Antibacterial and Antibiofilm Potential of Chlorophyllin Against Streptococcus mutans In Vitro and In Silico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Extraction and Purification of Chlorophyllin
2.3. Antibacterial Potential of Chlorophyllin against S. mutans
2.4. Biofilm Screening and Its Inhibition by Chlorophyllin
2.5. Characterization of EPS by FTIR and Its Inhibition by Chlorophyllin
2.6. Molecular Docking Studies and Pharmacokinetics Properties of Chlorophyllin
2.7. ADMET Analysis
3. Results
3.1. Chlorophyllin Potential against S. mutans
3.2. Antibiofilm Activity of Chlorophyllin
3.3. Effect of Chlorophyllin on EPS Production Based on Strong Biofilm Formation
3.4. FTIR Analysis of EPS Production by S. mutans Based on Moderate Biofilm Formation
3.5. Molecular Docking Studies
3.6. In Silico Pharmacokinetics Analysis of Chlorophyllin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Misaki, T.; Naka, S.; Hatakeyama, R.; Fukunaga, A.; Nomura, R.; Isozaki, T.; Nakano, K. Presence of Streptococcus mutans strains harboring the cnm gene correlates with dental caries status and IgA nephropathy conditions. Sci. Rep. 2016, 6, 36455. [Google Scholar] [CrossRef] [PubMed]
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Prim. 2017, 3, 17030. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Kudo, Y.; Baker, J.L.; Labonte, S.; Jordan, P.A.; McKinnie, S.M.K.; Guo, J.; Huan, T.; Moore, B.S.; Edlund, A. Cariogenic Streptococcus mutans Produces Tetramic Acid Strain-Specific Antibiotics That Impair Commensal Colonization. ACS Infect. Dis. 2020, 6, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Otsugu, M.; Mikasa, Y.; Kitamura, T.; Suehiro, Y.; Matayoshi, S.; Nomura, R.; Nakano, K. Clinical characteristics of children and guardians possessing CBP-positive Streptococcus mutans strains: A cross-sectional study. Sci. Rep. 2022, 12, 17510. [Google Scholar] [CrossRef] [PubMed]
- Kassebaum, N.J.; Smith, A.G.C.; Bernabé, E.; Fleming, T.D.; Reynolds, A.E.; Vos, T.; Murray, C.J.L.; Marcenes, W.; Abyu, G.Y.; Alsharif, U.; et al. Global, Regional, and National Prevalence, Incidence, and Disability-Adjusted Life Years for Oral Conditions for 195 Countries, 1990–2015: A Systematic Analysis for the Global Burden of Diseases, Injuries, and Risk Factors. J. Dent. Res. 2017, 96, 380–387. [Google Scholar] [CrossRef]
- Kamiya, R.U.; Taiete, T.; Gonçalves, R.B. Mutacins of Streptococcus mutans. Braz. J. Microbiol. 2011, 42, 1248–1258. [Google Scholar] [CrossRef]
- Zayed, S.M.; Aboulwafa, M.M.; Hashem, A.M.; Saleh, S.E. Biofilm formation by Streptococcus mutans and its inhibition by green tea extracts. AMB Express 2021, 11, 73. [Google Scholar] [CrossRef]
- Brady, L.J.; Maddocks, S.E.; Larson, M.R.; Forsgren, N.; Persson, K.; Deivanayagam, C.C.; Jenkinson, H.F. The changing faces of Streptococcus antigen I/II polypeptide family adhesins: MicroReview. Mol. Microbiol. 2010, 77, 276–286. [Google Scholar] [CrossRef]
- Rivera-Quiroga, R.E.; Cardona, N.; Padilla, L.; Rivera, W.; Rocha-Roa, C.; De Rienz, M.A.D.; Morales, S.M.; Martinez, M.C. In silico selection and in vitro evaluation of new molecules that inhibit the adhesion of streptococcus mutants through antigen i/ii. Int. J. Mol. Sci. 2021, 22, 377. [Google Scholar] [CrossRef]
- Krukiewicz, K.; Kazek-Kęsik, A.; Brzychczy-Włoch, M.; Łos, M.J.; Ateba, C.N.; Mehrbod, P.; Ghavami, S.; Shyntum, D.Y. Recent advances in the control of clinically important biofilms. Int. J. Mol. Sci. 2022, 23, 9526. [Google Scholar] [CrossRef]
- Lemos, J.A.; Palmer, S.R.; Zeng, L.; Wen, Z.T.; Kajfasz, J.K.; Freires, I.A.; Abranches, J.; Brady, L.J. The Biology of Streptococcus mutans. Microbiol. Spectr. 2019, 7, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Contaldo, M.; D’Ambrosio, F.; Ferraro, G.A.; Di Stasio, D.; Di Palo, M.P.; Serpico, R.; Simeone, M. Antibiotics in Dentistry: A Narrative Review of the Evidence beyond the Myth. Int. J. Environ. Res. Public Health. 2023, 20, 6025. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Jiang, X.; Zeng, Y.; Zhao, X.; Washio, J.; Takahashi, N.; Zhang, L. Investigation of drug resistance of caries-related streptococci to antimicrobial peptide GH12. Front. Cell. Infect. Microbiol. 2022, 12, 991938. [Google Scholar] [CrossRef] [PubMed]
