Antimicrobial Resistance in Fecal Escherichia coli from Humans and Pigs at Farms at Different Levels of Intensification
Abstract
:1. Introduction
2. Results
2.1. Occurrence of E. coli in Sample Population
2.2. Occurrence of Methicillin-Resistant Staphylococcus Aureus (MRSA)
2.3. Antimicrobial Resistance in E. coli Isolates
2.4. Antimicrobial Resistance Profiles and Distribution
2.5. Correlation among Resistance in the Isolates
3. Discussion
4. Materials and Methods
4.1. Study Area and Study Population
4.2. Collection of Fecal Samples for Escherichia coli Analyses
4.3. Collection of Swab Samples for Methicillin Resistant Staphylococcus Aureus (MRSA) Detection
4.4. Isolation of Escherichia coli
4.5. Laboratory Analyses for Methicillin-Resistant Staphylococcus Aureus (MRSA)
4.6. Antimicrobial Susceptibility Testing
4.7. Data Analysis
4.8. Ethical Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vanderhaeghen, W.; Dewulf, J. Antimicrobial use and resistance in animals and human beings. Lancet Planet. Heal. 2017, 1, e307–e308. [Google Scholar] [CrossRef]
- Coyne, L.A.; Arief, R.A.; Beningo, C.; Giang, V.N.; Huong, L.Q.; Jeamsripong, S.; Kalpravidh, W.; McGrane, J.; Padungtod, P.; Patrick, I.; et al. Characterizing Antimicrobial Use in the Livestock Sector in Three South East Asian Countries (Indonesia, Thailand, and Vietnam). Antibiotics 2019, 8, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OIE (World Animal Health Organization). Annual Report on Antimicrobial Agents Intended for Use in Animals. 2018. Available online: https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/AMR/Annual_Report_AMR_3.pdf (accessed on 12 June 2020).
- Magnusson, U.; Sternberg, S.; Eklund, G.; Rozstalnyy, A. Prudent and Efficient Use of Antimicrobials in Pigs and Poultry; FAO Animal Production and Health Manual 23; FAO: Rome, Italy, 2019; Available online: http://www.fao.org/3/ca6729en/CA6729EN.pdf (accessed on 12 June 2020).
- Gilbert, M.; Conchedda, G.; Van Boeckel, T.P.; Cinardi, G.; Linard, C.; Nicolas, G.; Thanapongtharm, W.; D’Aietti, L.; Wint, G.R.W.; Newman, S.H.; et al. Income Disparities and the Global Distribution of Intensively Farmed Chicken and Pigs. PLoS ONE 2015, 10, e0133381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nhung, N.T.; Van Cuong, N.; Thwaites, G.E.; Carrique-Mas, J.J. Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review. Antibiotics 2016, 5, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 2019, 365, eaaw1944. [Google Scholar] [CrossRef] [Green Version]
- Zellweger, R.M.; Carrique-Mas, J.; Limmathurotsakul, D.; Day, N.P.J.; Thwaites, G.E.; Baker, S.; Ashley, E.; De Balogh, K.; Baird, K.; Basnyat, B.; et al. A current perspective on antimicrobial resistance in Southeast Asia. J. Antimicrob. Chemother. 2017, 72, 2963–2972. [Google Scholar] [CrossRef] [Green Version]
- Ström, G.; Halje, M.; Karlsson, D.; Jiwakanon, J.; Pringle, M.; Fernström, L.-L.; Magnusson, U. Antimicrobial use and antimicrobial susceptibility in Escherichia coli on small- and medium-scale pig farms in north-eastern Thailand. Antimicrob. Resist. Infect. Control. 2017, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- WHO (World Health Organization). Critically Important Antimicrobials for Human Medicine 6th Revision. 2019. Available online: https://www.who.int/foodsafety/publications/antimicrobials-sixth/en/ (accessed on 12 June 2020).
