A Comparative Study of the in Vitro Antimicrobial and Synergistic Effect of Essential Oils from Laurus nobilis L. and Prunus armeniaca L. from Morocco with Antimicrobial Drugs: New Approach for Health Promoting Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of the EOs
2.2. Antimicrobial and Synergistic Effect of EO
3. Materials and Methods
3.1. Plant Material
3.2. Extraction of EOs
3.3. Chemical Profiling of the EOs by GC-MS
3.4. Antimicrobial Evaluation and Determination of Minimum Inhibitory Concentration (MIC) and Minimum Microbicidal Concentration (MMC)
3.5. Evaluation of Synergistic Effect of the EOs with Conventional Antibiotics
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Sortino, M.; Derita, M.; Svetaz, L.; Raimondi, M.; Di Liberto, M.; Petenatti, E.; Gupta, M.; Zacchino, S. The Role of Natural Products in Discovery of New Anti-Infective Agents with Emphasis on Antifungal Compounds. In Plant Bioactives and Drug Discovery: Principles, Practice and Perspectives; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 205–239. [Google Scholar] [CrossRef]
- Gibbons, S. Plants as a Source of Bacterial Resistance Modulators and Anti-Infective Agents. Phytochem. Rev. 2005, 4, 63–78. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Berghe DVanden Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Vital, P.G.; Rivera, W.L. Antimicrobial activity and cytotoxicity of Chromolaena odorata (L. f.) King and Robinson and Uncaria perrottetii (A. Rich) Merr. extracts. J. Med. Plants 2009, 3, 511–518. [Google Scholar]
- Zhao, J.; Jiang, L.; Tang, X.; Peng, L.; Li, X.; Zhao, G.; Zhong, L. Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum. Molecules 2018, 23, 182. [Google Scholar] [CrossRef] [Green Version]
- Fadli, M.; Pagès, J.M.; Mezrioui, N.E.; Abbad, A.; Hassani, L. Artemisia herba-alba Asso and Cymbopogon citratus (DC.) Stapf essential oils and their capability to restore antibiotics efficacy. Ind. Crops Prod. 2016, 89, 399–404. [Google Scholar] [CrossRef]
- Garoy, E.Y.; Gebreab, Y.B.; Achila, O.O.; Tekeste, D.G.; Kesete, R.; Ghirmay, R.; Kiflay, R.; Tesfu, T. Methicillin-Resistant Staphylococcus aureus (MRSA): Prevalence and Antimicrobial Sensitivity Pattern among Patients—A Multicenter Study in Asmara. Eritrea 2019, 2019, 832183. [Google Scholar] [CrossRef] [Green Version]
- Köck, R.; Becker, K.; Cookson, B.; van Gemert-Pijnen, J.E.; Harbarth, S.; Kluytmans, J.A.; Mielke, M.; Peters, G.; Skov, R.L.; Struelens, M.J.; et al. Methicillin-resistant Staphylococcus aureus (MRSA): Burden of disease and control challenges in Europe. Euro Surveill. 2010, 15, 1–9. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, Q.; Zhu, F.; An, Y. Epidemiology, species distribution, antifungal susceptibility and mortality risk factors of candidemia among critically ill patients: A retrospective study from 2011 to 2017 in a teaching hospital in China. Antimicrob. Resist. Infect. Control 2019, 2, 1–7. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef]
- Brooks, B.D.; Brooks, A.E. Therapeutic strategies to combat antibiotic resistance. Adv. Drug Deliv. Rev. 2014, 78, 14–27. [Google Scholar] [CrossRef]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef]
- Kivçak, B.; Mert, T. Preliminary evaluation of cytotoxic properties of Laurus nobilis leaf extracts. Fitoterapia 2002, 73, 242–243. [Google Scholar] [CrossRef]
