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Abstract: Background: Daptomycin plus fosfomycin combination therapy is a valuable
strategy for treating staphylococcal osteoarticular infections (OIs), but hypernatremia and
hypokalemia due to sodium overload are important issues. The aim of this study was to
assess the likelihood of attaining a pharmacokinetic/pharmacodynamic (PK/PD) target
of AUC/MIC > 66.6 and/or of 70%t > MIC with continuous infusion (CI) fosfomycin at
the recommended vs. reduced dose in patients with OIs receiving combination therapy
with high-dose daptomycin. Adverse events were also evaluated. Methods: Patients
with OIs treated with 8–10 mg/kg daily daptomycin plus CI fosfomycin, and who had
a ≥1 TDM assessment of CI fosfomycin, were retrospectively included in the high-dose
(16 g daily) or reduced-dose (<16 g daily) groups. The attainment of the PK/PD targets
of 70%t > MIC and AUC/MIC > 66.6 up to an MIC of 32 mg/L was calculated. A CART
analysis was used to identify a cut-off of fosfomycin AUC that indicated occurrence of
hypernatremia and/or hypokalemia. Results: A total of 44 and 39 patients were included
in the high- and reduced-dose groups, respectively. The two groups did not differ in terms
of demographic characteristics, underlying infectious diseases and microbiological isolates.
No differences between groups in attaining both PK/PD targets up to an MIC of 32 mg/L
and in C-reactive protein reduction at the end of treatment were observed. Fosfomycin
AUC > 8245 mg × h/L and >8326 mg × h/L were associated with hypernatremia and
hypokalemia, respectively. Conclusions: CI fosfomycin at 8 g daily may reach optimal
PK/PD target attainment with better safety than the recommended 16 g daily dose in
patients with preserved renal function. Targeting fosfomycin AUC at 2131–8326 mg × h/L
or steady-state concentration at 88.8–347 mg/L may be adequate for optimizing drug
pharmacodynamics up to an MIC of 32 mg/L and minimizing the risk of hypernatremia
and hypokalemia.
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1. Introduction
Osteoarticular infections (OIs) represent one of the most difficult-to-treat bacterial

infections, associated with chronic disability and high healthcare costs. Their burden is
increasing due to aging populations, increasing incidence of chronic comorbidities and
widespread use of arthroplasty surgery. OIs include a heterogeneous group of diseases,
consisting of infections of the native tissues (such as vertebral osteomyelitis, septic arthritis,
diabetic foot infections and acute hematogenous osteomyelitis) together with implant-
associated infections (such as prosthetic joint infections, fracture-related infections and
spinal implant infections). Pathogenesis varies according to infection type and the main
mechanism of infections, this being spread from contiguous surrounding tissue, direct
inoculation of microorganisms during surgery or traumatic injury, or hematogenous spread
from bloodstream infections [1,2].

Many microorganisms are involved in OIs. Overall, Staphylococcus aureus and
coagulase-negative staphylococci (CoNS) may cause up to two-thirds of all infections, with
Staphylococcus aureus being the most prevalent single pathogen. Among them, methicillin-
resistance has been reported to occur in as high as 50% of strains [3]. Less frequent
pathogens may include streptococci, enterococci, Gram-negative bacilli and anaerobes.
Polymicrobial infections may be possible and may occur more frequently in cases of dia-
betic foot infections (up to 80% of cases) and of post-traumatic infections (approximately
30%) [4].

Intravenous (i.v.) fosfomycin is regarded as a valuable option for the treatment of
bone and joint infections because of its good bone penetration rate and its wide spectrum
of activity, including both methicillin-resistant Staphylococcus aureus (MRSA) and Gram-
negative bacteria [5,6]. Experimental studies have showed that fosfomycin has a valuable
synergic effect with daptomycin against staphylococci [7,8] and a considerable anti-biofilm
activity [8,9]. Consequently, the combination of high-dose daptomycin plus fosfomycin is
nowadays considered a valuable approach for starting treatment of staphylococcal OIs and
abating the bacterial burden in the first weeks of treatment [10].

