The Evolving Reduction of Vancomycin and Daptomycin Susceptibility in MRSA—Salvaging the Gold Standards with Combination Therapy
Abstract
:1. Introduction
2. Methods
3. Beta-Lactam Resistance
Methicillin-Resistant Staphylococcus aureus
4. Vancomycin and Daptomycin Resistance
4.1. Heterogeneous Vancomycin-Intermediate Staphylococcus aureus and Vancomycin-Intermediate Staphylococcus aureus
4.2. Vancomycin-Resistant Staphylococcus aureus and Daptomycin-Nonsusceptible Staphylococcus aureus
5. In Vitro and In Vivo Studies
5.1. Heterogeneous Vancomycin-Intermediate Staphylococcus aureus and Vancomycin-Intermediate Staphylococcus aureus
5.2. Vancomycin-Resistant Staphylococcus aureus and Daptomycin-Non-Susceptible Staphylococcus aureus
6. Clinical Outcome Studies
6.1. Beta-Lactams
6.1.1. Vancomycin-Based Regimens
6.1.2. Daptomycin-Based Regimens
6.1.3. Vancomycin- or Daptomycin-Based Regimens
6.1.4. Nephrotoxicity with Vancomycin- or Daptomycin-Beta-Lactam Combination Therapy
6.2. Trimethoprim/Sulfamethoxazole
Daptomycin-Based Regimens
6.3. Rifampin
6.3.1. Vancomycin-Based Regimens
6.3.2. Daptomycin-Based Regimens
6.4. Linezolid
6.4.1. Vancomycin-Based Regimens
6.4.2. Daptomycin-Based Regimens
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casapao, A.M.; Leonard, S.N.; Davis, S.L.; Lodise, T.P.; Patel, N.; Goff, D.A.; LaPlante, K.L.; Potoski, B.A.; Rybak, M.J. Clinical outcomes in patients with heterogeneous vancomycin-intermediate Staphylococcus aureus bloodstream infection. Antimicrob. Agents Chemother. 2013, 57, 4252–4259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.W.; Lee, H.; Kim, J.W.; Kim, B. Characterization of infections with vancomycin-intermediate Staphylococcus aureus (VISA) and Staphylococcus aureus with reduced vancomycin susceptibility in South Korea. Sci. Rep. 2019, 9, 6236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Cui, L.; Tominaga, E.; Neoh, H.-M.; Hiramatsu, K. Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 1079–1082. [Google Scholar] [CrossRef] [Green Version]
- Barber, K.E.; Ireland, C.E.; Bukavyn, N.; Rybak, M.J. Observation of “seesaw effect” with vancomycin, teicoplanin, daptomycin, and ceftaroline in 150 unique MRSA strains. Infect. Dis. Ther. 2014, 3, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thitiananpakorn, K.; Aiba, Y.; Tan, X.-E.; Watanabe, S.; Kiga, K.; Sato’o, Y.; Boonsiri, T.; Li, F.-Y.; Sasahara, T.; Taki, Y.; et al. Association of mprF mutations with cross-resistance to daptomycin and vancomycin in methicillin-resistance Staphylococcus aureus (MRSA). Nature 2020, 10, 16107. [Google Scholar] [CrossRef] [PubMed]
- Molina, K.C.; Morrisette, T.; Miller, M.A.; Huang, V.; Fish, D.N. The emerging role of beta-lactams in the treatment of methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob. Agents Chemother. 2020, 64, e00468-20. [Google Scholar] [CrossRef]
- Holubar, M.; Meng, L.; Alegria, W.; Deresinski, S. Bacteremia due to methicillin-resistant Staphylococcus aureus: An update on new therapeutic approaches. Infect. Dis. Clin. North Am. 2020, 30, 491–507. [Google Scholar] [CrossRef]
- Montanari, M.P.; Massidda, O.; Mingoia, M.; Varaldo, P.E. Borderline susceptibility to methicillin in Staphylococcus aureus: A new mechanism of resistance? Microb. Drug Resist. 1996, 2, 257–260. [Google Scholar] [CrossRef]
- Kirby, W.M. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 1944, 51, 386–389. [Google Scholar] [CrossRef]
- Jevons, M.P. “Celbenin”-resistant staphylococci. Br. Med. J. 1961, 1, 124–125. [Google Scholar] [CrossRef]
- Breakpoint Tables for Interpretation of MICs and Zone Diameters, version 10; The European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2020.
