Antifungal, Antitumoral and Antioxidant Potential of the Danube Delta Nymphaea alba Extracts
Abstract
:1. Introduction
2. Results
2.1. Toxicity Effects on Wheat Seed Germination
2.2. Antifungal Activity
2.3. Cytotoxic Effects of N. alba Extracts on Normal and Tumor Cells
Combined Cytotoxic Effects of N. alba Extracts and Cisplatin on Ovarian Cell Lines
2.4. Antioxidant Capacities by Spectrophotometric Methods
2.5. Electrochemical Evaluation of Antioxidant Capacity
3. Materials and Methods
3.1. General
3.2. Preparation of N. alba Extracts
3.3. Toxicity Evaluation of N. alba Extracts on Wheat Seed Germination
Confocal Laser Scanning Microscopy (CLSM)
3.4. Assessment of Antifungal Activity of N. alba Extracts
3.4.1. Determination of N. alba Extracts’ Minimum Inhibitory Concentration (MIC)
3.4.2. Assessment of Fungicidal/Fungistatic Activity
3.5. In Vitro Cytotoxicity Assessment of N. alba Extracts on Normal and Tumor Cell Lines
Analysis of Combined N. alba Extracts and Cisplatin Cytotoxic Effects
3.6. Antioxidant Capacity Assays
3.6.1. β-Carotene Bleaching
3.6.2. ABTS Assay
3.6.3. FRAP
3.6.4. Electrochemical Characterization of N. alba Extracts
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jamil, M.M.A.; Ganeson, S.; Mammam, H.B.; Wahab, R.A. Artocarpus altilis extract effect on cervical cancer cells. Mater. Today Proc. 2018, 5, 15559–15566. [Google Scholar] [CrossRef]
- Krishnan, G.S.; Sebastian, D.; Savarimuthu, I.; Poovathumkal, J.A.; Fleming, A.T. In vitro and in silico anticancer effect of combined crude acetone extracts of Plumbago zeylanica L., Limonia acidissima L. and Artocarpus heterophyllus Lam. Synergy 2017, 5, 15–23. [Google Scholar] [CrossRef]
- Ashraf, A.; Sarfraz, R.A.; Mahmood, A.; Ud Din, M. Chemical composition and in vitro antioxidant and antitumor activities of Eucalyptus camaldulensis Dehn. Leaves. Ind. Crops Prod. 2015, 74, 241–248. [Google Scholar] [CrossRef]
- Hossain, M.A.; Nagooru, M.R. Biochemical Profiling and Total Flavonoids Contents of Leaves Crude Extract of Endemic Medicinal Plant Corydyline terminalis L. Kunth. Pharmacogn. J. 2011, 3, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Alasmary, F.A.S.; Awaad, A.S.; Kamal, M.; Alqasoumi, S.I.; Zain, M.E. Antitumor activity of extract and isolated compounds from Drechslera rostrata and Eurotium tonophilum. Saudi Pharm. J. 2018, 26, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Galocha, M.; Pais, P.; Cavalheiro, M.; Pereira, D.; Viana, R.; Teixeira, M.C. Divergent Approaches to Virulence in C. albicans and C. glabrata: Two Sides of the Same Coin. Int. J. Mol. Sci. 2019, 20, 2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nami, S.; Aghebati-Maleki, A.; Morovati, H.; Aghebati-Maleki, L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed. Pharm. 2019, 110, 857–868. [Google Scholar] [CrossRef]
- Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, 383–392. [Google Scholar] [CrossRef]
- Costa, J.P.; Pinheiro, M.J.F.; Sousa, S.A.; Botelho do Rego, A.M.; Marques, F.; Oliveira, M.C.; Leitão, J.H.; P Mira, N.; Carvalho, N.N.; Fernanda, M. Antimicrobial Activity of Silver Camphorimine Complexes against Candida Strains. Antibiotics 2019, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Shoeb, M. Anticancer agents from medicinal plants. Bangladesh J. Pharmacol. 2006, 1, 35–41. [Google Scholar] [CrossRef]
- Rana, S.; Dixit, S.; Mittal, A. Anticancer Effects of Chemotherapy and Nature Products. J. Med. Discov. 2017, 2, 2. [Google Scholar] [CrossRef]