Which pharmacokinetic/pharmacodynamic (PK/PD) determinant of fosfomycin may
correlate best with microbiological eradication and clinical efficacy against staphylococci
is still a matter of debate. Some authors found that maintaining concentrations above the
MIC for more than 70% of the dosing interval (70%t > MIC) was associated with good
antibacterial activity [11–13]. Others showed that an area under the concentration–time
curve to MIC ratio (AUC/MIC) > 66.6 was associated with a 2-log drop of staphylococcal
bacterial load at 24 h in an in vitro model of infection [14,15].

Fosfomycin is licensed for the treatment of OIs at a standard daily dose of
12–24 g in patients with normal renal function, and dosage reduction is recommended
only in patients having renal dysfunction with an estimated glomerular filtration rate
(eGFR) < 50 mL/min [16]. However, considering that i.v. fosfomycin has a disodium for-
mulation, excessive sodium load, induced by causing sodium overload and electrolytic
imbalance, could be an issue, especially in patients with heart failure and/or in the comor-
bid elderly. In this regard, it should not be overlooked that, with 330 mg being the sodium
content per each gram of disodium fosfomycin, the use of fosfomycin dosages in the upper
part of the licensed posology, namely 16–24 g, could pose some safety issues.

Interestingly, in a recent population pharmacokinetic study, we showed by means
of Monte Carlo simulations that using a reduced daily dose of 8 g daily administered
by continuous infusion (CI) may be sufficient for attaining an optimal PK/PD target of
70%t > MIC against Staphylococcus aureus, including MRSA, in the vast majority of patients
with OIs. Consequently, we started using reduced daily dosages of 8–12 g by CI and
measuring concentrations by means of therapeutic drug monitoring (TDM) for testing
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whether this approach may be valuable in granting similar PK/PD target attainment and
better safety compared to higher standard dosages in the management of OIs [17].

The aim of this study was to assess the likelihood of attaining a pharmacoki-
netic/pharmacodynamic (PK/PD) target of AUC/MIC > 66.6 and/or of 70%t > MIC
with continuous infusion (CI) fosfomycin at the recommended vs. reduced dose in patients
with OIs receiving combination therapy with high-dose daptomycin. Adverse events were
also evaluated.

2. Results
2.1. Patient Population

A total of 83 patients were included in this study; 53.1% (44/83) in the high-dose
group) and 46.9% (39/83) in the reduced-dose group. Their demographic and clinical
characteristics are reported in Table 1.

Table 1. Demographic and clinical characteristics.

Variable High-Dose
(n = 44)

Reduced-Dose
(n = 39) p-Value

Age (years) 56 (46.5–67.5) 59 (49–65.75) 0.535
Gender (M/F) 30/14 23/16 0.369
Weight (kg) 80 (70.5–94) 76 (67.25–85) 0.178
BMI (kg/m2) 27.6 (24.4–31.2) 26.4 (22.9–30.5) 0.352
Albumin (g/dL) 3.52 (2.98–3.89) 3.23 (2.82–3.51) 0.137
AST (IU/L) 19 (15–25.5) 21(15.8–31) 0.421
ALT (IU/L) 17.5 (13–30) 18 (12.8–30.8) 0.907
Serum creatinine (mg/dL) 0.72 (0.60–0.81) 0.725 (0.65–0.93) 0.111
eGFR (mL/min/1.73 m2) 108 (101.25–115.75) 98.5 (90–109) 0.002
Diagnosis

Prosthetic joint infections 21 (47.7) 23 (58.8) 0.379
Osteomyelitis 8 (18.3) 4 (10.3) 0.362
Post-operative spinal implant
infection 5 (11.4) 3 (7.7) 0.718

Infected non-union 3 (6.8) 4 (10.3) 0.701
Septic arthritis 3 (6.8) 3 (7.7) 1.000
Vertebral osteomyelitis 2 (4.5) 1 (2.6) 1.000
Skin and soft tissue infection 2 (4.5) 1 (2.6) 1.000

