Polyphasic Validation of a Nisin-Biogel to Control Canine Periodontal Disease
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Activity of the Nisin-Biogel in the Presence of Dog’s Saliva
2.2. Viability of the Nisin-Biogel under Different Storage Conditions
2.3. Cytotoxicity Activity of the Nisin-Biogel
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Nisin Preparation
4.3. Biogel Preparation
4.4. Collection of Dog’s Saliva
4.5. Antimicrobial Activity of the Nisin-Biogel in the Presence of Dog’s Saliva
4.6. Viability of the Nisin-Biogel under Different Storage Conditions
4.7. Cytotoxicity Activity of the nisin-Biogel
4.8. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Niemiec, B.A. Periodontal Disease. Top. Companion Anim. M 2008, 23, 72–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira dos Santos, J.D.; Cunha, E.; Nunes, T.; Tavares, L.; Oliveira, M. Relation between periodontal disease and systemic diseases in dogs. Res. Vet. Sci. 2019, 125, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Bellows, J.; Berg, M.L.; Dennis, S.; Harvey, R.; Lobprise, H.B.; Snyder, C.J.; Stone, A.E.S.; Van de Wetering, A.G. 2019 AAHA Dental care guidelines for dogs and cats. JAAHA 2019, 55, 2. [Google Scholar] [CrossRef] [PubMed]
- Cunha, E.; Trovão, T.; Pinheiro, A.; Nunes, T.; Santos, R.; Moreira da Silva, J.; São Braz, B.; Tavares, L.; Veiga, A.S.; Oliveira, M. Potential of two delivery systems for nisin topical application to dental plaque biofilms in dogs. BMC Vet. Res. 2018, 14, 375. [Google Scholar] [CrossRef] [Green Version]
- Tong, Z.; Ni, L.; Ling, J. Antibacterial peptide nisin: A potential role in the inhibition of oral pathogenic bacteria. Peptides 2014, 60, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.M.; Gwak, J.W.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Biomedical applications of nisin. J. Appl. Microbiol. 2015, 120, 1449–1465. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.M.; Ateia, I.; Paulus, J.R.; Liu, H.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Antimicrobial nisin acts against saliva derived multi-species biofilms without cytotoxicity to human oral cells. Front. Microbiol. 2015, 6, 617. [Google Scholar] [CrossRef] [Green Version]
- Hamdani, A.M.; Wani, I.A. Guar and locust bean gum: Composition, total phenolic content, antioxidant and antinutritional characterisation. Bioact. Carbohydr. Diet. Fibre 2017, 11, 53–59. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Oulahal, N.; Joly, C.; Degraeve, P. Nisin as a food preservative: Part 1: Physicochemical properties, antimicrobial activity, and main uses. CRFSN 2015, 56, 1262–1274. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Hakansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Sanguansermsri, P.; Jenkinson, H.F.; Thanasak, J.; Chairatvit, K.; Roytrakul, S.; Kittisenachai, S.; Puengsurin, D.; Surarit, R. Comparative proteomic study of dog and human saliva. PLoS ONE 2018, 13, e0208317. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Tavares, M.; Gomes, D.; Touret, T.; São Braz, B.; Tavares, L.; Semedo-Lemsaddek, T. Virulence traits and antibiotic resistance among enterococci isolated from dogs with periodontal disease. Comp. Immunol. Microb. 2016, 46, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Catunda, R.Q.; Vieira, J.R.Q.; Oliveira, E.B.; Silva, E.C.; Brasil, V.L.M.; Perez, D.E.C. Citotoxicity evaluation of three dental adhesives on vero cells in vitro. J. Clin. Exp. Dent. 2017, 9, e61–e66. [Google Scholar] [CrossRef] [PubMed]
- Howell, T.H.; Fiorellini, J.P.; Blackburn, P.; Projan, S.J.; de la Harpe, J.; Williams, R.C. The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. J. Clin. Periodontol. 1993, 20, 335–339. [Google Scholar] [CrossRef]