- Hartman, B.J.; Tomasz, A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J. Bacteriol. 1984, 158, 513–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosgrove, S.E.; Qi, Y.; Kaye, K.S.; Harbarth, S.; Karchmer, A.W.; Carmeli, Y. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: Mortality, length of stay, and hospital charges. Infect. Control Hosp. Epidemiol. 2005, 26, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Hanberger, H.; Walther, S.; Leone, M.; Barie, P.S.; Rello, J.; Lipman, J.; Marshall, J.C.; Anzueto, A.; Sakr, Y.; Pickkers, P.; et al. Increased mortality associated with methicillin-resistant Staphylococcus aureus (MRSA) infection in the intensive care unit: Results from the EPIC II study. Int. J. Antimicrob. Agents 2011, 38, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Diekema, D.J.; Pfaller, M.A.; Schmitz, F.J.; Smayevsky, J.; Bell, J.; Jones, R.N.; Beach, M. Survey of infections due to Staphylococcus species: Frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin. Infect. Dis. 2001, 32, 114–132. [Google Scholar]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States. 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 9 September 2020).
- World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed. Available online: https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 9 September 2020).
- Lai, C.-C.; Chen, C.-C.; Chuang, Y.-C.; Tang, H.-J. Combination of cephalosporins with vancomycin or teicoplanin enhances antibacterial effect of glycopeptides against heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) and VISA. Sci. Rep. 2017, 7, 41758. [Google Scholar] [CrossRef] [Green Version]
- Satola, S.W.; Farley, M.M.; Anderson, K.F.; Patel, J.B. Comparison of detection methods for heteroresistant vancomycin-intermediate Staphylococcus aureus, with the population analysis profile method as the reference method. J. Clin. Microbiol. 2011, 49, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Wootton, M.; Howe, R.A.; Hillman, R.; Walsh, T.R.; Bennet, P.M.; MacGowan, A.P. A modified population analysis profile (PAP) method to detect hetero-resistance to vancomycin in Staphylococcus aureus in a UK hospital. J. Antimicrob. Chemother. 2001, 47, 399–403. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Aritaka, N.; Hanaki, H.; Kawasaki, S.; Hosoda, Y.; Hori, S.; Fukuchi, Y.; Kobayashi, I. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 1997, 350, 1670–1673. [Google Scholar] [CrossRef]
- Szabó, J. hVISA/VISA: Diagnostic and therapeutic problems. Expert Rev. Anti. Infect. Ther. 2009, 7, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Gardete, S.; Aires-De-Sousa, M.; Faustino, A.; Ludovice, A.M.; de Lencastre, H. Identification of the first vancomycin intermediate-resistant Staphylococcus aureus (VISA) isolate from a hospital in Portugal. Microb. Drug. Resist. 2008, 14, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Iwamoto, A.; Lian, J.-Q.; Neoh, H.-M.; Maruyama, T.; Horikawa, Y.; Hiramatsu, K. Novel mechanism of antibiotic resistance originating in vancomycin-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 428–438. [Google Scholar] [CrossRef] [Green Version]
- Burke, S.L.; Rose, W.E. New pharmacological treatments for methicillin-resistant Staphylococcus aureus infections. Expert Opin. Pharmacother. 2014, 15, 483–491. [Google Scholar] [CrossRef]
- Rybak, M.J.; Leonard, S.N.; Rossi, K.L.; Cheung, C.M.; Sader, H.S.; Jones, R.N. Characterization of vancomycin-heteroresistant Staphylococcus aureus from the metropolitan area of Detroit, Michigan, over a 22-year period (1986 to 2007). J. Clin. Microbiol. 2008, 46, 2950–2954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Sun, X.; Chang, W.; Dai, Y.; Ma, X. Systematic review and meta-analysis of the epidemiology of vancomycin-intermediate and heterogeneous vancomycin-intermediate Staphylococcus aureus isolates. PLoS ONE 2015, 10, e0136082. [Google Scholar] [CrossRef] [PubMed]
- Sievert, D.M.; Rudrik, J.T.; Patel, J.B.; McDonald, L.C.; Wilkins, M.J.; Hageman, J.C. Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clin. Infect. Dis. 2008, 46, 668–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention (CDC). Staphylococcus aureus resistant to vancomycin—United States, 2002. MMWR Morb. Mortal Wkly. Rep. 2002, 51, 565–567. [Google Scholar]