Microbiological isolates
MSSA 8 (18.2) 4 (10.3) 0.362
MRSA 5 (11.4) 0 (0) 0.057
CoNS 7 (15.9) 9 (23.1)
No isolates 22 (50) 26 (66.7) 0.181

Pharmacological treatment
Fosfomycin dose (g/daily) 16 (16–16) 8 (8–12) <0.001
Treatment duration (days) 8 (6–14) 11 (8–13) 0.220
Steady-state concentration (mg/L) 381.7 (312.9–512.5) 157.8 (113.8–261.6) <0.001
Total fosfomycin clearance (L/h) 1.8 (1.3–2.2) 2.3 (1.4–3.1) 0.008
Daptomycin dose (mg/daily) 700 (700–850) 700 (500–700) <0.001

Clinical outcome
Clinical efficacy 40 (90.9) 35 (89.7) 1.000

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CoNS, coagulase-negative
staphylococci; eGFR, estimated glomerular filtration rate; MSSA, methicillin-susceptible Staphylococcus aureus;
MRSA, methicillin-resistant Staphylococcus aureus; TDM, therapeutic drug monitoring.

The median (min–max) age and BMI of patients in the high-dose group were
56 (18–81) years and 27.6 (17.9–44.5) kg/m2, respectively. In the reduced-dose group,
the median (min-max) age and BMI were of 59 (18–82) years and 26.4 (14.5–38.1) kg/m2,
respectively. The two groups did not differ in terms of demographic characteristics, under-
lying infectious diseases and microbiological isolates. Baseline laboratory parameters were
also similar, apart from renal function. The estimated glomerular filtration rate slightly
differed between the two groups, but all patients had a preserved renal function [median
(min-max) eGFR of 98.5 (32–126) and 108 (67–134) mL/min/1.73 m2 in the reduced- and
high-dose group, respectively].
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Prosthetic joint infections and osteomyelitis were the two most prevalent infections,
accounting overall for 65.9% (29/44) and 69.2% (27/39) in the high- and reduced-dose
groups, respectively. Microbiological isolates were identified in 50% (22/44) and 33.4%
(13/39) of patients in the high- and reduced-dose groups, respectively. The most frequent
clinical isolates were Staphylococcus aureus [29.5% (13/44) of cases in the high-dose group]
and coagulase-negative staphylococci [23.1% (9/39) of cases in the reduced-dose group].

Median daily (min–max) fosfomycin doses were 16 g (16–16 g) in the high-dose
group and 8 g (8–12 g) in the reduced-dose group. In the reduced-dose group, compared
to the high-dose group, the median fosfomycin clearance was higher (2.3 vs. 1.8 L/h,
p = 008, respectively) and the median steady-state concentration (Css) was lower (157.8 vs.
381.7 mg/L, p < 0.001, respectively). Figure 1 shows the distribution of fosfomycin Css in
each group. A high inter-patient variability was observed in fosfomycin Css, with the CV%
being of 70 and 110% in the high- and reduced-dose group, respectively.
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Figure 1. Box and whisker plot of the fosfomycin plasma concentration in patients treated with
continuous infusion fosfomycin in the high-dose (n = 44) vs. reduced-dose (n = 39) regimen.

In patients with eGFR > 70 mL/min/1.73 m2, patient clearances had a 12.6-fold
variation, ranging from 0.35 to 4.44 L/h.

2.2. Pharmacokinetic/Pharmacodynamic Analysis

The percentage of desired PK/PD target attainment of fosfomycin in the two groups,
both in terms of 70%t > MIC and of AUC/MIC > 66.6, in relation to the EUCAST MIC50

and MIC90 of Staphylococcus aureus and to an MIC value of 8 and 32 mg/L, are summarized
in Table 2. In the high-dose group, all patients attained both of these targets, whereas, in
the reduced-dose group, all patients attained a 70%t > MIC and a 92.3% AUC/MIC > 66.6.