- Shamim, A.; Ali, A.; Iqbal, Z.; Mirza, M.A.; Aqil, M.; Kawish, S.M.; Siddiqui, A.; Kumar, V.; Naseef, P.P.; Alshadidi, A.A.F.; et al. Natural Medicine a Promising Candidate in Combating Microbial Biofilm. Antibiotics 2023, 12, 299. [Google Scholar] [CrossRef] [PubMed]
- Krüger, M.; Richter, P.; Strauch, S.M.; Nasir, A.; Burkovski, A.; Antunes, C.A.; Meißgeier, T.; Schlücker, E.; Schwab, S.; Lebert, M. What an escherichia coli mutant can teach us about the antibacterial effect of Chlorophyllin. Microorganisms 2019, 7, 59. [Google Scholar] [CrossRef]
- Chaturvedi, D.; Singh, K.; Singh, V.K. Therapeutic and pharmacological aspects of photodynamic product chlorophyllin. Eur. J. Biol. Res. 2019, 9, 64–76. [Google Scholar]
- Buchovec, I.; Lukseviciūtė, V.; Kokstaite, R.; Labeikyte, D.; Kaziukonyte, L.; Luksiene, Z. Inactivation of Gram (−) bacteria Salmonella enterica by chlorophyllin-based photosensitization: Mechanism of action and new strategies to enhance the inactivation efficiency. J. Photochem. Photobiol. B Biol. 2017, 172, 1–10. [Google Scholar] [CrossRef]
- Rajalakshmi, K.; Banu, N. Evaluation of Antibacterial Activity of Sodium Copper Chlorophyll in from Mimosa pudica L. Res. J. Pharm. Technol. 2017, 10, 487–489. [Google Scholar] [CrossRef]
- Azimi, S.; Behin, J.; Abiri, R.; Rajabi, L.; Derakhshan, A.A.; Karimnezhad, H. Synthesis, Characterization and Antibacterial Activity of Chlorophyllin Functionalized Graphene Oxide Nanostructures. Sci. Adv. Mater. 2014, 6, 771–781. [Google Scholar] [CrossRef]
- Hu, X.; Tanaka, A.; Tanaka, R. Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples. Plant Methods 2013, 9, 1. [Google Scholar] [CrossRef]
- Mogana, R.; Adhikari, A.; Tzar, M.N.; Ramliza, R.; Wiart, C. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complement. Med. Ther. 2020, 5, 55. [Google Scholar] [CrossRef] [PubMed]
- Vilar, S.; Cozza, G.; Moro, S. Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery. Curr. Top. Med. Chem. 2008, 8, 1555–1572. [Google Scholar] [CrossRef] [PubMed]
- Agu, P.C.; Afiukwa, C.A.; Orji, O.U.; Ezeh, E.M.; Ofoke, I.H.; Ogbu, C.O.; Ugwuja, E.I.; Aja, P.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci. Rep. 2023, 13, 13398. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef] [PubMed]
- Larson, M.R.; Rajashankar, K.R.; Patel, M.; Robinette, R.; Crowley, P.; Michalek, S.M.; Brady, L.J.; Deivanayagam, C.C. Crystal Structure of A3VP1 of AgI/II of Streptococcus mutans. Proc. Natl. Acad. Sci. USA 2010, 107, 5983–5988. [Google Scholar] [CrossRef]
- Guan, L.; Yang, H. ADMET-score—A comprehensive scoring function for evaluation of chemical drug-likeness. Med. Chem. Commun. 2018, 10, 148–157. [Google Scholar] [CrossRef]
- Ibrisimovic, M.A.; Ibrisimovic, M.; Ibrisimovic Mehmedinovic, N.; Hukic, M. A Novel Spectrophotometric Assay for the Determination of Biofilm Forming Capacity of Causative Agents of Urinary Tract Infections. Int. J. Eng. Res. Technol. (IJERT) 2017, 6, 1225–1230. [Google Scholar]
- Kang, M.; Kim, J.; Shin, B.; Lee, H.; Kim, Y.; Lim, H.; Oh, J. Inhibitory Effect of Chlorophyllin on the Propionibacterium acnes—Induced Chemokine Expression. J. Microbiol. 2013, 51, 844–849. [Google Scholar] [CrossRef]
- Banu, N. In vitro antimicrobial activity of Chlorophyllin from Phyllanthus emblica L. Indian J. Appl. Microbiol. 2016, 18, 2. [Google Scholar]
- Zhang, Z.; An, Y.; Wang, X.; Cui, L.; Li, S.; Liu, C.; Zou, Y.; Zhang, F.; Zeng, R. Bioactive Materials In vitro degradation, photo-dynamic and thermal antibacterial activities of Cu-bearing chlorophyllin-induced Ca-P coating on magnesium alloy AZ31. Bioact. Mater. 2022, 18, 284–299. [Google Scholar] [CrossRef]