- Bugg, T.D.H.; Wright, G.D.; Dutka-Malen, S.; Arthur, M.; Courvalin, P.; Walsh, C.T. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: Biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 1991, 30, 10408–10415. [Google Scholar] [CrossRef]
- McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017, 90, 269–281. [Google Scholar]
- Walters, M.S.; Eggers, P.; Albrecht, V.; Travis, T.; Lonsway, D.; Hovan, G.; Taylor, D.; Rasheed, K.; Limbago, B.; Kallen, A. Vancomycin-resistant Staphylococcus aureus—Delaware, 2015. MMWR Morb. Mortal Wkly. Rep. 2015, 64, 1056. [Google Scholar] [CrossRef] [Green Version]
- Humphries, R.M.; Pollett, S.; Sakoulas, G. A current perspective on daptomycin for the clinical microbiologist. Clin. Microbiol. Rev. 2013, 26, 759–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, N.N.; Yang, S.-J.; Sawa, A.; Rubio, A.; Nast, C.C.; Yeaman, M.R.; Bayer, A.S. Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 2312–2318. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52, 18–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werth, B.J.; Vidaillac, C.; Murray, K.P.; Newton, K.L.; Sakoulas, G.; Nonejuie, P.; Pogliano, J.; Rybak, M.J. Novel combinations of vancomycin plus ceftaroline or oxacillin against methicillin-resistant vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA. Antimicrob. Agents Chemother. 2013, 57, 2376–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kebriaei, R.; Rice, S.A.; Stamper, K.C.; Rybak, M.J. Dalbavancin alone and in combination with ceftaroline against four different phenotypes of Staphylococcus aureus in a simulated pharmacodynamic/pharmacokinetic model. Antimicrob. Agents Chemother. 2019, 63, e01743-18. [Google Scholar] [CrossRef] [Green Version]
- Hagihara, M.; Wiskirchen, D.E.; Kuti, J.L.; Nicolau, D.P. In vitro pharmacodynamics of vancomycin and cefazolin alone and in combination against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2012, 56, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Tran, K.-N.; Rybak, M.J. Beta-lactam combinations with vancomycin show synergistic activity against vancomycin-susceptible Staphylococcus aureus, vancomycin-intermediate S. aureus (VISA), and heterogeneous VISA. Antimicrob. Agents Chemother. 2018, 62, e00157-18. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Berti, A.D.; McCrone, S.; Roch, M.; Rosato, A.E.; Rose, W.E.; Chen, B. Combination antibiotic exposure selectively alters the development of vancomycin intermediate resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 2018, 62, e02100-17. [Google Scholar] [CrossRef] [Green Version]
- Climo, M.W.; Patron, R.L.; Archer, G.L. Combinations of vancomycin and beta-lactams are synergistic against Staphylococci with reduced susceptibilities to vancomycin. Antimicrob. Agents Chemother. 1999, 43, 1747–1753. [Google Scholar] [CrossRef] [Green Version]
- Bakthavatchalam, Y.D.; Ralph, R.; Veeraraghavan, B.; Babu, P.; Munusamy, E. Evidence from an in vitro study: Is oxacillin plus vancomycin a better choice for heteroresistant vancomycin-intermediate Staphylococcus aureus. Infect. Dis. Ther. 2019, 8, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Dilworth, T.J.; Sliwinski, J.; Ryan, K.; Dodd, M.; Mercier, R.-C. Evaluation of vancomycin in combination with piperacillin-tazobactam or oxacillin against clinical methicillin-resistant Staphylococcus aureus isolates and vancomycin-intermediate S. aureus isolates in vitro. Antimicrob. Agents Chemother. 2014, 58, 1028–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werth, B.J.; Sakoulas, G.; Rose, W.E.; Pogliano, J.; Tewhey, R.; Rybak, M.J. Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model. Antimicrob. Agents Chemother. 2013, 57, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.R.; Chung, D.R.; Kim, J.; Baek, J.Y.; Kim, S.H.; Ha, Y.E.; Kang, C.-I.; Peck, K.R.; Song, J.-H. In vitro synergistic effects of various combinations of vancomycin and non-beta-lactams against Staphylococcus aureus with reduced susceptibility to vancomycin. Diagn. Microbiol. Infect. Dis. 2016, 86, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.S.; van Hal, S.; Tong, S.Y.C. Combination antibiotic treatment of serious methicillin-resistant Staphylococcus aureus infections. Semin. Respir. Crit. Care Med. 2015, 36, 3–16. [Google Scholar] [PubMed] [Green Version]