The distribution of C-reactive protein (C-RP) at baseline and at the end of fosfomycin
treatment is depicted in Figures 2A and 2B for the high- and reduced-dose group, respec-
tively. No significant differences were observed in the median C-RP value at baseline in the
high- vs. reduced-group (9.66 vs. 10.88, p = 0.392) as well as in the median C-RP value at
the end of treatment in the high- vs. reduced-dose group (2.0 vs. 2.75, p = 0.644).

Clinical evaluation of antimicrobial treatment at time of switching was similar in the
two groups, with the treatment efficacy being 90.9% (40/44) in the high-dose group and
89.7% (35/39) in the reduced-dose group.
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Table 2. Attainment of the pharmacokinetic/pharmacodynamic indexes of efficacy of 70%t > MIC
and of AUC/MIC > 66.6 in relation to the MIC50 and MIC90 derived from the EUCAST distribution
and also in relation to an MIC of 8 and 32 mg/L in patients who received high- vs. reduced-dose
continuous infusion fosfomycin.

PK/PD Parameter High Dose
(n = 44)

Reduced Dose
(n = 39) p-Value

Fosfomycin MIC of 4 mg/L (MIC50)
70%t > MIC 44 (100) 39 (100) 1.000
AUC/MIC > 66.6 44 (100) 39 (100) 1.000

Fosfomycin MIC of 8 mg/L
70%t > MIC 44 (100) 39 (100) 1.000
AUC/MIC > 66.6 44 (100) 39 (100) 1.000

Fosfomycin of 16 mg/L (MIC90)
70%t > MIC 44 (100) 39 (100) 1.000
AUC/MIC > 66.6 44 (100) 39 (100) 1.000

Fosfomycin MIC of 32 mg/L
70%t > MIC 44 (100) 39 (100) 1.000
AUC/MIC > 66.6 44 (100) 36 (92.3) 0.099

AUC, area under-the-curve; eGFR, estimated glomerular filtration rate; MIC, minimum inhibitory concentration
(mg/L); TDM, therapeutic drug monitoring.
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2.3. Assessment of the Safety Profile

The safety profile of antimicrobial treatment in the two groups is reported in Table 3.
Hypernatremia was observed at a higher proportion in patients in the high-dose compared
to the reduced-dose group, but the difference did not reach a statistical significance (11.4
vs. 2.6%, p = 0.207). Interestingly, hypokalemia trended to be prevalent in the high-dose
group compared to the reduced-dose group (15.9% vs. 2.6%, p = 0.06). Overall, fosfomycin
exposure in terms of AUC was higher in patients experiencing electrolyte imbalances
compared to those who did not. Specifically, in patients with vs. without hypernatremia
fosfomycin AUC was 10,942 vs. 6648 mg × h/L (p = 0.037), respectively, while in patients
with vs. without hypokalemia it was 9744 vs. 6640 mg × h/L (p = 0.015), respectively.

Interestingly, a classification and regression (CART) analysis allowed for identifying cut-off
values of fosfomycin AUC as valuable predictors for both hypernatremia (AUC > 8245 mg × h/L,
Figure 3) and hypokaliemia (AUC > 8326 mg × h/L, Figure 4) occurrence.
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Table 3. Type of adverse drug reactions observed in patients who received high- vs. reduced-dose
continuous infusion fosfomycin.

Type of ADR High Dose
(n = 44)

Reduced Dose
(n = 39) p-Value

Hypernatraemia 5 (11.4) 1 (2.6) 0.207
Hypokalemia 7 (15.9) 1 (2.6) 0.061
Increased CPK 1 (2.3) 1 (2.6) 1.000
Gastrointestinal disorders 0 (0) 1 (2.6) 0.469
Hypertransaminasemia 0 (0) 2 (5.1) 0.217
Total adverse drug events 13 (29.5) 6 (15.4) 0.190

CPK, creatine phophokinase.
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3. Discussion
This is the first real-life study comparatively assessing the PK/PD target attainment

and safety profile of high-dose vs. reduced-dose continuous infusion fosfomycin combined
with daptomycin in a cohort of patients with osteoarticular infections. Our findings sug-
gest that reduced dosages of fosfomycin may be sufficient for reaching optimal PK/PD
targets against staphylococci with an MIC up to 32 mg/L while, at the same time, achiev-
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ing a similar C-RP reduction at the end of treatment and minimizing the occurrence of
adverse events.