- Sangun, M.K.; Aydin, E.; Timur, M.; Karadeniz, H.; Caliskan, M.; Ozkan, A. Comparison of chemical composition of the essential oil of Laurus nobilis L. leaves and fruits from different regions of Hatay, Turkey. J. Environ. Biol. 2007, 28, 731–733. [Google Scholar]
- Mediouni Ben Jemâa, J.; Tersim, N.; Toudert, K.T.; Khouja, M.L. Insecticidal activities of essential oils from leaves of Laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. J. Stored Prod. Res. 2012, 48, 97–104. [Google Scholar] [CrossRef]
- Fidan, H.; Stefanova, G.; Kostova, I.; Stankov, S.; Damyanova, S.; Stoyanova, A.; Zheljazkov, V.D. Chemical Composition and Antimicrobial Activityof Laurus nobilis L. Essential Oils from Bulgaria. Molecules 2019, 24, 804. [Google Scholar] [CrossRef] [Green Version]
- Cherrat, L.; Espina, L.; Bakkali, M.; García-Gonzalo, D.; Pagán, R.; Laglaoui, A. Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation. J. Sci. Food Agric. 2014, 94, 1197–1204. [Google Scholar] [CrossRef]
- Sylvestre, M.; Pichette, A.; Longtin, A.; Nagau, F.; Legault, J. Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L. from Guadeloupe. J. Ethnopharmacol. 2006, 103, 99–102. [Google Scholar] [CrossRef]
- Derwich, E.; Benziane, Z.; Boukir, A.; Mohamed, S.; Abdellah, B. Chemical Composition and Antibacterial Activity of Leaves Essential Oil of Laurus nobilis from Morocco. Aust. J. Basic Appl. Sci. 2009, 3, 3818–3824. [Google Scholar]
- Lee, H.; Ahn, J.-H.; Kwon, A.-R.; Lee, E.S.; Kwak, J.-H.; Min, Y.-H. Chemical Composition and Antimicrobial Activity of the Essential Oil of Apricot Seed. Phyther. Res. 2014, 28, 1867–1872. [Google Scholar] [CrossRef]
- Gatti, E.; Defilippi, B.G.; Predieri, S.; Infante, R. Apricot (Prunus armeniaca L.) quality and breeding perspectives. J. Food Agric. Environ. 2009, 7, 573–580. [Google Scholar]
- Bensky, D.S.; Clavey, S.; Stoger, E. Chinese Herbal Medicine: Materia Medica; Eastland Press: Washington, DC, USA, 2004. [Google Scholar]
- Ramadan, A.; Kamel, G.; Awad, N.E.; Shokry, A.A. Phytochemical screening, acute toxicity, analgesic and anti- inflammatory effects of apricot seeds ethanolic extracts. J. Appl. Vet. Sci. 2018, 3, 26–33. [Google Scholar]
- Özkan, O.E.; Olgun, Ç.; Güney, B.; Gür, M.; Güney, K.; Ateş, S. Chemical composition and antimicrobial activity of Myristica fragrans & Elettaria cardamomum essential oil. Kastamonu Üniversitesi Orman Fakültesi Derg 2018, 18, 225–229. [Google Scholar] [CrossRef]
- Beier, R.C.; Byrd, J.A.; Kubena, L.F.; Hume, M.E.; McReynolds, J.L.; Anderson, R.C.; Nisbet, D.J. Evaluation of linalool, a natural antimicrobial and insecticidal essential oil from basil: Effects on poultry. Poult. Sci. 2014, 93, 267–272. [Google Scholar] [CrossRef]
- Snuossi, M.; Trabelsi, N.; Ben Taleb, S.; Dehmeni, A.; Flamini, G.; De Feo, V. Laurus nobilis, Zingiber officinale and Anethum graveolens Essential Oils: Composition, Antioxidant and Antibacterial Activities against Bacteria Isolated from Fish and Shellfish. Molecules 2016, 21, 1414. [Google Scholar] [CrossRef] [Green Version]
- Yalçın, H.; Anık, M.; Şanda, M.A.; Çakır, A. Gas Chromatography/Mass Spectrometry Analysis of Laurus nobilis Essential Oil Composition of Northern Cyprus. J. Med. Food 2007, 10, 715–719. [Google Scholar] [CrossRef]
- Nafis, A.; Kasrati, A.; Jamali, C.A.; Mezrioui, N.; Setzer, W.; Abbad, A.; Hassani, L. Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards. Ind. Crops Prod. 2019, 137, 396–400. [Google Scholar] [CrossRef]
