors [74]

Doxifluridine Antitumoral Inhibits thymidylate synthase [70]
Duvelisib Antitumoral Inhibits δ and γ isoforms PI3K [75]

Ethopropazine Anticholinergic Blocks muscarinic acetylcholine receptors [70]
Fluorouracil Antitumoral Disrupts cytoplasmic membrane potential [84]
Lifitegrast Anti-inflammatory Integrin agonist [75]

Loperamide Antidiarrheal Promotes autophagy [89]
Lovastatin Anti-cholesterol Inhibits HMG-CoA reductase [72]

Metergoline Antipsychotic Serotonin receptor antagonist [70]
Nilotinib Antitumoral Inhibits tyrosine kinase [75]

Trifluoperazine Antipsychotic Accumulates in macrophages, targets autophagy pathway [88]

6. Other Intracellular Pathogens

Intracellular pathogens have unique strategies for surviving and proliferating within
host cells. For instance, Chlamydia forms inclusions; Legionella and Coxiella occupy lyso-
somes; and Shigella and Rickettsia inhabit the cytosol [84].

Shigella flexneri, a common gastrointestinal pathogen, has been targeted for drug
repurposing. As an intracellular pathogen, S. flexneri is susceptible to drugs that induce
autophagy in host cells. Capsaicin, a herbal compound known to induce autophagy, has
shown effectiveness in reducing S. flexneri intracellular growth both in vitro and in vivo,
with a good safety profile in murine models [91]. Diclofenac, an anti-inflammatory drug,
has also demonstrated activity against S. flexneri in murine models, prompting further
research that advanced to clinical trials. These efforts culminated in a Phase 4 clinical trial,
which revealed diclofenac’s efficacy in women with urinary tract infections (UTIs) who
were treated for 30 days. The trial results suggest that diclofenac may have potential as a
therapeutic option for UTI management, warranting further exploration and consideration
in clinical practice [92].

In efforts to combat Yersinia pestis, the causative agent of plague, a library of
780 FDA-approved compounds was screened for their ability to block intracellular colo-
nization. Among the most effective compounds were doxapram, amoxapine, and trifluop-
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erazine, which reduced intracellular survival in vitro and increased animal survivability
in vivo, despite not having direct antimicrobial activity [88].

The concept of broad-spectrum host-directed therapies (HDT) is particularly relevant
for intracellular pathogens. Broad-spectrum HDT drugs can assist host cells in mounting
an immune response against various intracellular bacteria (Table 5). However, it is crucial
to first test the toxicity of these compounds, as they often alter host cell behavior and can
be toxic.

Czyz et al. identified several repurposed FDA-approved drugs with broad-spectrum
activity against Legionella pneumophila, Brucella abortus, Rickettsia conorii, and Coxiella burnetii.
Notably, drugs related to GPCR signaling, kinases, calcium inhibitors, and sterol/hormones
emerged as potential intracellular antimicrobial agents. The effectiveness of these drugs
varied depending on the pathogen, highlighting the importance of understanding each
bacterium’s infection mechanism. For example, blocking cholesterol trafficking was ef-
fective against C. burnetti and L. pneumophila but not against B. abortus and R. conorii [93].
Statins, used for lowering cholesterol levels, have shown effectiveness against various
pathogens, as previously mentioned. Simvastatin, in particular, was also effective against
Chlamydia pneumoniae, a human respiratory pathogen. By decreasing host cell isoprenoid
and cholesterol levels, simvastatin disrupted the intracellular trafficking of cholesterol,
reducing the intracellular survival of C. pneumoniae. This mechanism also applied to
Salmonella enterica, which lacks a cholesterol synthesis pathway [94].

Trifluoperazine, initially identified as a repurposed drug against Yersinia pestis, did not
exhibit direct antimicrobial activity but showed the best in vivo activity. It was hypothe-
sized that its mechanism of action could be effective against other pathogens. Indeed, triflu-
operazine was also tested in vivo against Salmonella Typhimurium and Clostridium difficile
increasing animal survivability in both cases [88].

Table 5. List of repurposed drugs against several intracellular pathogens: classification, mechanism
of action, and target pathogens.