Different randomized clinical trials and observational studies evaluated the clinical
role of fosfomycin in different clinical scenarios [18–22]. However, in the setting of bone
and joint infections most studies confirmed the efficacy of combination therapy with
fosfomycin [21–23].

Despite being discovered in 1969 and its consequent long life in the market, there is
still scarce information on most essential aspects of fosfomycin pharmacodynamics. First,
for patients with preserved renal function, there is great variability in the recommended
dose amount, namely from 12 to 24 g daily, and mode of administration [16]. This latter
aspect has recently been the aim of two prospective population pharmacokinetic studies
that showed the superiority of CI in reaching the 70%t > MIC PK/PD target [17,24]. Monte
Carlo simulations showed that doses of 8–12 g may be sufficient against MSSA and MRSA
infections, assuming EUCAST MIC distribution for the cumulative fraction of response
calculation [17]. The second aspect is related to which PK/PD target should be considered.
Some authors have suggested that fosfomycin behaves like a time-dependent antibiotic,
especially against Enterobacterales, and proposed a 70%t > MIC target, albeit with low
supporting evidence [11–14,25,26]. More recently, Noel et al. observed, in an animal model
of staphylococcal infection, that an AUC/MIC > 66.6 was the best PK/PD parameter
associated with a 2-log reduction at 24 h in a viable count of S. aureus [15]. Therefore, it
appears reasonable to consider this parameter when optimizing fosfomycin dosing in the
context of staphylococcal infections. The third critical issue is related to the unavailability
of pathogen MIC even in most tertiary care hospitals, as fosfomycin microbiological testing
requires the agar dilution method [27], and this hampers the estimation of patient-specific
AUC/MIC. Finally, it is worth noting that, for fosfomycin, EUCAST removed the clinical
breakpoint, which was formerly set at 32 mg/L. For this reason, we arbitrarily considered
the MIC50 and the MIC90 for PK/PD calculation in our population even if a cut-off value of
32 mg/L may be still considered to be effective against less susceptible strains. However,
when looking at the EUCAST MIC distribution, only 5% (30/604) of staphylococcal strains
have MIC > 16 mg/L, namely the MIC90.

In this regard, our study may also contribute to shedding some light on which is the
lower concentration of fosfomycin that should be a target for TDM purposes. Indeed, to
target an AUC/MIC > 66.6 at an MIC of 32 mg/L, an AUC of 2131.2 mg × h/L, which
corresponds to a Css of 88.8 mg/L, should be achieved in plasma. Overall, few studies have
reported on the use of low dosages of fosfomycin in the treatment of OIs. The possibility of
using lower-than-standard doses in this setting was proposed first by Rodriguez-Gascon
et al., who suggested using a loading dose followed by maintenance doses of <16 g daily
by continuous perfusion [28]. Subsequently, Luengo et al. described a successful treatment
over 42 days with 8 g daily fosfomycin combined with 10 mg/kg daily daptomycin in an
elderly patient with a difficult-to-treat infection of a total femoral replacement caused by
multi-drug-resistant Staphylococcus epidermidis [29].