- Caputo, L.; Nazzaro, F.; Souza, L.F.; Aliberti, L.; De Martino, L.; Fratianni, F.; Coppola, R.; De Feo, V. Laurus nobilis: Composition of Essential Oil and Its Biological Activities. Molecules 2017, 22, 930. [Google Scholar] [CrossRef]
- Hendry, E.R.; Worthington, T.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J. Antimicrob. Chemother. 2009, 64, 1219–1225. [Google Scholar] [CrossRef]
- Pejin, B.; Savic, A.; Sokovic, M.; Glamoclija, J.; Ciric, A.; Nikolic, M.; Radotic, K.; Mojovic, M. Further in vitro evaluation of antiradical and antimicrobial activities of phytol. Nat. Prod. Res. 2014, 28, 372–376. [Google Scholar] [CrossRef]
- Siriken, B.; Yavuz, C.; Guler, A. Antibacterial Activity of Laurus nobilis: A review of literature. Med. Sci. Discov. 2018, 5, 374–379. [Google Scholar] [CrossRef]
- Simsek, M.; Duman, R. Investigation of effect of 1,8-cineole on antimicrobial activity of chlorhexidine gluconate. Pharmacognosy Res. 2017, 9, 234. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, Z.W.; Yin, Z.Q.; Wei, Q.; Jia, R.Y.; Zhou, L.J.; Xu, J.; Song, X.; Zhou, Y.; Du, Y.H.; et al. Antibacterial activity of leaf essential oil and its constituents from Cinnamomum longepaniculatum. Int. J. Clin. Exp. Med. 2014, 7, 1721–1727. [Google Scholar]
- Alqasoumi, S.I.; Abd, G.; Hakim, E.; Awaad, A.S.; El, A.; Mohammed, R. Anti-inflammatory activity, safety and protective effects of Leptadenia pyrotechnica, Haloxylon salicornicum and Ochradenus baccatus in ulcerative colitis. Phytopharmacology 2012, 2, 58–71. [Google Scholar]
- Ghaneian, M.T.; Ehrampoush, M.H.; Jebali, A.; Hekmatimoghaddam, S.; Mahmoudi, M. Antimicrobial activity, toxicity and stability of phytol as a novel surface disinfectant. Environ. Heal. Eng. Manag. J. 2015, 2, 13–16. [Google Scholar]
- Islam, M.T.; Ali, E.S.; Uddin, S.J.; Shaw, S.; Islam, M.A.; Ahmed, M.I.; Shill, M.C.; Karmakar, U.K.; Yarla, N.S.; Khan, I.N.; et al. Phytol: A review of biomedical activities. Food Chem. Toxicol. 2018, 121, 82–94. [Google Scholar] [CrossRef]
- Radulovi, N.S.; Blagojevi, P.D.; Stojanovi, Z.Z.; Stojanovi, N.M. Antimicrobial Plant Metabolites: Structural Diversity and Mechanism of Action. Curr. Med. Chem. 2013, 20, 932–952. [Google Scholar]
- Fadli, M.; Bolla, J.-M.; Mezrioui, N.-E.; Pagès, J.-M.; Hassani, L. First evidence of antibacterial and synergistic effects of Thymus riatarum essential oil with conventional antibiotics. Ind. Crops Prod. 2014, 61, 370–376. [Google Scholar] [CrossRef]
- Price, S.; Price, L. Aromatherapy for Health Professionals; Churchill Livingstone/Elsevier: London, UK, 2012. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publ.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Fadli, M.; Saad, A.; Sayadi, S.; Chevalier, J.; Mezrioui, N.E.; Pagès, J.M.; Hassani, L. Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection-bacteria and their synergistic potential with antibiotics. Phytomedicine 2012, 19, 464–471. [Google Scholar] [CrossRef]
- Nafis, A.; Elhidar, N.; Oubaha, B.; Samri, S.E.; Niedermeyer, T.; Ouhdouch, Y.; Hassani, L.; Barakate, M. Screening for Non-polyenic Antifungal Produced by Actinobacteria from Moroccan Habitats: Assessment of Antimycin A19 Production by Streptomyces albidoflavus AS25. Int. J. Mol. Cell. Med. 2018, 7, 133–145. [Google Scholar]
- Helal, I.M.; El-Bessoumy, A.; Al-Bataineh, E.; Joseph, M.R.; Rajagopalan, P.; Chandramoorthy, H.C.; Ben Hadj Ahmed, S. Antimicrobial Efficiency of Essential Oils from Traditional Medicinal Plants of Asir Region, Saudi Arabia, over Drug Resistant Isolates. BioMed Res. Int. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Khalil, N.; Ashour, M.; Fikry, S.; Singab, A.N.; Salama, O. Chemical composition and antimicrobial activity of the essential oils of selected Apiaceous fruits. Future J. Pharm. Sci. 2018, 4, 88–92. [Google Scholar] [CrossRef]