- Ho, J.L.; Klempner, M.S. In vitro evaluation of clindamycin in combination with oxacillin, rifampin, or vancomycin against Staphylococcus aureus. Diagn. Microbiol. Infect. Dis. 1986, 4, 133–138. [Google Scholar] [CrossRef]
- Barber, K.E.; Werth, B.J.; Ireland, C.E.; Stone, N.; Nonejuie, P.; Sakoulas, G.; Pogliano, J.; Rybak, M.J. Potent synergy of ceftobiprole plus daptomycin against multiple strains of Staphylococcus aureus with various resistance phenotypes. J. Antimicrob. Chemother. 2014, 69, 3006–3010. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.-C.; Chen, C.-C.; Lu, Y.-C.; Lin, T.-P.; Chen, H.-J.; Su, B.-A.; Chao, C.-M.; Chuang, Y.-C.; Tang, H.-J. The potential role of sulbactam and cephalosporins plus daptomycin against daptomycin-nonsusceptible VISA and H-VISA isolates: An in vitro study. Antibiotics 2019, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Credito, K.; Lin, G.; Appelbaum, P.C. Activity of daptomycin alone and in combination with rifampin and gentamicin against Staphylococcus aureus assessed by time-kill methodology. Antimicrob. Agents Chemother. 2007, 51, 1504–1507. [Google Scholar] [CrossRef] [Green Version]
- Claeys, K.C.; Smith, J.R.; Casapao, A.M.; Mynatt, R.P.; Avery, L.; Shroff, A.; Yamamura, D.; Davis, S.L.; Rybak, M.J. Impact of the combination of daptomycin and trimethoprim-sulfamethoxazole on clinical outcomes in methicillin-resistant Staphylococcus aureus infections. Antimicrob. Agents Chemother. 2015, 59, 1969–1976. [Google Scholar] [CrossRef] [Green Version]
- Fox, P.M.; Lampen, R.J.; Stumpf, R.J.; Archer, G.L.; Climo, M.W. Successful therapy of experimental endocarditis caused by vancomycin-resistant Staphylococcus aureus with a combination of vancomycin and beta-lactam antibiotics. Antimicrob. Agents Chemother. 2006, 50, 2951–2956. [Google Scholar] [CrossRef] [Green Version]
- Tabuchi, F.; Matsumoto, Y.; Ishii, M.; Tatsuno, K.; Okazaki, M.; Sato, T.; Moriya, K.; Sekimizu, K. Synergistic effects of vancomycin and beta-lactams against vancomycin highly resistant Staphylococcus aureus. J. Antibiot. (Tokyo) 2017, 70, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Périchon, B.; Courvalin, P. Synergism between beta-lactams and glycopeptides against VanA-type methicillin-resistant Staphylococcus aureus and heterologous expression of the vanA operon. Antimicrob. Agents Chemother. 2006, 50, 3622–3630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.-J.; Xiong, Y.Q.; Boyle-Vavra, S.; Daum, R.; Jones, T.; Bayer, A.S. Daptomycin-oxacillin combinations in treatment of experimental endocarditis caused by daptomycin-nonsusceptible strains of methicillin-resistant Staphylococcus aureus with evolving oxacillin susceptibility (the “seesaw effect”). Antimicrob. Agents Chemother. 2010, 54, 3161–3169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhand, A.; Bayer, A.S.; Pogliano, J.; Yang, S.-J.; Bolaris, M.; Nizet, V.; Wang, G.; Sakoulas, G. Use of antistaphylococcal beta-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: Role of enhanced daptomycin binding. Clin. Infect. Dis. 2011, 53, 158–613. [Google Scholar] [CrossRef]
- Rose, W.E.; Schulz, L.T.; Andes, D.; Striker, R.; Berti, A.D.; Hutson, P.R.; Shukla, S.K. Addition of ceftaroline to daptomycin after emergence of daptomycin-nonsusceptible Staphylococcus aureus during therapy improves antibacterial activity. Antimicrob. Agents Chemother. 2012, 56, 5296–5302. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.; Yeaman, M.R.; Sakoulas, G.; Yang, S.-J.; Proctor, R.A.; Sahl, H.-G.; Schrenzel, J.; Xiong, Y.Q.; Bayer, A.S. Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob. Agents Chemother. 2008, 52, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Rose, W.E.; Leonard, S.N.; Rybak, M.J. Evaluation of daptomycin pharmacodynamics and resistance at various dosage regimens against Staphylococcus aureus isolates with reduced susceptibilities to daptomycin in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob. Agents Chemother. 2008, 52, 3061–3067. [Google Scholar] [CrossRef] [Green Version]