Most studies are aligned in observing that hypernatremia and hypokalemia are the
most frequent adverse event of i.v. fosfomycin. A French study that included 72 patients
treated with i.v. fosfomycin mostly for bone and joint infections with a median dose of 12 g
daily for a median duration of 11 days showed an overall prevalence rate of adverse events
of 38% and of hypokalemia of 26% [30]. Rates of hypokalemia ranging from 4.3 to 28.57%
and of hypernatremia ranging from 10.5–41.9% [31–34] were also reported by studies
including different patient populations. Our findings of hypokalemia and hypernatremia
being at 9.6% and 7.2%, respectively, are consistent with these data.
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While hypernatremia may be easily explained by the extra sodium intake related to
fosfomycin, hypokalemia is believed to be due to an increase in urinary potassium excretion
within the distal tubule [6]. Electrolyte imbalance may be a serious issue, especially in
patients with pre-existing heart diseases or renal failure. However, in most cases, both
hypernatremia and hypokalemia are mild and lead to discontinuation in less than 20% of
cases [31]. Similarly, the role of potassium supplementation while receiving fosfomycin
therapy remains unclear [32]. Nevertheless, in some recent randomized trials evaluating the
role of combination fosfomycin in the treatment of MRSA bacteremia and endocarditis [19]
and the effectiveness of fosfomycin in the treatment of Escherichia. coli bacteremic urinary
tract infections [35], significantly more adverse events leading to treatment discontinuation
occurred in the fosfomycin arm, including heart failure.

Biscarini et al., in their study of a mixed population of 224 patients with different
infections, underlying diseases and microbiological isolates, showed that the occurrence
of adverse events due to fosfomycin was associated with ICU admission, the presence of
deep-seated infections and septic shock in multinomial regression analyses [31]. Among the
68/224 patients who had at least one TDM assessment of fosfomycin concentration, they
also showed that patients who developed hypernatremia had median trough concentration
(Cmin) values that were significantly higher than those who did not (419.5 vs. 140.6 mg/L,
p = 0.012), and a trend of higher median values was also noted for Css (294 vs. 146 mg/L,
p = 0.103, respectively) [31]. Our CART model confirmed this observation for hypernatremia
and extended it also for hypokalemia with good reliability and consistency. In particular,
the AUC cut-off value of 8245 mg × h/L for hypernatriemia, corresponding to a Css of
343.5 mg/L, and the AUC of 8326 mg × h/L for hypokalemia, corresponding to a Css
of 346.9 mg/L, may be regarded as the plasma therapeutic threshold for toxicity when
adjusting fosfomycin doses through TDM.

TDM of fosfomycin has been recently advocated as a useful tool in order to optimize
fosfomycin exposure, but few clinical experiences have been reported so far. Recently, our
group described a patient with ventilator-associated pneumonia and bacteremia caused
by KPC/OXA48-producing Klebsiella pneumoniae who was successfully treated with CI
fosfomycin and meropenem by means of TDM-based dose adjustments of both antibi-
otics. In particular, the fosfomycin dose was reduced from 24 g daily to 16 g daily, and
microbiological eradication was conformed at day 7 and 15 days [36]. We also described a
case of another patient treated with CI fosfomycin and ceftazidime/avibactam for post-
neurosurgical ventriculitis caused by carbapenem-resistant Klebsiella pneumoniae who was
successfully treated by TDM-based dose optimization in order to target the PK/PD pa-
rameters of efficacy both in plasma and in the CSF [37]. Successful treatment outcomes
in six patients treated with continuous infusion fosfomycin and cefiderocol optimized by
TDM for difficult-to-treat Pseudomonas aeruginosa infections were also reported by us. In
that cohort, the median fosfomycn Css was 504.9 (363.2–647.2) mg/L, but, unfortunately,
no fosfomycn-related adverse events were retrieved [38]. An observational German study
on 17 patients with ventriculitis treated with 24 g continuous infusion fosfomycin com-
bined with meropenem and vancomycin showed median plasma Css and AUC values of
209 (163–438) mg/L and 4800 (3816–7152) mg × h/L, respectively [39]. Interestingly, the
mean (±SD) fosfomcyin clearance in this population was of 4.2 ± 2.2 L/h, which is higher
than in our patients despite similar renal functions. Although fosfomycin is eliminated
mostly by the renal route, the relationship between fosfomycin clearance and eGFR is not
linear but exponential [39], and a high variability in the plasma concentrations has been
observed both in this and in our cohort. Even if this aspect deserves further investigation,
the unpredictability of plasma concentrations in patients with preserved renal functions
may require TDM for reducing the risk of fosfomycin toxicity.
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We acknowledge some important limitations of this study. First, the retrospective
design and the presence of possible confounders should be recognized. Specifically, we
did not retrieve patients’ co-treatments with other drugs so that the eventuality that other
agents could have concurred to cause hypokalemia, namely corticosteroids or tiazidic
diuretics, could not be ruled out [40]. Second, the small sample size may have limited
the statistical power for detecting the difference in the proportion of drug-related adverse
events between the two groups. However, the association between plasma exposure
and both hypernatremia and hypokalemia occurrence was significant and represents a
new finding with clinical implications. The unavailability of fosfomycin MIC may have
precluded the determination of patient specific PK/PD targets for a more personalized
dose approach. Finally, we recognize that prospective confirmatory studies are needed,
especially in relation to the identified threshold of toxicity.