- Ruijun, W.; Shi, W.; Yijun, X.; Mengwuliji, T.; Lijuan, Z.; Yumin, W. Antitumor effects and immune regulation activities of a purified polysaccharide extracted from Juglan regia. Int. J. Biol. Macromol. 2015, 72, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Benarba, B.; Pandiella, A. Colorectal cancer and medicinal plants: Principle findings from recent studies. Biomed. Pharmacother. 2018, 107, 408–423. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, M.N.; Ramakrishanan, G.K.; Konda, V.G.R.; Roy, A.; Geetha, R.V. In vitro Antioxidant and Free Radical Scavenging Activity of Aqueous and Ethanolic Flower Extract of Nymphaea Alba. Int. J. Drug Dev. Res. 2011, 3, 252–258. [Google Scholar]
- Seca, A.M.L.; Pinto, D.C.G.A. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int. J. Mol. Sci. 2018, 19, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varghese, E.; Samuel, S.M.; Abotaleb, M.; Cheema, S.; Mamtani, R.; Büsselberg, D. The “Yin and Yang” of Natural Compounds in Anticancer Therapy of Triple-Negative Breast Cancers. Cancers 2018, 10, 346. [Google Scholar] [CrossRef] [Green Version]
- Nussbaumer, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta 2011, 85, 2265–2289. [Google Scholar] [CrossRef]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Demain, A.L.; Vaishnav, P. Natural products for cancer chemotherapy. Microb. Biotechnol. 2011, 4, 687–699. [Google Scholar] [CrossRef] [Green Version]
- Deyou, T.; Woo, J.-H.; Choi, J.-H.; Janga, Y.P. A new natural product from the leaves of Olinia usambarensis and evaluation of its constituents for cytotoxicity against human ovarian cancer cells. S. Afr. J. Bot. 2017, 113, 182–185. [Google Scholar] [CrossRef]
- Sisodiya, P.S. Plant Derived Anticancer Agents: A Review. Int. J. Res. Dev. Pharm. Life Sci. 2013, 2, 293–308. [Google Scholar]
- Cudalbeanu, M.; Ghinea, I.O.; Furdui, B.; Dah-Nouvlessounon, D.; Raclea, R.; Costache, T.; Cucolea, I.E.; Urlan, F.; Dinica, R.M. Exploring New Antioxidant and Mineral Compounds from Nymphaea alba Wild-Grown in Danube Delta Biosphere. Molecules 2018, 23, 1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbala, J.; Abbasi, B.A.; Batool, R.; Mahmood, T.; Ali, B.; Khalil, A.T.; Kanwal, S.; Shah, S.A.; Ahmad, R. Potential phytocompounds for developing breast cancer therapeutics: Nature’s healing touch. Eur. J. Pharmacol. 2018, 827, 125–148. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Singh, A.K.; Kumar, R.; Gangul, R.; Rana, H.K.; Pandey, K.P.; Sethi, G.; Bishayee, A.; Pandey, A.K. Corilagin in Cancer: A Critical Evaluation of Anticancer Activities and Molecular Mechanisms. Molecules 2019, 24, 3399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazir, S.; Qureshi, M.A.; Chat, O.A. Anti-tumor, Anti-oxidant and Anti-microbial potential of Nymphaea alba and Nymphaea mexicana flowers—A comparative study. Adv. Biomed. Pharm. 2015, 2, 196–204. [Google Scholar] [CrossRef]
- Dash, B.K.; Sen, M.K.; Alam, K.; Hossain, K.; Islam, R.; Banu, N.A.; Rahman, S.; Jamal, A.H.M. Antibacterial activity of Nymphaea nouchali (Burm. f) flower. Ann. Clin. Microbiol. Antimicrob. 2013, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supaphon, P.; Keawpiboon, C.; Preedanon, S.; Phongpaichit, S.; Rukachaisirikul, V. Isolation and antimicrobial activities of fungi derived from Nymphaea lotus and Nymphaea stellata. Mycoscience 2018, 59, 415–423. [Google Scholar] [CrossRef]
- Chana, C.L.; Gana, R.Y.; Shah, N.P.; Corke, H. Polyphenols from selected dietary spices and medicinal herbs differentially affect common food-borne pathogenic bacteria and lactic acid bacteria. Food Control 2018, 92, 437–443. [Google Scholar] [CrossRef]
- Martins, N.; Ferreira, I.C.F.R.; Henriques, M.; Silva, S. In vitro anti-Candida activity of Glycyrrhiza glabra L. Ind. Crops Prod. 2016, 83, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Iwashita, K.; Kobori, M.; Yamaki, K.; Tsushida, T. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci. Biotechnol. Biochem. 2000, 64, 1813–1820. [Google Scholar] [CrossRef]
