Pexiganan in Combination with Nisin to Control Polymicrobial Diabetic Foot Infections
Abstract
:1. Introduction
2. Results
2.1. Planktonic Bacteria Susceptibility to Pexiganan And Pexiganan-Nisin Biogel
2.2. Biofilm Bacterial Susceptibility to Pexiganan and Pexiganan-Nisin Biogel
2.3. Antimicrobial Biogel Difusion in a DFU 3D Model
2.4. Bacterial Difusion in a DFI 3D Model
2.5. Pexiganan and Pexiganan-nisin Dual-AMP Biogel Inhibitory Activity in a DFI 3D Model
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Antimicrobial Peptides (AMPs)
4.3. Guar Gum Biogel
4.4. Planktonic Cultures Susceptibility to Single and Dual-AMPs Suspensions
4.5. Biofilm Susceptibility to Single- and Dual-AMP Suspensions
4.6. Collagen DFI 3D Model
4.7. Assessment of AMP Difusion in the DFI 3D Model
4.8. Assessment of Bacterial Difusion in the DFI 3D Model
4.9. Assessment of the Inhibitory Activity of Antimicrobial Biogel in the DFI 3D Model
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roglic, G. WHO Global report on diabetes: A summary. Int. J. Noncommunicable Dis. 2016, 1, 3. [Google Scholar] [CrossRef]
- Hobizal, K.B.; Wukich, D.K. Diabetic foot infections: Current concept review. Diabet. Foot Ankle 2012, 3, 18409. [Google Scholar] [CrossRef]
- Lipsky, B.A. Diabetic foot infections: Current treatment and delaying the ‘post-antibiotic era’. Diabetes Metab. Res. Rev. 2016, 32, 246–253. [Google Scholar] [CrossRef]
- Bowling, F.L.; Dissanayake, S.U.; Jude, E.B. Opportunistic Pathogens in Diabetic Foot Lesions. Curr. Diabetes Rev. 2012, 8, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.A.; Aragón-Sánchez, J.; Diggle, M.; Embil, J.; Kono, S.; Lavery, L.; Senneville, É.; Urbančič-Rovan, V.; Van Asten, S.; Peters, E.J.G. IWGDF guidance on the diagnosis and management of foot infections in persons with diabetes. Diabetes Metab. Res. Rev. 2016, 32, 45–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, J.J.; Marques-Costa, A.; Vilela, C.; Neves, J.; Candeias, N.; Cavaco-Silva, P.; Melo-Cristino, J. Clinical and bacteriological survey of diabetic foot infections in Lisbon. Diabetes Res. Clin. Pract. 2012, 95, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Pletzer, D.; Coleman, S.R.; Hancock, R.E.W. Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr. Opin. Microbiol. 2016, 33, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Hancock, R.E.W.; Speert, D.P. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and impact on treatment. Drug Resist. Updates 2000, 3, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Chambers, H.F.; DeLeo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009, 7, 629–641. [Google Scholar] [CrossRef]
- Boparai, J.K.; Sharma, P.K. Mini review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications. Protein Pept. Lett. 2019, 26, 4–16. [Google Scholar] [CrossRef]
- Baltzer, S.A.; Brown, M.H. Antimicrobial Peptides—Promising Alternatives to Conventional Antibiotics. J. Mol. Microbiol. Biotechnol. 2011, 20, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kizhakkedathu, J.; Straus, S. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility in Vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenny-Lee Thomassin, H.L.M. Antimicrobial Peptides as an Alternative Approach to Treat Bacterial Infections. J. Clin. Cell Immunol. 2013, 13, 4. [Google Scholar]
- Mansour, S.C.; de la Fuente-Núñez, C.; Hancock, R.E.W. Peptide IDR-1018: Modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J. Pept. Sci. 2015, 21, 323–329. [Google Scholar] [CrossRef]
- Batoni, G.; Maisetta, G.; Esin, S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim. Biophys. Acta Biomembr. 2016, 1858, 1044–1060. [Google Scholar] [CrossRef]
- Gottler, L.M.; Ramamoorthy, A. Structure, membrane orientation, mechanism, and function of pexiganan—A highly potent antimicrobial peptide designed from magainin. Biochim. Biophys. Acta Biomembr. 2009, 1788, 1680–1686. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.B.; Seo, J. Antimicrobial peptides under clinical investigation. Pept. Sci. 2019, 111, e24122. [Google Scholar] [CrossRef]
- Fuchs, P.C.; Barry, A.L.; Brown, S.D. In Vitro Antimicrobial Activity of MSI-78, a Magainin Analog. Antimicrob. Agents Chemother. 1998, 42, 1213–1216. [Google Scholar] [CrossRef] [Green Version]
- Lamb, H.M.; Wiseman, L.R. Pexiganan Acetate. Drugs 1998, 56, 1047–1052. [Google Scholar] [CrossRef]
- NCT01590758 Pexiganan Versus Placebo Control for the Treatment of Mild Infections of Diabetic Foot Ulcers. Available online: https://clinicaltrials.gov/show/NCT01590758 (accessed on 1 March 2020).