4. Materials and Methods
4.1. Study Design and Clinical Setting

This retrospective, observational, monocentric study was carried out in patients admit-
ted to the IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, between
2020 and 2024 who had OIs treated with daptomycin plus CI fosfomycin and who were
undergoing TDM of fosfomycin.

At our center, a multidisciplinary team is specifically dedicated to optimizing the
management of OIs in both inpatient and outpatient clinics. This team is coordinated by
infectious disease consultants and involves either orthopedic surgeons for interventions or
MD clinical pharmacologists for TDM-based antimicrobial treatment optimizations.

Usually, the management of OIs depends on several factors, and, for an extensive
description of these, the readers are referred to a previously published study [10]. Briefly,
antibiotic therapy is started only after collecting samples from the infection site for per-
forming microbiological cultures (bioptic sampling in cases of vertebral osteomyelitis with
no surgical indication or intra-operative sampling in the other types of infections). After-
wards, empirical intravenous antibiotic therapy is always started with anti MRSA/MRSE
empirical treatment based on daptomycin plus fosfomycin. If additional risk factors
for ESBL-producing Gram-negative bacteria exist, ertapenem is also added. Empirical
treatment is maintained and remains unchanged until feed-back from the culture results
is obtained. Whenever cultures are positive for a given pathogen, therapy is promptly
switched to target treatment (by the oral route whenever feasible); otherwise, only anti
MRSA/MRSE coverage with i.v. long-acting antibiotics (i.e., dalbavancin) or with oral
agents is maintained. Antimicrobial treatment is usually continued until normalization of
the C-reactive protein (generally up to 4–6 weeks in most cases), but, if the local signs of
infection persist or re-appear, antimicrobials are stopped and the patient is referred again
to the orthopedic surgeon.

Prosthetic joint infections were defined according to the EBJIS criteria for the “infection
likely” or “infection confirmed” category [41]. Fracture-related infections (FRIs) were
defined as the isolation of phenotypically indistinguishable microorganisms from the
culture of at least 2 separate deep tissue/implant specimens in the presence of a sinus
tract breakdown coupled with the presence of >5 polymorphonuclear cells per high-power
field during the histopathology of intra-operative specimens [42]. Osteomyelitis was
defined as the presence of an inflammatory process in the the bone caused by an infecting
microorganism in the absence of any prosthetic material [1]. Septic arthritis was defined
as the presence of a combination of clinical findings, physical examination and laboratory
investigations of blood and synovial fluid [2,43].
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Patients retrospectively included in this study received early empirical combination
therapy based only on daptomycin (8–10 mg/kg daily) plus CI fosfomycin and were
clinically assessed for our aims until switching from antimicrobial treatment to target or
step-down therapy (namely more or less the first 2 weeks of treatment). Patients receiving
combo therapy with agents other than daptomycin and those undergoing hemodialysis
were excluded.

The preferred posology of CI fosfomycin changed over time in agreement with the
findings of the previously mentioned population pharmacokinetic study [17]. Specifically,
a standard 16 g daily CI fosfomycin dose was initially used. Reduced doses were applied
after publishing a population pharmacokinetic/pharmacodynamics study showing that
a dose of 8–12 g daily had likelihood >90% of attaining 70%t > MIC against S. aureus
and CoNS across eGFR classes of 60–>130 mL/min/1.73 m2. These reduced doses were
preferred at the discretion of the prescribing ID specialist.