Drug Type Mechanism of Action Pathogen Reference

Capsaicin Herbal compound Induces autophagy S. flexneri [91]

Diclofenac sodium Anti-inflammatory Inhibits prostaglandin G/H synthase Shigella sp. [87]

Doxapram Respiratory Blocks intracellular colonization Y. pestis [88]

Simvastatin Statin HMG-CoA inhibitor C. pneumoniae [94]

Trifluoperazine Antipsychotic Accumulates in macrophages, targets
autophagy pathway

C. pneumoniae, C. difficile,
Y. pestis [88]

7. Discussion

The rapid evolution of bacteria and the increasing prevalence of antimicrobial resis-
tance pose significant challenges to the development of new antimicrobials. This situation
has led many pharmaceutical companies to deprioritize further research in this area, in-
creasing the risk of new pandemics emerging worldwide [18,20]. Drug repurposing has
emerged as a viable and cost-effective strategy to address these challenges by using existing
drugs with known safety profiles (Figure 1). This review has explored various repurposed
treatments against a range of intracellular pathogens, including S. aureus, M. tuberculosis,
L. monocytogenes, S. enterica, S. flexneri, Y. pestis, C. pneumoniae, C. difficile and Shigella sp.,
focusing on drugs initially developed for cancer, anti-inflammation, autophagy modulators,
ROS related drugs, and antimicrobials that have been repurposed against other bacteria.
The limited number of repurposed drugs currently in clinical trials, with only two ongoing
studies and one successfully completed suggests that prior approval for other uses does not
necessarily expedite their authorization for new indications [8]. This could be attributed to
various factors, such as the lack of efficacy in human trials or the possibility that these trials
have progressed beyond the clinical stage and are advancing to the next phase. Another
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challenge may lie in the fact that the bactericidal mechanisms of action for many of these
drugs are still under investigation [11]. Additionally, the continued effectiveness of existing
antibiotic therapies for most patients, the limited understanding of potential resistance that
microorganisms might develop against repurposed drugs, and the lack of sufficient funding
could also contribute to the slow progress. Despite these challenges, drug repurposing
remains a faster and more cost-effective approach to drug research and development [13].

This review focuses on repurposed drugs that are active against intracellular pathogens.
These microorganisms share a common trait: they can alter cellular responses to evade
bacterial clearance once inside the host cells, often by modifying autophagy or inflamma-
tory responses. As a result, some of the drugs discussed here are host-directed therapies
(HDTs) because they do not directly target the bacteria but instead modulate the im-
mune response of the eukaryotic cell. This strategy has shown promising results due
to its broad-spectrum effects, including cross-species activity and effectiveness against
multidrug-resistant pathogens. While there is no definitive evidence yet on how host-
directed therapy (HDT) will reduce antimicrobial resistance, many experts support the
idea that targeting eukaryotic cells may make the development of resistance less likely.
Since the mechanisms of resistance in pathogens primarily involve prokaryotic processes,
the likelihood of resistance emerging against HDT is considered to be lower [4,14,15,45].
Consequently, some of the drugs under study (such as the antipsychotics pimozide, phe-
nothiazine, thioridazine, trifluoperazine, and chlorpromazine; the anti-inflammatory drugs
auranofin and diclofenac; the classic antimalarial drug artemisinin; the anticancer drug
ibrutinib; and the anthelmintic selamectin) are active against various microorganisms.
Their broad-spectrum activity is linked to their mechanisms of action. For example, some
anticancer and antipsychotic drugs induce autophagy in infected cells, leading to bacterial
clearance, although the exact mechanisms by which these drugs induce autophagy remain
unclear [28,39,69,74].

The mechanisms of action of anti-inflammatory drugs are more diverse, often in-
volving the inhibition of bacterial efflux pumps, which can enhance the effectiveness of
conventional antibiotic therapies. Additionally, the anti-inflammatory effects of these drugs
benefit patients by reducing systemic inflammation, which can otherwise be fatal. Finally,
intracellular pathogens are exposed to oxidative bursts that can damage proteins and kill
bacteria, making bacterial redox mechanisms crucial for their survival. Several of the drugs
discussed, such as auranofin and ebselen, inhibit essential bacterial redox mechanisms such
as TrxR, thereby reducing intracellular survival [26,37].

Drug repurposing is an active field of research that is growing exponentially in the
number of published papers and, consequently, in the number of new repurposed drug can-
didates. Despite these efforts, several gaps remain to be addressed, such as the emergence
of bacterial resistance or tolerance, potential side effects in patients with other underlying
conditions, and the need for optimization of dosing and formulation. Additionally, the
challenge of securing adequate funding and navigating the complex regulatory pathways
for approval further complicates the development and widespread adoption of repurposed
drugs. Addressing these challenges will be critical to fully realizing the potential of drug
repurposing as a viable and efficient approach to treating a wide range of diseases [5,11,13].

Overall, drug repurposing offers a promising avenue for developing new treatments
against bacterial infections. By leveraging the existing pharmacological knowledge and
safety profiles of these drugs, we can accelerate the discovery of effective therapies and
address the urgent need for new antimicrobials in the fight against bacterial pathogens.
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