- Padungtod, P.; Kaneene, J.B.; Hanson, R.; Morita, Y.; Boonmar, S. Antimicrobial resistance inCampylobacterisolated from food animals and humans in northern Thailand. FEMS Immunol. Med. Microbiol. 2006, 47, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Trongjit, S.; Angkititrakul, S.; Tuttle, R.E.; Poungseree, J.; Padungtod, P.; Chuanchuen, R. Prevalence and antimicrobial resistance in Salmonella enterica isolated from broiler chickens, pigs and meat products in the Thailand-Cambodia border provinces. Microbiol. Immunol. 2017, 61, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Burow, E.; Rostalski, A.; Harlizius, J.; Gangl, A.; Simoneit, C.; Grobbel, M.; Kollas, C.; Tenhagen, B.-A.; Käsbohrer, A. Antibiotic resistance in Escherichia coli from pigs from birth to slaughter and its association with antibiotic treatment. Prev. Veter Med. 2019, 165, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Szmolka, A.; Nagy, B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front. Microbiol. 2013, 4, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Monitoring and Reporting of Antimicrobial Resistance in Zoonotic and Commensal Bacteria 2013/652/EU. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013D0652 (accessed on 12 June 2020).
- Cuny, C.; Wieler, L.H.; Witte, W. Livestock-Associated MRSA: The Impact on Humans. Antibiotics 2015, 4, 521–543. [Google Scholar] [CrossRef] [PubMed]
- NORM/NORM-VET 2018. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. Tromsø/Oslo 2019. Available online: https://www.vetinst.no/en/surveillance-programmes/norm-norm-vet-report (accessed on 12 June 2020).
- Swedres-Svarm. Consumption of Antibiotics and Occurrence of Resistance in Sweden. Solna/Uppsala. 2018. Available online: https://www.sva.se/media/jzdlctnk/rapport_swedres-svarm_2018.pdf (accessed on 12 June 2020).
- Thanapongtharm, W.; Linard, C.; Chinson, P.; Kasemsuwan, S.; Visser, M.; Gaughan, A.E.; Epprecht, M.; Robinson, T.P.; Gilbert, M. Spatial analysis and characteristics of pig farming in Thailand. BMC Vet. Res. 2016, 12, 218. [Google Scholar] [CrossRef]
- Ström Hallenberg, G.; Jiwakanon, J.; Angkititrakul, S.; Kang-air, S.; Osbjer, K.; Lunha, K.; Sunde, M.; Järhult, J.D.; Van Boeckel, T.P.; Rich, K.M.; et al. Antibiotic use in pig farms at different levels of intensification–farmers’ knowledge and practices in northeastern Thailand. PLoS ONE. under review.
- Love, D.C.; Tharavichitkul, P.; Arjkumpa, O.; Imanishi, M.; Hinjoy, S.; Nelson, K.; Nachman, K.E. Antimicrobial use and multidrug-resistant Salmonella spp., Escherichia coli and Enterococcus faecalis in swine from northern Thailand. Thai J. Vet. Med. 2015, 45, 43–53. [Google Scholar]
- Verkade, E.; Kluytmans, J. Livestock-associated Staphylococcus aureus CC398: Animal reservoirs and human infections. Infect. Genet. Evol. 2014, 21, 523–530. [Google Scholar] [CrossRef]
- Boonyasiri, A.; Tangkoskul, T.; Seenama, C.; Saiyarin, J.; Tiengrim, S.; Thamlikitkul, V. Prevalence of antibiotic resistant bacteria in healthy adults, foods, food animals, and the environment in selected areas in Thailand. Pathog. Glob. Health 2014, 108, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Hetzer, B.; Orth-Höller, D.; Würzner, R.; Kreidl, P.; Lackner, M.; Müller, T.; Knabl, L.; Geisler-Moroder, D.R.; Mellmann, A.; Sesli, Ö.; et al. Enhanced acquisition of antibiotic-resistant intestinal E. coli during the first year of life assessed in a prospective cohort study. Antimicrob. Resist. Infect. Control. 2019, 8, 79. [Google Scholar] [CrossRef] [Green Version]
- Mazurek, J.; Bok, E.; Baldy-Chudzik, K. Complexity of Antibiotic Resistance in Commensal Escherichia coli Derived from Pigs from an Intensive-Production Farm. Microbes Environ. 2018, 33, 242–248. [Google Scholar] [CrossRef]
- Scott, H.M.; Acuff, G.; Bergeron, G.; Bourassa, M.W.; Gill, J.; Graham, D.W.; Kahn, L.H.; Morley, P.S.; Salois, M.J.; Simjee, S.; et al. Critically important antibiotics: Criteria and approaches for measuring and reducing their use in food animal agriculture. Ann. NY Acad. Sci. 2019, 1441, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Grøntvedt, C.A.; Elstrom, P.; Stegger, M.; Skov, R.L.; Andersen, P.S.; Larssen, K.W.; Urdahl, A.; Angen, Ø.; Larsen, J.; Åmdal, S.; et al. Methicillin-ResistantStaphylococcus aureusCC398 in Humans and Pigs in Norway: A “One Health” Perspective on Introduction and Transmission. Clin. Infect. Dis. 2016, 63, 1431–1438. [Google Scholar] [CrossRef] [Green Version]
- Stegger, M.; Andersen, P.S.; Kearns, A.; Pichon, B.; Holmes, M.A.; Edwards, G.; Laurent, F.; Teale, C.; Skov, R.; Larsen, A.R. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecALGA251. Clin. Microbiol. Infect. 2012, 18, 395–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tunsjø, H.S.; Follin-Arbelet, B.; Clausen, N.M.; Ness, Y.; Leegaard, T.M.; Bemanian, V. A rapid, high-throughput screening method for carriage of methicillin-resistant Staphylococcus aureus. APMIS 2013, 121, 865–870. [Google Scholar] [CrossRef]
- EUCAST (European Committee on Antimicrobial Susceptibility Testing). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 9.0. 2019. Available online: http://www.eucast.org (accessed on 12 June 2020).