After an initial 8 g loading dose over 1 h, patients having treatment before May 2023
received 16 g daily CI fosfomycin (high-dose group), whereas those having treatment
thereafter received 8–12 g daily (reduced-dose group).

After 48–72 h from starting therapy, each patient underwent TDM for measuring fos-
fomycin plasma steady-state concentrations. Fosfomycin Css was targeted to >88.8 mg/L in
order to achieve both 70%t > MIC [11–13] and AUC/MIC > 66.6 [15] against MRSA/MRSE
with an MIC up to 32 mg/L, namely a value covering the vast majority of the MIC distribu-
tion of fosfomycin against staphylococci [44].

Plasma fosfomycin concentrations were measured by means of a liquid chromatography–
tandem mass spectrometry (LS/MS-MS) analytic method, as previously described [45]. The
intra- and inter-day coefficient of variations (CV) of the quality controls were 0.09–0.14%
and 0.08–0.11%, respectively. The lower limit of quantification was 0.5 mg/L.

In each patient, fosfomycin AUC and clearance were calculated at each TDM assess-
ment by means of the following Equations (1) and (2):

AUC
(

mg × h
L

)
= Css

(mg
L

)
× 24 h (1)

CL (L/h) =
IR

(mg
h

)
× 24 h

AUC (mg × h/L)
(2)

where AUC is the fosfomycin 24 h-area under-the-concentration versus the time curve
(mg × h/L), CL is the fosfomycin clearance (L/h) and IR is the fosfomycin infusion rate
(mg/h).

In patients undergoing multiple TDM assessments, the average clearance was calculated.

4.2. Data Collection

Demographic (age, gender, weight, height), clinical (type and site of infection, mi-
crobiological isolates, if available) and pharmacological data (fosfomycin dose, treatment
duration and TDM values) were retrieved from electronical medical records. Laboratory
parameters such as serum albumin, alanine aminotransferase, aspartate aminotransferase,
sodium and potassium concentrations were collected at baseline and at the end of empir-
ical treatment. Serum creatinine was assessed during each TDM session. The estimated
glomerular filtration rate was calculated by means of the CKD-EPI formula [46].

4.3. Clinical Evaluation and Safety

Patient clinical assessments during antimicrobial treatment included a full blood
chemistry examination with inflammatory bio-markers twice-weekly. Clinical efficacy
was assessed at time of switching antimicrobial treatment and was considered as positive
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whenever local (rubor, tumor, calor, dolor) and/or systemic (fever and/or pain) signs of
infection were improving vs. baseline and the C-RP was decreasing or normalizing in the
absence of findings suggestive of worsening of the infection in imaging studies. Treatment
inefficacy was defined when at least one of the previous criteria was not achieved [47].

4.4. Statistical Analysis

The Kolmogorov–Smirnov test was used to assess whether data were normally or
non-normally distributed. Accordingly, means ± SD or medians with IQR were used in
descriptive statistics. The statistical difference between groups was assessed by means of
a chi-squared test or Fisher’s exact test, when required. Classification and a regression
tree (CART) analysis was used to predict a cut-off value of fosfomycin AUC that best
correlated with the probability of hypokalemia or hypernatremia occurrence. All statistical
analysis and graphs were performed with R version 4.3.3 (The R Foundation for Statistical
Computing, Vienna, Austria).

5. Conclusions
In conclusion, this study showed that, in patients with osteoarticular infections, 8 g

daily of continuous infusion fosfomycin may reach optimal PK/PD target attainment with
better safety than the use of the recommended 16 g daily dose in patients with preserved
renal functions. Targeting fosfomycin Css between 88.8 and 347 mg/L was suggested for
optimizing drug pharmacodynamics up to an MIC of 32 mg/L and minimizing the risk
of hypernatremia and hypokalemia. Considering the high inter-individual variability of
fosfomycin, TDM may represent a useful tool for optimizing drug exposure and reduce the
risk of drug-related adverse events.
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