- Steed, M.E.; Vidaillac, C.; Rybak, M.J. Novel daptomycin combinations against daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus in an in vitro model of simulated endocardial vegetations. Antimicrob. Agents Chemother. 2010, 54, 5187–5192. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.R.; Yim, J.; Rice, S.; Stamper, K.; Kebriaei, R.; Rybak, M.J. Combination of tedizolid and daptomycin against methicillin-resistant Staphylococccus aureus in an in vitro model of simulated endocardial vegetations. Antimicrob. Agents Chemother. 2018, 62, e00101-18. [Google Scholar] [CrossRef] [Green Version]
- Luther, M.K.; LaPlante, K.L. Observed antagonistic effect of linezolid on daptomycin or vancomycin activity against biofilm-forming methicillin-resistant Staphylococcus aureus in an in vitro pharmacodynamic model. Antimicrob. Agents Chemother. 2015, 59, 7790–7794. [Google Scholar] [CrossRef] [Green Version]
- Dilworth, T.J.; Ibrahim, O.; Hall, P.; Sliwinski, J.; Walraven, C.; Mercier, R.-C. Beta-lactams enhance vancomycin activity against methicillin-resistant Staphylococcus aureus bacteremia compared to vancomycin alone. Antimicrob. Agents Chemother. 2014, 58, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casapao, A.M.; Jacobs, D.M.; Bowers, D.R.; Beyda, N.D.; Dilworth, T.J. Early administration of adjuvant beta-lactam therapy in combination with vancomycin among patients with methicillin-resistant Staphylococcus aureus bloodstream infection: A retrospective, multicenter analysis. Pharmacotherapy 2017, 37, 1347–1356. [Google Scholar] [CrossRef] [PubMed]
- Truong, J.; Veillette, J.J.; Forland, S.C. Outcomes of vancomycin plus a beta-lactam versus vancomycin only for treatment of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother. 2018, 62, e01554-17. [Google Scholar]
- Zasowski, E.J.; Trinh, T.D.; Atwan, S.M.; Merzlyakova, M.; Langf, A.M.; Bhatia, S.; Rybak, M.J. The impact of concomitant empiric cefepime on patient outcomes of methicillin-resistant Staphylococcus aureus bloodstream infections treated with vancomycin. Open Forum Infect. Dis. 2019, 6, ofz079. [Google Scholar] [CrossRef]
- Moise, P.A.; Amodio-Groton, M.; Rashid, M.; Lamp, K.C.; Hoffman-Roberts, H.L.; Sakoulas, G.; Yoon, M.J.; Schweitzer, S.; Rastogi, A. Multicenter evaluation of the clinical outcomes of daptomycin with and without concomitant beta-lactams in patients with Staphylococcus aureus bacteremia and mild to moderate renal impairment. Antimicrob. Agents Chemother. 2013, 57, 1192–1200. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, S.C.J.; Zasowski, E.J.; Trinh, T.D.; Lagnf, A.M.; Bhatia, S.; Sabagha, N.; Abdul-Mutakabbir, J.C.; Alosaimy, S.; Mynatt, R.P.; Davis, S.L.; et al. Daptomycin plus beta-lactam combination therapy for methicillin-resistant Staphylococcus aureus bloodstream infections: A retrospective, comparative cohort study. Clin. Infect. Dis. 2019, 71, 1–10. [Google Scholar] [CrossRef]
- Kosowska-Shick, K.; McGhee, P.L.; Appelbaum, P.C. Affinity of ceftaroline and other beta-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2010, 54, 1670–1677. [Google Scholar] [CrossRef] [Green Version]
- McCreary, E.K.; Kullar, R.; Geriak, M.; Zasowski, E.J.; Rizvi, K.; Schulz, L.T.; Ouellette, K.; Vasina, L.; Haddad, F.; Rybak, M.J.; et al. Multicenter cohort of patients with methicillin-resistant Staphylococcus aureus bacteremia receiving daptomycin plus ceftaroline compared with other MRSA treatments. Open Forum Infect. Dis. 2019, 7, ofz538. [Google Scholar] [CrossRef] [Green Version]
- Geriak, M.; Haddad, F.; Rizvi, K.; Rose, W.; Kullar, R.; Laplante, K.; Yu, M.; Vasina, L.; Ouellette, K.; Zervos, M.; et al. Clinical data on daptomycin plus ceftaroline versus standard of care monotherapy in the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother. 2019, 63, e02483-18. [Google Scholar] [CrossRef] [Green Version]