- Man, A.; Santacroce, L.; Jacob, R.; Mare, A.; Man, L. Antimicrobial Activity of Six Essential Oils Against a Group of Human Pathogens: A Comparative Study. Pathogens 2019, 8, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasrati, A.; Jamali, C.A.; Fadli, M.; Bekkouche, K.; Hassani, L.; Wohlmuth, H.; Leach, D.; Abbad, A. Antioxidative activity and synergistic effect of Thymus saturejoides Coss. essential oils with cefixime against selected food-borne bacteria. Ind. Crops Prod. 2014, 61, 338–344. [Google Scholar] [CrossRef]
- Didry, N.; Dubreuil, L.; Pinkas, M. Microbiological properties of protoanemonin isolated from Ranunculus bulbosus. Phyther. Res. 1993, 7, 21–24. [Google Scholar] [CrossRef]
RI | Name | Apricot | Laurel |
---|---|---|---|
854 | (E)-2-Hexenal | 6.54 | - |
886 | Cyclofenchene | - | 2.03 |
888 | p-Xylene | 3.90 | - |
954 | Ethyltoluene | 2.54 | - |
963 | Benzaldehyde | 7.25 | - |
967.2 | Sabinen | - | 5.13 |
973 | α-Pinene | 1.37 | 2.85 |
996 | Mesitylene | 2.62 | - |
1001 | 3-Carene | - | 1.14 |
1020 | Eucalyptol | - | 40.85 |
1030 | Limonene | 2.54 | - |
1050 | γ-Terpinene | - | 1.24 |
1086 | Linalool | 6.38 | 6.81 |
1164 | Terpinen-4-ol | - | 4.07 |
1175 | α-Terpineol | - | 5.60 |
1332 | α-Terpinyl acetate | - | 12.64 |
1339 | Eugenol | - | 5.14 |
1370 | Methyleugenol | - | 8.72 |
1490 | β-Cyclogermacrane | - | 1.11 |
1521 | γ-Cadinène | 1.62 | - |
1521 | Elemicin | - | 1.27 |
1526 | δ-Cadinene | 0.54 | - |
1950 | (Z)-Phytol | 27.18 | - |
1969 | Hexadecanoic acid | 5.48 | - |
2500 | Pentacosane | 15.11 | - |
2700 | Heptacosane | 6.50 | - |
2900 | Nonacosane | 8.76 | - |
Total | 98.33 | 98.57 | |
Yield | 1.20% | 2.50% |
Microorganisms | Apricot | Laurel | Ciprofloxacin | Vancomycin | ||||||
---|---|---|---|---|---|---|---|---|---|---|
IZ | MIC | MBC | IZ | MIC | MBC | IZ | MIC | IZ | MIC | |
Gram-positive bacteria | ||||||||||
M. luteus | 12.0 ± 0.10 | 23.4 | 23.4 | 10.0 ± 0.33 | 22.2 | 22.20 | 26.0 ± 0.75 | 0.01 | 28.0 ± 0.20 | 0.001 |
S. aureus | 14.0 ± 0.20 | 23.4 | 23.4 | 10.0 ± 0.31 | 5.55 | 5.55 | 27.0 ± 0.40 | 0.03 | 27.0 ± 0.32 | 0.001 |
B. subtilis | 14.0 ± 0.05 | 23.4 | 23.4 | 14.0 ± 0.20 | 1.39 | 2.77 | 35.0 ± 1.20 | 0.01 | 24.0 ± 0.40 | 0.125 |
Gram-negative bacteria | ||||||||||
E. coli | 18.0 ± 0.25 | 11.7 | 23.4 | 9.00 ± 0.45 | >22.5 | >22.5 | 12.0 ± 0.80 | 0.06 | 12.0 ± 0.13 | 0.5 |
P. aeruginosa | 22.0 ± 0.12 | 11.7 | 11.7 | 9.00 ± 0.54 | 22.2 | 22.2 | 9.00 ± 0.20 | 1 | 11.0 ± 0.24 | 0.5 |
K. pneumoniae | 13.0 ± 0.40 | 11.7 | 23.4 | 9.00 ± 0.60 | >22.5 | >22.5 | 8.00 ± 0.82 | 0.25 | 11.0 ± 0.19 | 0.5 |
Microorganisms | Apricot | Laurel | Fluconazol | |||||
---|---|---|---|---|---|---|---|---|
IZ | MIC | MFC | IZ | MIC | MFC | IZ | MIC | |
Yeasts | ||||||||
C. albicans | 12.00 ± 0.70 | 11.70 | 11.70 | 10.00 ± 0.21 | 5.55 | 5.55 | 20.00 ± 0.50 | 1 |
C. glabrata | 28.00 ± 0.90 | 5.85 | 5.85 | 13.00 ± 0.12 | 5.55 | 5.55 | 13.00 ± 0.00 | 1 |
C. krusei | 25.00 ± 0.31 | 5.85 | 5.85 | 15.00 ± 0.7 | 5.55 | 5.55 | 24.00 ± 0.80 | 1 |
C. parapsilosis | 26.00 ± 0.81 | 5.85 | 11.70 | 9.00 ± 0.88 | 2.77 | 5.55 | 28.20 ± 0.43 | 1 |