- Greber, K.E.; Dawgul, M. Antimicrobial Peptides under Clinical Trials. Curr. Top. Med. Chem. 2016, 17, 620–628. [Google Scholar] [CrossRef]
- Jacob, L.; Zasloff, M. Potential Therapeutic Applications of Magainins and other Antimicrobial Agents of Animal Origin. In Proceedings of the Ciba Foundation Symposium, London, UK, 18–20 January 1994; pp. 197–223. [Google Scholar]
- Flamm, R.K.; Rhomberg, P.R.; Simpson, K.M.; Farrell, D.J.; Sader, H.S.; Jones, R.N. In Vitro Spectrum of Pexiganan Activity When Tested against Pathogens from Diabetic Foot Infections and with Selected Resistance Mechanisms. Antimicrob. Agents Chemother. 2015, 59, 1751–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christ, K.; Wiedemann, I.; Bakowsky, U.; Sahl, H.-G.; Bendas, G. The role of lipid II in membrane binding of and pore formation by nisin analyzed by two combined biosensor techniques. Biochim. Biophys. Acta Biomembr. 2007, 1768, 694–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharsallaoui, A.; Oulahal, N.; Joly, C.; Degraeve, P. Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Crit. Rev. Food Sci. Nutr. 2016, 56, 1262–1274. [Google Scholar] [CrossRef] [PubMed]
- Dosler, S.; Gerceker, A.A. In vitro Activities of Nisin alone or in Combination with Vancomycin and Ciprofloxacin against Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Strains. Chemotherapy 2011, 57, 511–516. [Google Scholar] [CrossRef]
- Okuda, K.; Zendo, T.; Sugimoto, S.; Iwase, T.; Tajima, A.; Yamada, S.; Sonomoto, K.; Mizunoe, Y. Effects of Bacteriocins on Methicillin-Resistant Staphylococcus aureus Biofilm. Antimicrob. Agents Chemother. 2013, 57, 5572–5579. [Google Scholar] [CrossRef] [Green Version]
- Corbin, A.; Pitts, B.; Parker, A.; Stewart, P.S. Antimicrobial Penetration and Efficacy in an In Vitro Oral Biofilm Model. Antimicrob. Agents Chemother. 2011, 55, 3338–3344. [Google Scholar] [CrossRef] [Green Version]
- Dosler, S.; Mataraci, E. In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms. Peptides 2013, 49, 53–58. [Google Scholar] [CrossRef]
- Santos, R.; Gomes, D.; Macedo, H.; Barros, D.; Tibério, C.; Veiga, A.S.; Tavares, L.; Castanho, M.; Oliveira, M. Guar gum as a new antimicrobial peptide delivery system against diabetic foot ulcers Staphylococcus aureus isolates. J. Med. Microbiol. 2016, 65, 1092–1099. [Google Scholar] [CrossRef]
- Santos, R.; Ruza, D.; Cunha, E.; Tavares, L.; Oliveira, M. Diabetic foot infections: Application of a nisin-biogel to complement the activity of conventional antibiotics and antiseptics against Staphylococcus aureus biofilms. PLoS ONE 2019, 14, e0220000. [Google Scholar] [CrossRef] [Green Version]
- Grassi, L.; Maisetta, G.; Esin, S.; Batoni, G. Combination Strategies to Enhance the Efficacy of Antimicrobial Peptides against Bacterial Biofilms. Front. Microbiol. 2017, 8, 2409. [Google Scholar] [CrossRef]
- Cavera, V.L.; Arthur, T.D.; Kashtanov, D.; Chikindas, M.L. Bacteriocins and their position in the next wave of conventional antibiotics. Int. J. Antimicrob. Agents 2015, 46, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Baeder, D.Y.; Regoes, R.R.; Rolff, J. Combination Effects of Antimicrobial Peptides. Antimicrob. Agents Chemother. 2016, 60, 1717–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, D.; O’ Connor, R.; Cotter, P.D.; Ross, R.P.; Hill, C. In Vitro Activities of Nisin and Nisin Derivatives Alone and In Combination with Antibiotics against Staphylococcus Biofilms. Front. Microbiol. 2016, 7, 508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacometti, A.; Cirioni, O.; Barchiesi, F.; Scalise, G. In-vitro activity and killing effect of polycationic peptides on methicillin-resistant Staphylococcus aureus and interactions with clinically used antibiotics. Diagn. Microbiol. Infect. Dis. 2000, 38, 115–118. [Google Scholar] [CrossRef]