- Alosaimy, S.; Sabagha, N.L.; Lagnf, A.M.; Zasowski, E.J.; Morrisette, T.; Jorgensen, S.C.J.; Trinh, T.D.; Mynatt, R.P.; Rybak, M.J. Monotherapy with vancomycin or daptomycin versus combination therapy with beta-lactams in the treatment of methicillin-resistant Staphylococcus aureus bloodstream infections: A retrospective cohort analysis. Infect. Dis. Ther. 2020, 9, 325–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornak, J.P.; Anjum, S.; Reynoso, D. Adjunctive ceftaroline in combination with daptomycin or vancomycin for complicated methicillin-resistant Staphylococcus aureus bacteremia after monotherapy failure. Ther. Adv. Infect. Dis. 2019, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.S.; Sud, A.; O’Sullivan, M.V.N.; Robinson, J.O.; Ferguson, P.E.; Foo, H.; van Hal, S.J.; Ralph, A.P.; Howden, B.P.; Binks, P.M.; et al. Combination of vancomycin and beta-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: A pilot multicenter randomized controlled trial. Clin. Infect. Dis. 2016, 62, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.Y.C.; Lye, D.C.; Yahav, D.; Sud, A.; Robinson, O.J.; Nelson, J.; Archuleta, S.; Roberts, M.A.; Cass, A.; Paterosn, D.L.; et al. Effect of vancomycin or daptomycin with vs. without an antistaphylococcal beta-lactam on mortality, bacteremia, relapse, or treatment failure in patients with MRSA bacteremia: A randomized clinical trial. JAMA 2020, 323, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guidelines and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2020, 77, 835–864. [Google Scholar] [PubMed] [Green Version]
- Avery, L.M.; Steed, M.E.; Woodruff, A.E.; Hasan, M.; Rybak, M.J. Daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus vertebral osteomyelitis cases complicated by bacteremia treated with high-dose daptomycin and trimethoprim-sulfamethoxazole. Antimicrob. Agents Chemother. 2012, 56, 5990–5993. [Google Scholar] [CrossRef] [Green Version]
- Di Carlo, P.; D’Alesssandro, N.; Guadagnino, G.; Bonura, C.; Mammina, C.; Lunetta, M.; Novo, S.; Giarratano, A. High dose of trimethroprim-sulfamethoxazole and daptomycin as a therapeutic option for MRSA endocarditis with large vegetation complicated by embolic stroke: A case report and literature review. Infez. Med. 2013, 21, 45–49. [Google Scholar]
- Tremblay, S.; Lau, T.T.Y.; Ensom, M.H.H. Addition of rifampin to vancomycin for methicillin-resistant Staphylococcus aureus infections: What is the evidence? Ann. Pharmacother. 2013, 47, 1045–1054. [Google Scholar] [CrossRef]
- Levine, D.P.; Fromm, B.S.; Reddy, B.R. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann. Intern. Med. 1991, 115, 674–680. [Google Scholar] [CrossRef]
- Jung, Y.J.; Koh, Y.; Hong, S.-B.; Chung, J.W.; Choi, S.H.; Kim, N.J.; Kim, M.-N.; Choi, I.S.; Han, S.Y.; Kim, W.-D.; et al. Effect of vancomycin plus rifampicin in the treatment of nosocomial methicillin-resistant Staphylococcus aureus pneumonia. Crit. Care Med. 2010, 378, 175–180. [Google Scholar] [CrossRef]
- Riedel, D.J.; Weekes, E.; Forrest, G.N. Addition of rifampin to standard therapy for treatment of native valve infective endocarditis caused by Staphylococcus aureus. Antimicrob. Agents Chemother. 2008, 52, 2463–2467. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.M.; Rojtman, A.D. Successful treatment of daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus bacteremia with the addition of rifampin to daptomycin. Ann. Pharmacother. 2010, 44, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Rehm, S.J.; Boucher, H.; Levine, D.; Campion, M.; Eisenstein, B.I.; Vigliani, G.A.; Corey, G.; Abrutyn, E. Daptomycin versus vancomycin plus gentamicin for treatment of bacteraemia and endocarditis due to Staphylococcus aureus: Subset analysis of patients infected with methicillin-resistant isolates. J. Antimicrob. Chemother. 2008, 62, 1413–1421. [Google Scholar] [CrossRef]