Antimicrobial Agents | Resistant Isolates % (n) | ||||||
---|---|---|---|---|---|---|---|
Pigs | Humans | Overall (n = 987) | |||||
MSF (n = 457) | SSF (n = 300) | Total (n = 757) | Contact (n = 139) | Non-Contact (n = 91) | Total (n = 230) | ||
Cefotaxime | 0.9 (4) | 1.0 (3) | 0.92 (7) | 2.2 (3) | 2.2 (2) | 2.2 (5) | 1.2 (12) |
Chloramphenicol | 42.7 (195) a | 26.0 (78) a | 36.1 (273) d | 15.1 (21) | 13.2 (12) | 14.3 (33) d | 31.0 (306) |
Ciprofloxacin | 13.8 (63) | 11.7 (35) | 12.9 (98) | 10.8 (15) | 14.3 (13) | 12.2 (28) | 12.8 (126) |
Gentamicin | 6.8 (31) b | 4.3 (13) b | 5.8 (44) | 3.6 (5) | 4.4 (4) | 3.9 (9) | 5.4 (53) |
Meropenem | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Tetracycline | 52.9 (242) c | 64.7 (194) c | 57.6 (436) d | 38.4 (54) | 48.4 (44) | 43.0 (99) d | 54.2 (535) |
Trimethoprim/Sulfamethoxazole | 46.4 (212) a | 33.0 (99) a | 41.1 (311) d | 21.6 (30) | 22.0 (20) | 21.7 (50) d | 36.6 (361) |
Multidrug-resistant | 22.0 (128) | 28.0 (66) | 25.6(194) c | 12.2 (17) | 13.2 (12) | 12.6 (29) c | 22.6 (223) |
Resistant Isolates % (n) | |||
---|---|---|---|
Antibiotic | Working in Small Scale Farms n = 92 | Working in Medium Scale Farms n = 47 | All Contact Humans n = 139 |
Cefotaxime | 1.4 (2) | 2.1 (1) | 2.2(3) |
Chloramphenicol | 17.4 (16) | 10.6 (5) | 15.1 (21) |
Ciprofloxacin | 11.9 (11) | 8.5 (4) | 10.8 (15) |
Gentamicin | 3.2 (3) | 4.2 (2) | 3.6 (5) |
Meropenem | 0 (0) | 0 (0) | 0 (0) |
Tetracycline | 39.1 (36) | 38.3 (18) | 38.8 (54) |
Trimethoprim/Sulfamethoxazole | 17.5 (16) | 29.9 (14) | 21.6 (30) |
Multidrug-resistant | 13.0 (12) | 10.6 (5) | 12.2 (17) |
Resistance Patterns | Percent (n) of Isolates with the Respective Antibiogram | ||||
---|---|---|---|---|---|
Pigs | Humans | Total (n = 987) | |||
Medium-Scale (n = 457) | Small-Scale (n= 300) | Contact (n = 139) | Non-Contact (n = 91) | ||
TET | 15.3 (70) | 29.7 (89) | 14.4 (20) | 31.2 (19) | 20.0 (198) |
CHL-SXT-TET | 18.8 (86) | 15.7 (47) | 5.8 (8) | 6.6 (4) | 14.7 (145) |
CHL-SXT | 11.2 (51) | 2.3 (7) | 1.4 (2) | 0.0 (0) | 6.8 (60) |
SXT-TET | 4.8 (20) | 6.7 (20) | 5.0 (7) | 9.8 (6) | 5.4 (53) |
CHL-TET | 3.9 (18) | 2.0 (6) | 5.0 (7) | 3.3 (2) | 3.3 (33) |
CIP-TET | 2.2 (10) | 4.3 (13) | 2.9 (4) | 6.6 (4) | 3.1 (31) |
SXT | 3.9 (18) | 1.3 (4) | 2.9 (4) | 4.9 (3) | 2.9 (29) |
CIP | 2.8 (13) | 2.0 (6) | 0.7 (1) | 1.6 (1) | 2.1 (21) |
CHL | 2.0 (9) | 2.3 (7) | 0.0 (0) | 1.6 (1) | 1.7 (17) |