- Cirioni, O.; Simonetti, O.; Morroni, G.; Brescini, L.; Kamysz, W.; Kamysz, E.; Orlando, F.; Pierpaoli, E.; Caffarini, M.; Orciani, M.; et al. Efficacy of Pexiganan Combination with Tigecycline in a Mouse Model of Pseudomonas aeruginosa Sepsis. Curr. Top. Med. Chem. 2019, 18, 2127–2132. [Google Scholar] [CrossRef] [PubMed]
- Cirioni, O.; Silvestri, C.; Ghiselli, R.; Kamysz, W.; Minardi, D.; Castelli, P.; Orlando, F.; Kamysz, E.; Provinciali, M.; Muzzonigro, G.; et al. In vitro and in vivo effects of sub-MICs of pexiganan and imipenem on Pseudomonas aeruginosa adhesion and biofilm development. Infez. Med. 2013, 21, 287–295. [Google Scholar]
- Lipsky, B.A.; Holroyd, K.J.; Zasloff, M. Topical versus Systemic Antimicrobial Therapy for Treating Mildly Infected Diabetic Foot Ulcers: A Randomized, Controlled, Double-Blinded, Multicenter Trial of Pexiganan Cream. Clin. Infect. Dis. 2008, 47, 1537–1545. [Google Scholar] [CrossRef] [Green Version]
- Field, D.; Cotter, P.D.; Ross, R.P.; Hill, C. Bioengineering of the model lantibiotic nisin. Bioengineered 2015, 6, 187–192. [Google Scholar] [CrossRef] [Green Version]
- O’Driscoll, N.H.; Labovitiadi, O.; Cushnie, T.P.T.; Matthews, K.H.; Mercer, D.K.; Lamb, A.J. Production and Evaluation of an Antimicrobial Peptide-Containing Wafer Formulation for Topical Application. Curr. Microbiol. 2013, 66, 271–278. [Google Scholar] [CrossRef]
- Thombare, N.; Jha, U.; Mishra, S.; Siddiqui, M.Z. Guar gum as a promising starting material for diverse applications: A review. Int. J. Biol. Macromol. 2016, 88, 361–372. [Google Scholar] [CrossRef]
- Reddy, K.; Mohan, G.K.; Satla, S.; Gaikwad, S. Natural polysaccharides: Versatile excipients for controlled drug delivery systems. Asian J. Pharm. Sci. 2011, 6, 275–286. [Google Scholar]
- Kadam, S.; Nadkarni, S.; Lele, J.; Sakhalkar, S.; Mokashi, P.; Kaushik, K.S. Bioengineered Platforms for Chronic Wound Infection Studies: How Can We Make Them More Human-Relevant? Front. Bioeng. Biotechnol. 2019, 7, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tracy, L.E.; Minasian, R.A.; Caterson, E.J. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv. Wound Care 2016, 5, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Werthén, M.; Heriksson, L.; Jensen, P.Ø.; Stenberg, C.; Givskov, M.; Bjarnsholt, T. An in vitro model of bacterial infections in wounds and other soft tissues. APMIS 2010, 118, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Price, B.L.; Lovering, A.M.; Bowling, F.L.; Dobson, C.B. Development of a Novel Collagen Wound Model to Simulate the Activity and Distribution of Antimicrobials in Soft Tissue during Diabetic Foot Infection. Antimicrob. Agents Chemother. 2016, 60, 6880–6889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Acuña, J.M.; Cardenas-Cadena, S.A.; Marquez-Salas, P.A.; Garza-Veloz, I.; Perez-Favila, A.; Cid-Baez, M.A.; Flores-Morales, V.; Martinez-Fierro, M.L. Diabetic foot ulcers: Current advances in antimicrobial therapies and emerging treatments. Antibiotics 2019, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; MacDonald, D.; Henry, M.M.; Hait, H.I.; Nelson, K.A.; Lipsky, B.A.; Zasloff, M.A.; Holroyd, K.J. In vitro susceptibility to pexiganan of bacteria isolated from infected diabetic foot ulcers. Diagn. Microbiol. Infect. Dis. 1999, 35, 45–53. [Google Scholar] [CrossRef]