- Suresh, H.D.; Nagananda, G.S.; Minchitha, K.U.; Swetha, S.; Suryan, S. Synthesis and Bio-evaluation of Soluble Sodium Copper Chlorophyllin Complexes from the Leaves of Aloe vera. S. Afr. J. Bot. 2022, 147, 1086–1095. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, J.; Zhou, X.; Li, Y. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Crit. Rev. Microbiol. 2021, 47, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Leme, A.F.P.; Koo, H.; Bellato, C.M.; Bedi, G.; Cury, J.A. The role of sucrose in cariogenic dental biofilm formation—New insight. J. Dent. Res. 2006, 85, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Afrasiabi, S.; Pourhajibagher, M.; Chiniforush, N.; Aminian, M.; Bahador, A. Anti-biofilm and antimetabolic effects of antimicrobial photodynamic therapy using chlorophyllin-phycocyanin mixture against Streptococcus mutans in experimental biofilm caries model on enamel slabs. Photodiagnosis Photodyn. Ther. 2020, 29, 101620. [Google Scholar] [CrossRef] [PubMed]
- Smołka, S.; Skorupa, M.; Fołta, K.; Banaś, A.; Balcerzak, K.; Krok, D.; Krukiewicz, K. Antibacterial coatings for electroceutical devices based on PEDOT decorated with gold and silver particles. Bioelectrochemistry 2023, 153, 108484. [Google Scholar] [CrossRef]
- Janik, W.; Nowotarski, M.; Shyntum, D.Y.; Banaś, A.; Krukiewicz, K.; Kudła, S.; Dudek, G. Antibacterial and biodegradable polysaccharide-based films for food packaging applications: Comparative study. Materials 2022, 15, 3236. [Google Scholar] [CrossRef]
S. mutans Isolates | Biofilm Strength | Mean ± Standard Deviation |
---|---|---|
ISO 1 | Strong Positive | 0.376 ± 0.11 |
ISO 2 | Strong Positive | 0.339 ± 0.10 |
ISO 3 | Strong positive | 0.375 ± 0.11 |
ISO 4 | Moderate positive | 0.215 ± 0.06 |
ISO 5 | Strong positive | 0.344 ± 0.14 |
ISO 6 | Moderate positive | 0.302 ± 0.06 |
ISO 7 | Moderate positive | 0.247 ± 0.05 |
ISO 8 | Strong positive | 0.390 ± 0.16 |
ISO 9 | Strong positive | 0.362 ± 0.11 |
ISO 10 | Strong positive | 0.390 ± 0.16 |
Biofilm Classification | Calculated OD Range | Number of Bacterial Isolates |
---|---|---|
Non-Adherent | <0.077 | - |
Weak | 0.077–0.154 | - |
Moderate | 0.154–0.308 | 3 (30%) |
Strong | >0.308 | 7 (70%) |
S. mutans Isolates | Biofilm Strength | Mean ± Standard Deviation |
---|---|---|
ISO 1 | Moderate positive | 0.18 ± 0.04 |
ISO 2 | Weak positive | 0.133 ± 0.01 |
ISO 3 | Weak positive | 0.121 ± 0.16 |
ISO 4 | Weak positive | 0.129 ± 0.02 |
ISO 5 | Moderate positive | 0.158 ± 0.02 |
ISO 6 | Weak positive | 0.130 ± 0.02 |
ISO 7 | Weak positive | 0.132 ± 0.04 |
ISO 8 | Moderate positive | 0.170 ± 0.17 |
ISO 9 | Moderate positive | 0.165 ± 0.05 |
ISO 10 | Weak positive | 0.145 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Ul Haq, I.; Ali, I.; Rehman, A.; Almehmadi, M.; Alsuwat, M.A.; Zaman, T.; Qasim, M. Antibacterial and Antibiofilm Potential of Chlorophyllin Against Streptococcus mutans In Vitro and In Silico. Antibiotics 2024, 13, 899. https://doi.org/10.3390/antibiotics13090899
Khan S, Ul Haq I, Ali I, Rehman A, Almehmadi M, Alsuwat MA, Zaman T, Qasim M. Antibacterial and Antibiofilm Potential of Chlorophyllin Against Streptococcus mutans In Vitro and In Silico. Antibiotics. 2024; 13(9):899. https://doi.org/10.3390/antibiotics13090899
Chicago/Turabian StyleKhan, Seemrose, Ihtisham Ul Haq, Imran Ali, Abdul Rehman, Mazen Almehmadi, Meshari A. Alsuwat, Tariq Zaman, and Muhammad Qasim. 2024. "Antibacterial and Antibiofilm Potential of Chlorophyllin Against Streptococcus mutans In Vitro and In Silico" Antibiotics 13, no. 9: 899. https://doi.org/10.3390/antibiotics13090899
APA StyleKhan, S., Ul Haq, I., Ali, I., Rehman, A., Almehmadi, M., Alsuwat, M. A., Zaman, T., & Qasim, M. (2024). Antibacterial and Antibiofilm Potential of Chlorophyllin Against Streptococcus mutans In Vitro and In Silico. Antibiotics, 13(9), 899. https://doi.org/10.3390/antibiotics13090899