- Khan, N.; Sultana, S. Anticarcinogenic effect of Nymphaea alba against oxidative damage, hyperproliferative response and renal carcinogenesis in Wistar rats. Mol. Cell. Biochem. 2005, 271, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Aimvijarn, P.; Palipoch, S.; Okada, S.; Suwannalert, P. Thai water lily extract induces B16 melanoma cell apoptosis and inhibits cellular invasion through the role of cellular oxidants. Asian Pac. J. Cancer Prev. 2018, 19, 149–153. [Google Scholar] [PubMed]
- Zhou, L.; Xia, M.; Wang, L.; Mao, H. Toxic effect of perfluorooctanoic acid (PFOA) on germination and seedling growth of wheat (Triticum aestivum L.). Chemosphere 2016, 159, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Tăbăcaru, A.; Dediu Botezatu, A.V.; Horincar, G.; Furdui, B.; Dinică, R.M. Green Accelerated Synthesis, Antimicrobial Activity and Seed Germination Test of Quaternary Ammonium Salts of 1,2-bis(4-pyridyl)ethane. Molecules 2019, 24, 2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmieri, M.J.; Luberb, J.; Andrade-Vieira, L.F.; Davide, L.C. Cytotoxic and phytotoxic effects of the main chemical components of spent pot-liner: A comparative approach. Mutat. Res. 2014, 763, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Gordaliza, M. Natural products as leads to anticancer drugs. Clin. Transl. Oncol. 2007, 9, 767–776. [Google Scholar] [CrossRef]
- Samaranayake, Y.H.; Cheung, B.P.K.; Wang, Y.; Yau, J.Y.Y.; Yeung, K.W.S.; Samaranayake, L.P. Fluconazole resistance in Candida glabrata is associated with increased bud formation and metallothionein production. J. Med. Microbiol. 2013, 62, 303–318. [Google Scholar] [CrossRef] [Green Version]
- Brunke, S.; Hube, B. Two unlike cousins: Candida albicans and C. glabrata infection strategies. Cell. Microbiol. 2013, 15, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Seleem, D.; Pardi, V.; Murata, R.M. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch. Oral Biol. 2017, 76, 76–83. [Google Scholar] [CrossRef]
- Fort, R.S.; Barnech, J.M.T.; Dourron, J.; Colazzo, M.; Aguirre-Crespo, F.J.; Duhagon, M.A.; Álvarez, G. Isolation and Structural Characterization of Bioactive Molecules on Prostate Cancer from Mayan Traditional Medicinal Plants. Pharmaceuticals 2018, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Kapinova, A.; Stefanicka, P.; Kubatka, P.; Zubor, P.; Uramova, S.; Kello, M.; Mojzis, J.; Blahutova, D.; Qaradakhi, T.; Zulli, A.; et al. Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomed. Pharmacother. 2017, 96, 1465–1477. [Google Scholar] [CrossRef] [PubMed]
- Ashidi, J.S.; Houghton, P.J.; Hylands, P.J.; Efferth, T. Ethnobotanical survey and cytotoxicity testing of plants of South-western Nigeria used to treat cancer, with isolation of cytotoxic constituents from Cajanus cajan Millsp. leaves. J. Ethnopharmacol. 2010, 28, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Jin, G.; Ge, Y.; Guo, Z. Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways. Inflammopharmacology 2019, 27, 1021–1036. [Google Scholar] [CrossRef] [PubMed]
- Tayeh, Z.; Ofir, R. Asteriscus graveolens Extract in Combination with Cisplatin/Etoposide/Doxorubicin Suppresses Lymphoma Cell Growth through Induction of Caspase-3 Dependent Apoptosis. Int. J. Mol. Sci. 2018, 19, 2219. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, M.; Qian, J.; Xu, W.; Wang, J.; Hou, G.; Ji, L.; Suo, L. Sequentially self-assembled polysaccharide-based nanocomplexes for combined chemotherapy and photodynamic therapy of breast cancer. Carbohydr. Polym. 2019, 203, 203–213. [Google Scholar] [CrossRef]
- Fernandes, R.S.; Silva, J.O.; Seabra, H.A.; Oliveira, M.S.; Carregal, V.M.; Vilela, J.M.C.; Andrade, M.S.; Townsend, D.M.; Colletti, P.M.; Leite, E.A.; et al. α- Tocopherol succinate loaded nanostructed lipid carriers improves antitumor activity of doxorubicin in breast cancer models in vivo. Biomed. Pharmacother. 2018, 103, 1348–1354. [Google Scholar] [CrossRef]