- Ge, Y.; MacDonald, D.L.; Holroyd, K.J.; Thornsberry, C.; Wexler, H.; Zasloff, M. In Vitro Antibacterial Properties of Pexiganan, an Analog of Magainin. Antimicrob. Agents Chemother. 1999, 43, 782–788. [Google Scholar] [CrossRef] [Green Version]
- Hausler, W.J. Antibiotics in laboratory medicine. Diagn. Microbiol. Infect. Dis. 1997, 29, 59. [Google Scholar] [CrossRef]
- Park, S.-C.; Park, Y.; Hahm, K.-S. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation. Int. J. Mol. Sci. 2011, 12, 5971–5992. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Montalban-Lopez, M.; Kuipers, O.P. Increasing the Antimicrobial Activity of Nisin-Based Lantibiotics against Gram-Negative Pathogens. Appl. Environ. Microbiol. 2018, 84, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senneville, E. Antibacterial Treatment in Diabetic Foot Infections. Front. Diabetes 2018, 26, 167–183. [Google Scholar]
- Fisher, T.K.; Wolcott, R.; Wolk, D.M.; Bharara, M.; Kimbriel, H.R.; Armstrong, D.G. Diabetic Foot Infections: A Need for Innovative Assessments. Int. J. Low. Extrem. Wounds 2010, 9, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.J.; Steinberg, J.S. Wound Care: Biofilm and Its Impact on the Latest Treatment Modalities for Ulcerations of the Diabetic Foot. Semin. Vasc. Surg. 2012, 25, 70–74. [Google Scholar] [CrossRef]
- Kaplan, J.B. Antibiotic-Induced Biofilm Formation. Int. J. Artif. Organs 2011, 34, 737–751. [Google Scholar] [CrossRef]
- Lio, P.A.; Kaye, E.T. Topical Antibacterial Agents. Med. Clin. N. Am. 2011, 95, 703–721. [Google Scholar] [CrossRef]
- Nelson, E.A.; O’Meara, S.; Golder, S.; Dalton, J.; Craig, D.; Iglesias, C. Systematic review of antimicrobial treatments for diabetic foot ulcers. Diabet. Med. 2006, 23, 348–359. [Google Scholar] [CrossRef]
- Griffis, C.D.; Metcalfe, S.; Bowling, F.L.; Boulton, A.J.M.; Armstrong, D.G. The use of gentamicin-impregnated foam in the management of diabetic foot infections: A promising delivery system? Exp. Opin. Drug Deliv. 2009, 6, 639–642. [Google Scholar] [CrossRef]
- Salgami, E.V.; Bowling, F.L.; Whitehouse, R.W.; Boulton, A.J.M. Use of Tobramycin-Impregnated Calcium Sulphate Pellets in Addition to Oral Antibiotics: An alternative treatment to minor amputation in a case of diabetic foot osteomyelitis. Diabetes Care 2007, 30, 181–182. [Google Scholar] [CrossRef] [Green Version]
- Heunis, T.D.J.; Smith, C.; Dicks, L.M.T. Evaluation of a Nisin-Eluting Nanofiber Scaffold to Treat Staphylococcus aureus-Induced Skin Infections in Mice. Antimicrob. Agents Chemother. 2013, 57, 3928–3935. [Google Scholar] [CrossRef] [Green Version]
- International Best Practice Guidelines: Wound Management in Diabetic Foot Ulcers. Wounds International 2013. Available online: http://www.woundsinternational.com/clinical-guidelines/best-practice-guidelines-wound-management-in-diabetic-foot-ulcers (accessed on 1 March 2020).