- Morrisette, T.; Lagnf, A.M.; Alosaimy, S.; Rybak, M.J. A comparison of daptomycin alone and in combination with ceftaroline fosamil for methicillin-resistant Staphylococcus aureus bacteremia complicated by septic pulmonary emboli. Eur. J. Clin. Microbiol. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Gomez, E.O.; Jafary, A.; Dever, L.L. Daptomycin and rifampin for the treatment of methicillin-resistant Staphylococcus aureus septic pulmonary emboli in the absence of endocarditis. Microb. Drug Resist. 2010, 16, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Diep, B.A.; Afasizheva, A.; Le, H.N.; Kajikawa, O.; Matute-Bello, G.; Tkaczyk, C.; Sellman, B.; Badiou, C.; Lina, G.; Chambers, H.F. Effects of linezolid on suppressing in vivo production of Staphylococcal toxins and improving survival outcomes in a rabbit model of methicillin-resistant Staphylococcus aureus necrotizing pneumonia. J. Infect. Dis. 2013, 208, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Chiang, F.Y.; Climo, M. Efficacy of linezolid alone or in combination with vancomycin for treatment of experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2003, 47, 3002–3004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelesidis, T.; Humphries, R.; Ward, K.; Lewinski, M.A.; Yang, O.O. Combination therapy with daptomycin, linezolid, and rifampin as treatment option for MRSA meningitis and bacteremia. Diagn. Microbiol. Infect. Dis. 2011, 71, 286–290. [Google Scholar] [CrossRef]
- Galanter, K.M.; Ho, J. Treatment of tricuspid valve endocarditis with daptomycin and linezolid therapy. Am. J. Health Syst. Pharm. 2019, 76, 1033–1036. [Google Scholar] [CrossRef]
- Yazaki, M.; Oami, T.; Nakanishi, K.; Hase, R.; Watanabe, H. A successful salvage therapy with daptomycin and linezolid for right-sided infective endocarditis and septic pulmonary embolism caused by methicillin-resistant Staphylococcus aureus. J. Infect. Chemother. 2018, 24, 845–848. [Google Scholar] [CrossRef]
- Shaddix, G.; Patel, K.; Simmons, M.; Burner, K. Successful clearance of persistent methicillin-resistant Staphylococcus aureus bacteremia with daptomycin, linezolid, and meropenem salvage therapy. Case Rep. Infect. Dis. 2019, 2019, 5623978. [Google Scholar] [CrossRef]
Study | Anti-MRSA Combination Agent | CT Agent | Overall Population and Outcome | Results |
---|---|---|---|---|
Dhand (2011) [58] | DAP | Nafcillin or oxacillin | Patients with persistent MRSA bacteremia (7–22 days) refractory to VAN changed to DAP and nafcillin or oxacillin (n = 7) evaluated for blood sterilization | Blood sterilization within 24–48 h achieved in 100% of patients |
Moise (2013) [69] | DAP | BL (not specified) | Patients with mild-to-moderate renal dysfunction with S. aureus bacteremia (MRSA/MSSA) receiving DAP monotherapy (n = 50) or DAP plus BL (n = 30) were evaluated for cure (clinical resolution of signs/symptoms and/or no need for additional antibiotic therapy or negative culture following the end of therapy) and/or improvement (partial clinical resolution of signs/symptoms and/or need for additional antibiotic therapy to streamline/de-escalate treatment) | Outcome benefit rates were numerically higher in the CT group vs. DAP monotherapy (87% vs. 78%, p = 0.336) |
Dilworth (2014) [65] | VAN | Piperacillin/ tazobactam, cephalexin, cefazolin, cefoxitin, ceftriaxone, ceftazidime, cefotaxime, cefepime, imipenem, meropenem, ampicillin, nafcillin, amoxicillin/clavulanate | Patients with MRSA BSI receiving VAN monotherapy (n = 30) or VAN plus beta-lactam (n = 50) were evaluated for microbiological eradication (negative blood culture obtained after initiation of therapy) | Microbiological eradication was higher in CT versus VAN monotherapy (96% vs. 80%, p = 0.021) |
Casapao (2017) [66] | VAN | Ampicillin, nafcillin, oxacillin, ampicillin/sulbactam, piperacillin/tazobactam, cefazolin, cefoxitin, ceftriaxone, ceftazidime, cefotaxime, cefepime, imipenem/cilastatin, doripenem, ertapenem, meropenem | Patients with MRSA BSI receiving VAN monotherapy (n = 40) or VAN plus early adjuvant BL (n = 57) were evaluated for clinical failure (composite of 30-day mortality, persistent bacteremia (≥ 7 days), bacteremia relapse or change in antibiotic therapy due to clinical worsening) | Clinical failure was inversely associated with receipt of CT (aOR, 0.237, 95% CI (0.057–0.982)) |
Truong (2018) [67] | VAN | BL (unspecified), except ceftazidime and aztreonam | Patients with MRSA BSI receiving VAN monotherapy (n = 47) or VAN plus BL (n = 63) were evaluated for treatment failure (composite of clinical [initiation of new anti-MRSA agent(s), MRSA-related mortality, and/or 30-day MRSA-related readmission] and microbiologic failure [lack of bacteremia clearance, first negative blood culture drawn after switching to alternative anti-MRSA regimen, microbiologic relapse, and/or persistent (> 5 days) bacteremia]) | Treatment failure was inversely associated with receipt of CT (aOR, 0.337, 95% CI (0.142–0.997)) |