- Jiang, G.; Liu, J.; Ren, B.; Zhang, L.; Owusu, L.; Liu, L.; Zhang, J.; Tang, Y.; Li, W. Anti-tumor and chemosensitization effects of Cryptotanshinone extracted from Salvia miltiorrhiza Bge. on ovarian cancer cells in vitro. J. Ethnopharmacol. 2017, 205, 33–40. [Google Scholar] [CrossRef]
- Yu, J.; Ma, Y.; Drisko, J.; Chen, Q. Antitumor Activities of Rauwolfia vomitoria Extract and Potentiation of Carboplatin Effects Against Ovarian Cancer. Curr. Ther. Res. 2013, 75, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Tallarida, R.J. Quantitative Methods for Assessing Drug Synergism. Genes Cancer 2011, 2, 1003–1008. [Google Scholar] [CrossRef] [Green Version]
- Seo, E.J.; Klauck, S.M.; Efferth, T.; Panossian, A. Adaptogens in chemobrain (Part III): Antitoxic effects of plant extracts towards cancer chemotherapy-induced toxicity—Transcriptome-wide microarray analysis of neuroglia cells. Phytomedicine 2018, 56, 246–260. [Google Scholar] [CrossRef]
- Chou, T.C. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Res. 2010, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, S.; Aoshima, H.; Saitoh, Y.; Miwa, N. Highly hydroxylated or γ-cyclodextrin-bicapped water-soluble derivative of fullerene: The antioxidant ability assessed by electron spin resonance method and β-carotene bleaching assay. Bioorg. Med. Chem. Lett. 2009, 19, 5293–5296. [Google Scholar] [CrossRef] [PubMed]
- Martysiak-Żurowska, D.; Wenta, W. A comparison of ABTS and DPPH methods for assessing the total antioxidant capacity of human milk. Acta Sci. Pol. Technol. Aliment. 2012, 1, 83–89. [Google Scholar]
- Jones, A.; Pravadali-Cekic, S.; Dennis, G.R.; Bashir, R.; Mahon, P.J.; Shalliker, R.A. Ferric reducing antioxidant potential (FRAP) of antioxidants using reaction flow chromatography. Anal. Chim. Acta 2017, 967, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, A.B.; Karakas, F.P.; Turker, A.U. In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey. Asian Pac. J. Trop. Med. 2012, 6, 616–624. [Google Scholar] [CrossRef]
- Batool, R.; Kalsoom, A.; Akbar, I.; Arshad, N.; Jamil, N. Antilisterial Effect of Rosa damascena and Nymphaea alba in Mus musculus. BioMed Res. Int. 2018, 2018, 4543723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, S.; Ashfaq, U.A.; Ijaz, B.; Riazuddin, S. Anti-hepatitis C virus activity and synergistic effect of Nymphaea alba extracts and bioactive constituents in liver infected cells. Microb. Pathog. 2018, 121, 198–209. [Google Scholar] [CrossRef]
- Bancirova, M. Changes of the Quercetin Absorption Spectra in Dependence on Solvent. Chem. J. 2015, 1, 31–34. [Google Scholar]
- Seeram, N.; Lee, R.; Hardy, M.; Heber, D. Rapid large scale purification 541 of ellagitannins from pomegranate husk, a by-product of the commercial juice 542 industry. Sep. Purif. Technol. 2005, 41, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in Cancer and Apoptosis. Cancers 2019, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Geethangili, M.; Ding, S.T. A Review of the Phytochemistry and Pharmacology of Phyllanthus urinaria L. Front. Pharmacol. 2018, 9, 1109. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Rahman, H.; Abd El-Salam, N.M.; Tawab, A.; Hussain, A.; Ali Khan, T.; Ali Khan, U.; Qasim, M.; Adnan, M.; Azizullah, A.; et al. Punica granatum peel extracts: HPLC fractionation and LC MS analysis to quest compounds having activity against multidrug resistant bacteria. BMC Complement. Altern. Med. 2017, 17, 247. [Google Scholar] [CrossRef]
- Singh, A.; Chauhan, S.S.; Tripathi, V. Quinic acid attenuates oral cancer cell proliferation by downregulating cyclin D1 Expression and Akt signaling. Pharmacogn. Mag. 2018, 14, 14–19. [Google Scholar]
- Inbathamizh, L.; Padmini, E. Quinic acid as a potent drug candidate for prostate cancer—A Comparative Pharmacokinetic Approach. Asian J. Pharm. Clin. Res. 2013, 6, 106–112. [Google Scholar]