- Mottola, C.; Semedo-Lemsaddek, T.; Mendes, J.J.; Melo-Cristino, J.; Tavares, L.; Cavaco-Silva, P.; Oliveira, M. Molecular typing, virulence traits and antimicrobial resistance of diabetic foot staphylococci. J. Biomed. Sci. 2016, 23, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyibo, S.O.; Jude, E.B.; Tarawneh, I.; Nguyen, H.C.; Harkless, L.B.; Boulton, A.J.M. A Comparison of Two Diabetic Foot Ulcer Classification Systems: The Wagner and the University of Texas wound classification systems. Diabetes Care 2001, 24, 84–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
AMP Biogel | AMP Quantification | Area 1 3 | Area 2 3 | Area 3 3 |
---|---|---|---|---|
Nisin | Ø halos 1 | 2.8 ± 0.35 | 2.0 ± 0 | 0 |
(AMP) 2 | 1.85 | 1.10 | 0 | |
Pexiganan | Ø halos 1 | 4.0 ± 0 | 3.5 ± 0.71 | 0 |
(AMP) 2 | 200.09 | 184.0 | 0 |
Inoculum Type | Bacterial Species | Area 1 3 | Area 2 3 | Area 3 3 |
---|---|---|---|---|
Single inoculum 1 | S. aureus Z 25.2 | 2.3 × 107 | 3.1 × 107 | 3.1 × 107 |
P. aeruginosa Z 25.1 | 2.0 × 108 | 1.0 × 1010 | 5.7 × 109 | |
Dual inoculum 2 | S. aureus Z 25.2 | 5.5 × 107 | 5.0 × 107 | 2.8 × 109 |
P. aeruginosa Z 25.1 | 3.5 × 107 | 5.5 × 107 | 2.0 × 109 |
AMP Biogel | Bacterial Strains | Before AMP addition | Area 1 3 | Area 2 3 | Area 3 3 |
---|---|---|---|---|---|
Pexiganan1 | S. aureus Z 25.2 | 2.2 × 108 | 7.5 × 106 | 1.3 × 107 | 1.5 × 106 |
P. aeruginosa Z 25.1 | 5.0 × 108 | 1.7 × 108 | 9.0 × 107 | 3.3 × 108 | |
Dual-AMP2 | S.aureus Z 25.2 | 5.2 × 107 | 0 | 0 | 0 |
P. aeruginosa Z 25.1 | 3.0 × 108 | 3.6 × 107 | 1.1 × 108 | 1.1 × 108 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, D.; Santos, R.; S. Soares, R.; Reis, S.; Carvalho, S.; Rego, P.; C. Peleteiro, M.; Tavares, L.; Oliveira, M. Pexiganan in Combination with Nisin to Control Polymicrobial Diabetic Foot Infections. Antibiotics 2020, 9, 128. https://doi.org/10.3390/antibiotics9030128
Gomes D, Santos R, S. Soares R, Reis S, Carvalho S, Rego P, C. Peleteiro M, Tavares L, Oliveira M. Pexiganan in Combination with Nisin to Control Polymicrobial Diabetic Foot Infections. Antibiotics. 2020; 9(3):128. https://doi.org/10.3390/antibiotics9030128
Chicago/Turabian StyleGomes, Diana, Raquel Santos, Rui S. Soares, Solange Reis, Sandra Carvalho, Pedro Rego, Maria C. Peleteiro, Luís Tavares, and Manuela Oliveira. 2020. "Pexiganan in Combination with Nisin to Control Polymicrobial Diabetic Foot Infections" Antibiotics 9, no. 3: 128. https://doi.org/10.3390/antibiotics9030128
APA StyleGomes, D., Santos, R., S. Soares, R., Reis, S., Carvalho, S., Rego, P., C. Peleteiro, M., Tavares, L., & Oliveira, M. (2020). Pexiganan in Combination with Nisin to Control Polymicrobial Diabetic Foot Infections. Antibiotics, 9(3), 128. https://doi.org/10.3390/antibiotics9030128