CHL-CIP-SXT-TET | 1.8 (8) | 2.0 (6) | 0.7 (1) | 3.2 (2) | 1.7 (17) |
Antimicrobial Agent Resistance Combination | Correlation | |
---|---|---|
Chloramphenicol | Trimethoprim/Sulfamethoxazole | 0.60 1 |
Cefotaxime | Gentamicin | 0.26 |
Trimethoprim/Sulfamethoxazole | Tetracycline | 0.24 |
Ciprofloxacin | Gentamicin | 0.23 |
Chloramphenicol | Tetracycline | 0.23 |
Ciprofloxacin | Cefotaxime | 0.15 |
Gentamicin | Tetracycline | 0.12 |
Ciprofloxacin | Tetracycline | 0.09 |
Gentamicin | Trimethoprim/Sulfamethoxazole | 0.07 |
Ciprofloxacin | Trimethoprim/Sulfamethoxazole | 0.07 |
Chloramphenicol | Cefotaxime | 0.05 |
Chloramphenicol | Gentamicin | 0.03 |
Cefotaxime | Trimethoprim/Sulfamethoxazole | 0.03 |
Cefotaxime | Tetracycline | 0.03 |
Chloramphenicol | Ciprofloxacin | 0.03 |
Multidrug-resistant | Chloramphenicol | 0.65 |
Trimethoprim/Sulfamethoxazole | 0.64 | |
Tetracycline | 0.45 | |
Gentamicin | 0.26 | |
Ciprofloxacin | 0.25 | |
Cefotaxime | 0.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lunha, K.; Leangapichart, T.; Jiwakanon, J.; Angkititrakul, S.; Sunde, M.; Järhult, J.D.; Ström Hallenberg, G.; Hickman, R.A.; Van Boeckel, T.; Magnusson, U. Antimicrobial Resistance in Fecal Escherichia coli from Humans and Pigs at Farms at Different Levels of Intensification. Antibiotics 2020, 9, 662. https://doi.org/10.3390/antibiotics9100662
Lunha K, Leangapichart T, Jiwakanon J, Angkititrakul S, Sunde M, Järhult JD, Ström Hallenberg G, Hickman RA, Van Boeckel T, Magnusson U. Antimicrobial Resistance in Fecal Escherichia coli from Humans and Pigs at Farms at Different Levels of Intensification. Antibiotics. 2020; 9(10):662. https://doi.org/10.3390/antibiotics9100662
Chicago/Turabian StyleLunha, Kamonwan, Thongpan Leangapichart, Jatesada Jiwakanon, Sunpetch Angkititrakul, Marianne Sunde, Josef D. Järhult, Gunilla Ström Hallenberg, Rachel A. Hickman, Thomas Van Boeckel, and Ulf Magnusson. 2020. "Antimicrobial Resistance in Fecal Escherichia coli from Humans and Pigs at Farms at Different Levels of Intensification" Antibiotics 9, no. 10: 662. https://doi.org/10.3390/antibiotics9100662
APA StyleLunha, K., Leangapichart, T., Jiwakanon, J., Angkititrakul, S., Sunde, M., Järhult, J. D., Ström Hallenberg, G., Hickman, R. A., Van Boeckel, T., & Magnusson, U. (2020). Antimicrobial Resistance in Fecal Escherichia coli from Humans and Pigs at Farms at Different Levels of Intensification. Antibiotics, 9(10), 662. https://doi.org/10.3390/antibiotics9100662