- Chung, I.M.; Kim, M.Y.; Park, W.H.; Moon, H.I. Quinic acid derivatives from Saussurea triangulata attenuates glutamate-induced neurotoxicity in primary cultured rat cortical cells. J. Enzym. Inhib. Med. Chem. 2009, 24, 188–191. [Google Scholar] [CrossRef]
- Tanruean, K.; Poolprasert, P.; Kumla, J.; Suwannarach, N.; Lumyong, S. Bioactive compounds content and their biological properties of acetone extract of Cuscuta reflexa Roxb. grown on various host plants. Nat. Prod. Res. 2019, 33, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Kim, M.C.; Um, J.Y.; Hong, S.H. The Beneficial Effect of Vanillic Acid on Ulcerative Colitis. Molecules 2010, 15, 7208–7217. [Google Scholar] [CrossRef]
- Kumar, S.; Prahalathan, P.; Raja, B. Antihypertensive and antioxidant potential of vanillic acid, a phenolic compound in L-NAME-induced hypertensive rats: A dose-dependence study. Redox Rep. 2011, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Fu, Y.; Liu, M.; Wang, T.; Zhang, J.; Yang, M.; Sun, Z.; Li, X.; Li, Y. In Vitro Antibacterial Activity and Mechanism of Vanillic Acid against Carbapenem-Resistant Enterobacter cloacae. Antibiotic 2019, 8, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tukiran; Mahmudah, F.; Hidayati, N.; Shimizu, K. A phenolic acid and its antioxidant activity from stem bark of chloroform fraction of Syzygium littorale (blume) amshoff (Myrtaceae). Molekul 2016, 11, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Rafiee, S.A.; Farhoosh, R.; Sharif, A. Antioxidant Activity of Gallic Acid as Affected by an Extra Carboxyl Group than Pyrogallol in Various Oxidative Environments. Eur. J. Lipid Sci. Technol. 2018, 120, 1800319. [Google Scholar] [CrossRef]
- Chen, G.H.; Lin, Y.L.; Hsu, W.L.; Hsieh, S.K.; Tzen, J.T.C. Significant elevation of antiviral activity of strictinin from Puer tea after thermal degradation to ellagic acid and gallic acid. J. Food Drug Anal. 2015, 23, 116–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Ye, T.; Liang, L.; Liang, W.; Jian, P.; Zhou, K.; Zhang, L. Anti-cancer activity of an ethyl-acetate extract of the fruits of Terminalia bellerica (Gaertn.) Roxb. through an apoptotic signaling pathway in vitro. J. Tradit. Chin. Med. Sci. 2018, 5, 370–379. [Google Scholar] [CrossRef]
- Lipińska, L.; Klewicka, E.; Sójka, M. Structure, occurrence and biological activity of ellagitannins: A general review. Acta Sci. Pol. Technol. Aliment. 2014, 13, 289–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.; Kang, Q.; Ren, J.; Li, Z.; Xu, X. Antitumor Molecular Mechanism of Chlorogenic Acid on Inducting Genes GSK-3β and APC and Inhibiting Gene β-Catenin. J. Anal. Methods Chem. 2013, 2013, 951319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil, M.; Wianowska, D. Chlorogenic acids—Their properties, occurrence and analysis. Ann. Univ. Mariae Curie Skłodowska Sect. AA Chem. 2017, 72, 61. [Google Scholar] [CrossRef]
- Jia, L.; Jin, H.; Zhou, J.; Chen, J.; Lu, Y.; Ming, Y.; Yu, Y. A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. BMC Complement. Altern. Med. 2013, 13, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, J.; Klein-Junior, L.C.; Filho, V.C.; De Campos Buzii, F. Anti-hyperalgesic activity of corilagin, a tannin isolated from Phyllanthusniruri L. (Euphorbiaceae). J. Ethnopharmacol. 2013, 146, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Taofiq, O.; Sandrina, A.H.; Calhelha, R.C.; Fernandes, I.P.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Ferreira, I.C.F.R.; Barreiro, M.F. Phenolic acids, cinnamic acid, and ergosterol as cosmeceutical ingredients: Stabilization by microencapsulation to ensure sustained bioactivity. Microchem. J. 2019, 147, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Lou, W.; Chen, Y.; Ma, H.; Liang, G.; Liu, B. Antioxidant and a-amylase inhibitory activities of tannic acid. J. Food Sci. Technol. 2018, 55, 3640–3646. [Google Scholar] [CrossRef]