Combination | M. luteus | S. aureus | B. subtilis | E. coli | P. aeruginosa | K. pneumoniae | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIC | FICI | Gain | FIC | FICI | Gain | FIC | FICI | Gain | FIC | FICI | Gain | FIC | FICI | Gain | FIC | FICI | Gain | |
P. armeniaca EO | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - |
Ciprofloxacin | 0.5 | 0.75b | 2 | 0.25 | 0.5a | 4 | 0.5 | 0.75b | 2 | 0.062 | 0.312a | 16 | 0.008 | 0.258a | 128 | 0.125 | 0.375a | 8 |
Vancomycin | 0.5 | 0.75b | 2 | 0.5 | 0.75b | 2 | 0.5 | 0.75b | 2 | 0.25 | 0.75b | 4 | 0.5 | 0.75b | 2 | 0.5 | 0.75b | 2 |
L. nobilis EO | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - |
Ciprofloxacin | 0.25 | 0.5a | 4 | 0.062 | 0.312a | 16 | 0.25 | 0.5a | 4 | 0.125 | 0.375a | 8 | 0.016 | 0.266a | 64 | 0.063 | 0.313a | 16 |
Vancomycin | 0.247 | 0.497a | 4 | 0.247 | 0.497a | 4 | 0.125 | 0.375a | 8 | 0.25 | 0.5a | 4 | 0.5 | 0.75b | 2 | 0.125 | 0.375a | 8 |
Combination | C. albicans | C. glabrata | C. krusei | C. parapsilosis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FIC | FICI | Gain | FIC | FICI | Gain | FIC | FICI | Gain | FIC | FICI | Gain | |
P. armeniaca EO | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - |
Fluconazole | 0.031 | 0.281a | 32 | 0.016 | 0.266a | 64 | 0.125 | 0.375a | 8 | 0.063 | 0.313a | 16 |
L. nobilis EO | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - |
Fluconazole | 0.008 | 0.258a | 128 | 0.008 | 0.258a | 128 | 0.16 | 0.266a | 64 | 0.16 | 0.266a | 64 |
Bacteria | Access number | Reference |
---|---|---|
Staphylococcus aureus | CCMM B3 | [42] |
Micrococcus luteus | ATCC 10240 | [42] |
Bacillus subtilis | ATCC 9524 | [42] |
Escherichia coli | ATCC 8739 | [42] |
Pseudomonas aeruginosa | ATCC 10240 | [42] |
Klebsiella pneumoniae | Clinically isolated | [42] |
Yeasts | ||
Candida albicans | CCMM-L4 | [43] |
Candida glabrata | CCMM-L7 | [43] |
Candida krusei | CCMM-L10 | [43] |
Candida parapsilosis | CCMM-L18 | [43] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nafis, A.; Kasrati, A.; Jamali, C.A.; Custódio, L.; Vitalini, S.; Iriti, M.; Hassani, L. A Comparative Study of the in Vitro Antimicrobial and Synergistic Effect of Essential Oils from Laurus nobilis L. and Prunus armeniaca L. from Morocco with Antimicrobial Drugs: New Approach for Health Promoting Products. Antibiotics 2020, 9, 140. https://doi.org/10.3390/antibiotics9040140
Nafis A, Kasrati A, Jamali CA, Custódio L, Vitalini S, Iriti M, Hassani L. A Comparative Study of the in Vitro Antimicrobial and Synergistic Effect of Essential Oils from Laurus nobilis L. and Prunus armeniaca L. from Morocco with Antimicrobial Drugs: New Approach for Health Promoting Products. Antibiotics. 2020; 9(4):140. https://doi.org/10.3390/antibiotics9040140
Chicago/Turabian StyleNafis, Ahmed, Ayoub Kasrati, Chaima Alaoui Jamali, Luísa Custódio, Sara Vitalini, Marcello Iriti, and Lahcen Hassani. 2020. "A Comparative Study of the in Vitro Antimicrobial and Synergistic Effect of Essential Oils from Laurus nobilis L. and Prunus armeniaca L. from Morocco with Antimicrobial Drugs: New Approach for Health Promoting Products" Antibiotics 9, no. 4: 140. https://doi.org/10.3390/antibiotics9040140
APA StyleNafis, A., Kasrati, A., Jamali, C. A., Custódio, L., Vitalini, S., Iriti, M., & Hassani, L. (2020). A Comparative Study of the in Vitro Antimicrobial and Synergistic Effect of Essential Oils from Laurus nobilis L. and Prunus armeniaca L. from Morocco with Antimicrobial Drugs: New Approach for Health Promoting Products. Antibiotics, 9(4), 140. https://doi.org/10.3390/antibiotics9040140