Zasowski (2019) [68] | VAN | Cefepime | Patients with MRSA BSI receiving VAN monotherapy (n = 129) or VAN plus cefepime (n = 229) were evaluated for microbiological failure (bacteremia ≥ 7 days and/or 60-day recurrence). | VAN plus cefepime was associated with reduced odds of microbiological failure (aOR, 0.488, 95% CI, (0.271–0.741)) but was not associated with reduced odds of 30-day mortality (aOR, 0.952, 95% CI (0.435–2.425)). |
Jorgensen (2019) [70] | DAP | Cefepime, cefazolin, ceftaroline, ceftriaxone, meropenem, piperacillin-tazobactam, ertapenem, ampicillin-sulbactam | Patients with MRSA BSI receiving DAP monotherapy (n = 157) or DAP plus BL (n = 72) were evaluated for clinical failure (composite of 60-day all-cause mortality and/or 60-day recurrence) | Clinical failure was inversely associated with receipt of CT (aOR, 0.386, 95% CI, 0.175–0.853) |
Geriak (2019) [73] | DAP | Ceftaroline | Patients with MRSA BSI receiving VAN or DAP (n = 23) or DAP plus CPT (n = 17) were evaluated for bacteremia duration and in-hospital mortality | DAP plus CPT was not associated with significantly lower bacteremia duration (CT: 3.0 [1.5–5.5] vs. MT: 3.0 (1.0–5.3) days; p = 0.56) but was associated with lower in-hospital mortality (CT: 0% vs. MT: 26%; p = 0.03) |
McCreary (2019) [72] | DAP | Ceftaroline | Patients with MRSA BSI receiving VAN or DAP (n = 113) or DAP plus CPT (n = 58) were evaluated for bacteremia duration and 30-day mortality | MT was associated with lower bacteremia duration (CT: 9.3 vs. MT: 4.8 days; p < 0.001) and CT was not associated with significantly lower 30-day mortality (CT: 6.8% vs. MT: 14.2%; p > 0.05) |
Tong (2020) [77] | VAN or DAP | Flucloxacillin, cloxacillin, cefazolin | Patients with MRSA BSI randomized to receive VAN/DAP (n = 178) or CT (n = 174) were evaluated at 90-days for a composite of mortality, persistent bacteremia at day 5, microbiological relapse (MRSA positive blood culture ≥ 72 h after a previous negative culture) and microbiological treatment failure (positive MRSA sterile site culture ≥ 14 days following randomization) | Primary composite end point was numerically less frequent in the CT compared to MT group (35% vs. 39%, absolute difference, -4.2%; 95% CI, −14.3% to 6.0%) |
Alosaimy (2020) [74] | VAN or DAP | Cefepime, cefazolin, ceftaroline, piperacillin/tazobactam, ceftriaxone, ampicillin/sulbactam, meropenem, aztreonam, other unspecified carbapenems and cephalosporins | Patients with MRSA BSI receiving VAN or DAP (n = 153) or VAN/DAP plus BL (n = 444) were evaluated clinical failure (composite of 30-day mortality, 60-day recurrence or persistent bacteremia (> 5 days)) | Clinical failure was inversely associated with receipt of CT (aOR, 0.545, 95% CI, 0.364–0.817) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morrisette, T.; Alosaimy, S.; Abdul-Mutakabbir, J.C.; Kebriaei, R.; Rybak, M.J. The Evolving Reduction of Vancomycin and Daptomycin Susceptibility in MRSA—Salvaging the Gold Standards with Combination Therapy. Antibiotics 2020, 9, 762. https://doi.org/10.3390/antibiotics9110762
Morrisette T, Alosaimy S, Abdul-Mutakabbir JC, Kebriaei R, Rybak MJ. The Evolving Reduction of Vancomycin and Daptomycin Susceptibility in MRSA—Salvaging the Gold Standards with Combination Therapy. Antibiotics. 2020; 9(11):762. https://doi.org/10.3390/antibiotics9110762
Chicago/Turabian StyleMorrisette, Taylor, Sara Alosaimy, Jacinda C. Abdul-Mutakabbir, Razieh Kebriaei, and Michael J. Rybak. 2020. "The Evolving Reduction of Vancomycin and Daptomycin Susceptibility in MRSA—Salvaging the Gold Standards with Combination Therapy" Antibiotics 9, no. 11: 762. https://doi.org/10.3390/antibiotics9110762
APA StyleMorrisette, T., Alosaimy, S., Abdul-Mutakabbir, J. C., Kebriaei, R., & Rybak, M. J. (2020). The Evolving Reduction of Vancomycin and Daptomycin Susceptibility in MRSA—Salvaging the Gold Standards with Combination Therapy. Antibiotics, 9(11), 762. https://doi.org/10.3390/antibiotics9110762