- Gulcin, I.; Huyut, Z.; Elmastas, M.; Aboul-Enein, H.Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010, 3, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, D.; Szawara-Nowak, D.; Zieliński, H. Determination of the Antioxidant Activity of Rutin and Its Contribution to the Antioxidant Capacity of Diversifed Buckwheat Origin Material By Updated Analytical Strategies. Pol. J. Food Nutr. Sci. 2010, 60, 315–321. [Google Scholar]
- Abarikwu, S.O.; Olufemi, P.D.; Lawrence, C.J.; Wekere, F.C.; Ochulor, A.C.; Barikuma, A.M. Rutin, an antioxidant flavonoid, induces glutathione and glutathione peroxidase activities to protect against ethanol effects in cadmium-induced oxidative stress in the testis of adult rats. Andrologia 2017, 49, e12696. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Yaich, H.; Cheikhrouhou, S.; Khemakhem, I.; Bouaziz, M.; Attia, H.; Ayadi, M.A. Antioxidant properties and phenolic profile characterization by LC–MS/MS of selected Tunisian pomegranate peels. J. Food Sci. Technol. 2017, 54, 2890–2901. [Google Scholar] [CrossRef]
- Yin, P.; Yang, L.; Xue, Q.; Yu, M.; Yao, F.; Sun, L.; Liu, Y. Identification and inhibitory activities of ellagic acid and kaempferol-derivatives from Mongolian oak cups against a-glucosidase, a-amylase and protein glycation linked to type II diabetes and its complications and their influence on HepG2 cells’viability. Arab. J. Chem. 2018, 11, 1247–1259. [Google Scholar] [CrossRef]
- Ahmed, S.; Khan, H.; Fratantonio, D.; Hasan, M.M.; Sharifi, S.; Fathi, N.; Ullah, H.; Rastrelli, L. Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine 2019, 59, 152883. [Google Scholar] [CrossRef]
- Kim, K.J.; Park, S.U. A recent overview on the biological and pharmacological activities of ferulic acid. EXCLI J. 2019, 18, 132–138. [Google Scholar]
- Chahar, M.K.; Sharma, N.; Dobhal, M.P.; Joshi, Y.C. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev. 2011, 5, 1–12. [Google Scholar]
- Lam, K.Y.; Ling, A.P.; Koh, R.Y.; Wong, Y.P.; Say, Y.H. A Review on Medicinal Properties of Orientin. Adv. Pharmacol. Sci. 2016, 2016, 4104595. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Xie, B.; Dong, C.; Liu, G.; Hu, D.; Qin, Y.; Li, H.; Liu, H. Effect of fertilizer prepared from human feces and straw on germination, growth and development of wheat. Acta Astronaut. 2018, 1–30. [Google Scholar] [CrossRef]
- Sturm, D.J.; Kunz, C.; Gerhards, R. Inhibitory effects of cover crop mulch on germination and growth of Stellaria media (L.) Vill. Chenopodium album L. and Matricaria chamomilla L. Crop Prot. 2016, 90, 125–131. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Cuenca-Estrella, M.; Lass-Flörl, C.; Hope, W. EUCAST technical note on the EUCAST definitive document EDef 7.2: Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin. Microbiol. Infect. 2012, 18, E246–E247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, J.M.S.; Guerreiro, S.I.; Lourenço, A.; Alves, M.M.; Montemor, M.F.; Mira, N.P.; Leitão, J.H.; Carvalho, M.F.N.N. Ag(I) camphorimine complexes with antimicrobial activity towards clinically important bacteria and species of the Candida genus. PLoS ONE 2017, 12, e0177355. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.K.; Verma, A.; Thomas, T.J.; Chou, T.C.; Gallo, M.A.; Shirahata, A.; Thomas, T. Synergistic Apoptosis of MCF-7 Breast Cancer Cells by 2-Methoxyestradiol and Bis(ethyl)norspermine. Cancer Lett. 2007, 250, 311–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Li, H.; Fan, Y.; Liu, Y.; Man, S.; Yu, P.; Gao, W. Combination treatment with Rhizoma Paridis and Rhizoma Curcuma longa extracts and 10-hydroxycamptothecin enhances the antitumor effect in H22 tumor model by increasing the plasma concentration. Biomed. Pharmacother. 2016, 83, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Athamena, S.; Chalghem, I.; Kassah-Laouar, A.; Laroui, S.; Khebri, S. Activité anti-oxydante et antimicrobienne d’extraits de Cuminum cyminum L. Leban. Sci. J. 2010, 11, 69–81. [Google Scholar]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
Physiological Parameters * | Concentration of the N. alba Extracts (µg/mL) | Control | |||||||
---|---|---|---|---|---|---|---|---|---|
Leaf | Root | ||||||||
10 | 100 | 500 | 1000 | 10 | 100 | 500 | 1000 | ||
G % | 94.2 ± 0.24 | 94.6 ± 0.40 | 95.9 ± 0.91 | 97.4 ± 0.50 | 94.7 ± 0.52 | 96 ± 0.37 | 96 ± 0.15 | 97.4 ± 1.00 | 100 ± 0.00 |
RRG % | 84.60 ± 1.20 | 101.13 ± 0.87 | 103.43 ± 1.13 | 103.55 ± 0.97 | 69.09 ± 0.73 | 91.76 ± 1.00 | 94.55 ± 0.76 | 100.07 ± 0.45 | 100 ± 0.00 |
GI | 1.1 ± 0.10 | 0.9 ± 0.20 | 0.9 ± 0.25 | 0.9 ± 0.14 | 1.4 ± 0.10 | 1.0 ± 0.21 | 1.0 ± 0.50 | 1.0 ± 0.45 | 1.0 ± 0.00 |
VI | 120.2 ± 0.43 | 146.2 ± 0.35 | 117.9 ± 0.10 | 113.8 ± 0.10 | 89.5 ± 0.24 | 137.6 ± 0.17 | 92.9 ± 0.24 | 123.7 ± 0.13 | 66.6 ± 0.14 |
TI | 0.8 ± 0.12 | 0.6 ± 0.12 | 0.5 ± 0.24 | 0.6 ± 0.10 | 0.7 ± 0.43 | 0.5 ± 0.12 | 0.5 ± 0.11 | 0.8 ± 0.10 | 1.0 + 0.00 |
N. alba Extracts | Tumor Cells * | |||
---|---|---|---|---|
V79 | A2780 | LNCaP | MCF-7 | |
Leaf | 367 ± 50 | 23.2 ± 3.0 | 274 ± 81 | 25.4 ± 5.9 |
Root | 281 ± 59 | 19.4 ± 3.8 | 152 ± 47 | 18.1 ± 3.3 |
Drug (µg/mL) | A2780 * | A2780cisR * | |||
---|---|---|---|---|---|
Leaf | CisPt | Fa | CI | Fa | CI |
1000 | 100 | 0.03 | 4.85 | 0.12 | 1.20 |
500 | 50 | 0.01 | 1.03 | 0.10 | 0.44 |
200 | 20 | 0.04 | 1.22 | 0.06 | 0.08 |
100 | 10 | 0.02 | 0.35 | 0.07 | 0.05 |
10 | 1 | 0.70 | 2.07 | 0.60 | 0.57 |
Root | CisPt | Fa | CI | Fa | CI |
1000 | 100 | 0.10 | 12.59 | 0.25 | 2.81 |
500 | 50 | 0.12 | 7.64 | 0.32 | 2.28 |
200 | 20 | 0.09 | 2.25 | 0.17 | 0.30 |
100 | 10 | 0.12 | 1.52 | 0.26 | 0.30 |
10 | 1 | 0.69 | 2.25 | 0.89 | 10.03 |
Assay * | N. alba Extracts | |||||
---|---|---|---|---|---|---|
Leaf | Root | |||||
Inhibition Percent (%) | IC50 (µg/mL) | µg TEq/1 g | Inhibition Percent (%) | IC50 (µg/mL) | µg TEq/1 g | |
BCB | 78.6 ± 0.19 | 33 ± 0.86 | 28,933 ± 0.89 | 90.1 ± 0.90 | 21 ± 0.55 | 79,371 ± 1.03 |
ABTS | 77.0 ± 0.73 | 12 ± 0.11 | 1309 ± 0.33 | 78.2 ± 0.12 | 10 ± 0.10 | 1950 ± 0.41 |
FRAP | 74.6 ± 0.13 | 30 ± 0.25 | 2245 ± 0.67 | 79.7 ± 0.13 | 13 ± 0.15 | 2407 ± 0.98 |
No. | Identified Compounds from N. alba Extracts | Biologic Properties | References |
---|---|---|---|
1 | HHDP-hexoside | antioxidant, anti-inflammatory, antitumor, and apoptotic properties; antibacterial activity against E. coli, S. aureus, A. baumannii, P. aeruginosa; | [59,60,61,62] |
2 | Quinic acid | induces cancer cell death by modulating the expression of Akt, phospho-Akt, and cell cycle pathway; anti-prostate cancer, attenuates Alzheimer’s disease | [63,64,65] |
3 | Vanillic acid | antibacterial, antioxidant and antihypertensive activities, α-glucosidase and tyrosinase inhibitory, effects against dextran sulfate sodium (DSS)-induced ulcerative colitis | [66,67,68,69] |
4 | Gallic acid | antiviral and antioxidant activities, anticancer activity by inducing apoptosis, downregulating genes involved in cell cycle and angiogenesis, and stimulating a cellular immune response | [24,70,71,72,73] |
5 | Castalin | antimicrobial, anti-inflammatory | [74] |
6 | Chlorogenic acid | inhibiting gene β-catenin and inducting genes GSK-3β, antispasmodic and antioxidant activities, inhibition of the HIV-1 integrase and inhibition of the mutagenicity of carcinogenic compounds | [75,76] |
7 | Corilagin | anticancer, anti-hyperalgesic, antioxidant, anti-inflammatory, hepatoprotective, and antitumor actions, induced apoptosis and autophagic cell death | [24,73,77,78] |
8 | Brevifolin | antioxidant, anti-inflammatory and anticancer | [61] |
9 | Caffeic acid | inhibiting gene β-catenin and inducting genes GSK-3β, antispasmodic and antioxidant activities | [75,76] |
10 | p-Coumaric acid | anti-inflammatory, anti-tyrosinase and antimicrobial activities, antispasmodic and antioxidant activities | [61,76,79] |
11 | Tannic acid | anticancer activity by inducing apoptosis, downregulating genes involved in cell cycle and angiogenesis, and stimulating a cellular immune response, Antioxidant and α-amylase inhibitory activities | [24,80,81] |
12 | Rutin | antioxidant activity, apoptosis, down regulating genes involved in cell cycle and angiogenesis antimetastatic, induces glutathione and glutathione peroxidase activities | [23,82,83] |
13 | Ellagic acid | anticancer activity by inducing apoptosis, downregulating genes involved in cell cycle and angiogenesis, and stimulating a cellular immune response; antioxidant and antiviral activities, inhibit α-glucosidase and α-amylase | [24,72,84,85] |
14 | Ellagic acid rhamnosyl | anticancer activity by inducing apoptosis, downregulating genes involved in cell cycle and angiogenesis, and stimulating a cellular immune response | [24,73] |
15 | Quercetin | apoptosis, down regulating genes involved in cell cycle and angiogenesis inhibited melanoma cell inhibits development of Candida spp.; antifungal | [23,39,59] |
16 | Ellagic acid-pentoside | anticancer activity by inducing apoptosis, downregulating genes involved in cell cycle and angiogenesis, and stimulating a cellular immune response, antioxidant activity | [24,73,84] |
17 | Naringenin | anticancer effect arrests cell development at the G0/G1 phase; inhibits Candida spp. growth | [39,43,60] |
18 | Naringin | anticancer effect arrests cell development at the G0/G1 phase; inhibits Candida spp. growth | [39,43,60] |
20 | Luteolin | anticancer associated with the induction of apoptosis, and inhibition of cell proliferation, metastasis and angiogenesis | [60,86] |
21 | Ferulic acid | synergistic effects against Candida albicans; anti-inflammatory and antioxidant activities, antispasmodic and antioxidant activities | [76,87] |
22 | Cinnamic acid derivative | anti-inflammatory, anti-tyrosinase and antimicrobial activities | [79] |
23 | Catechin | anticancer activity | [60,88] |
24 | Epicatechin | anticancer activity | [60,88] |
25 | Apigenin | anticancer effect by arresting cell development at the G0/G1 phase; the inhibition of phosphorylation of mitogen-activated protein kinase (MAPK) | [60] |
26 | Orientin | antioxidant, antiviral and antibacterial activities, anti-inflammatory neuroprotective or antidepressant-like effects | [89] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cudalbeanu, M.; Furdui, B.; Cârâc, G.; Barbu, V.; Iancu, A.V.; Marques, F.; Leitão, J.H.; Sousa, S.A.; Dinica, R.M. Antifungal, Antitumoral and Antioxidant Potential of the Danube Delta Nymphaea alba Extracts. Antibiotics 2020, 9, 7. https://doi.org/10.3390/antibiotics9010007
Cudalbeanu M, Furdui B, Cârâc G, Barbu V, Iancu AV, Marques F, Leitão JH, Sousa SA, Dinica RM. Antifungal, Antitumoral and Antioxidant Potential of the Danube Delta Nymphaea alba Extracts. Antibiotics. 2020; 9(1):7. https://doi.org/10.3390/antibiotics9010007
Chicago/Turabian StyleCudalbeanu, Mihaela, Bianca Furdui, Geta Cârâc, Vasilica Barbu, Alina Viorica Iancu, Fernanda Marques, Jorge Humberto Leitão, Sílvia Andreia Sousa, and Rodica Mihaela Dinica. 2020. "Antifungal, Antitumoral and Antioxidant Potential of the Danube Delta Nymphaea alba Extracts" Antibiotics 9, no. 1: 7. https://doi.org/10.3390/antibiotics9010007
APA StyleCudalbeanu, M., Furdui, B., Cârâc, G., Barbu, V., Iancu, A. V., Marques, F., Leitão, J. H., Sousa, S. A., & Dinica, R. M. (2020). Antifungal, Antitumoral and Antioxidant Potential of the Danube Delta Nymphaea alba Extracts. Antibiotics, 9(1), 7. https://doi.org/10.3390/antibiotics9010007