- Tong, Z.; Dong, L.; Zhou, L.; Tao, R.; Ni, L. Nisin inhibits dental caries-associated microorganism in vitro. Peptides 2010, 31, 2003–2008. [Google Scholar] [CrossRef]
- Sousa-Pereira, P.; Cova, M.; Abrantes, J.; Ferreira, R.; Trindade, F.; Barros, A.; Gomes, P.; Colaço, B.; Amado, F.; Esteves, P.J.; et al. Cross-species comparison of mammalian saliva using an LC–MALDI based proteomic approach. Proteomics 2015, 15, 1598–1607. [Google Scholar] [CrossRef]
- Schipper, R.G.; Silletti, E.; Vingerhoeds, M.H. Saliva as research material: Biochemical, physicochemical and practical aspects. Arch. Oral Biol. 2007, 52, 1114–1135. [Google Scholar] [CrossRef]
- Lacopetti, I.; Perazzi, A.; Badon, T.; Bedin, S.; Contiero, B.; Ricci, R. Salivary pH, calcium, phosphorus and selected enzymes in healthy dogs: A pilot study. BMC Vet. Res. 2017, 13, 330. [Google Scholar]
- Torres, S.M.F.; Furrow, E.; Souza, C.P.; Granick, J.L.; de Jong, E.P.; Griffin, T.J.; Wang, X. Salivary proteomics of healthy dogs: An in depth catalog. PLoS ONE 2018, 13, e0191307. [Google Scholar] [CrossRef]
- Thombare, N.; Jha, U.; Mishra, S.; Siddiqui, M.Z. Guar gum as a promising starting material for diverse applications: A review. Int. J. Biol. Macromol. 2016, 88, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Murinda, S.E.; Rashid, K.A.; Roberts, R.F. In vitro assessment of the cytotoxicity of nisin, pediocin, and selected colicins on simian virus 40–transfected human colon and Vero monkey kidney cells with trypan blue staining viability assays. J. Food Prot. 2003, 66, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Maher, S.; McClean, S. Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochem. Pharmacol. 2006, 71, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Vaucher, R.A.; Motta, A.S.; Brandelli, A. Evaluation of the in vitro cytotoxicity of the antimicrobial peptide P34. Cell Biol. Int. 2010, 34, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Aminabhavi, T.M.; Nadagoudam, M.N.; Joshi, S.D.; More, U. Guar gum as platform for the oral controlled release of therapeutics. Expert Opin. Drug Deliv. 2014, 1, 753–766. [Google Scholar] [CrossRef]
- Santos, R.; Gomes, D.; Macedo, H.; Barros, D.; Tibério, C.; Veiga, A.S.; Tavares, L.; Castanho, M.; Oliveira, M. Guar gum as a new antimicrobial peptide delivery system against diabetic foot ulcers Staphylococcus aureus isolates. J. Med. Microbiol. 2016, 65, 1092–1099. [Google Scholar] [CrossRef]
- Stockert, J.C.; Blázquez-Castro, A.; Cañete, M.; Horobin, R.W.; Villanueva, A. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012, 114, 785–796. [Google Scholar] [CrossRef]
- Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium salts and formazan products in cell biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018, 120, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Sjogren, G.; Sletten, G.; Dahl, J.E. Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests. J. Prosthet. Dent. 2000, 84, 229–236. [Google Scholar] [CrossRef]
- Ahrari, F.; Afshari, J.T.; Poosti, M.; Brook, A. Cytotoxicity of orthodontic bonding adhesive resins on human oral fibroblasts. Eur. J. Orthod. 2010, 32, 688–692. [Google Scholar] [CrossRef] [Green Version]
- Maia, L.P.; Novaes, A.B.; Souza, S.L.S.; Grisi, M.F.M.; Taba, M.; Palioto, D.B. In vitro evaluation of acellular dermal matrix as a three-dimensional scaffold for gingival fibroblasts seeding. J. Periodontol. 2011, 8, 293–301. [Google Scholar] [CrossRef]
Formulation | [nisin] µg/mL | Number of Isolates Inhibited | |
---|---|---|---|
Saliva | - | 0 | |
In the absence of saliva | nisin | 12.5 | 0 |
nisin-biogel | 25 | 6 | |
In the presence of saliva | nisin | 12.5 | 0 |
25 | 0 | ||
50 | 1 | ||
100 | 19 | ||
nisin-biogel | 12.5 | 0 | |
25 | 0 | ||
50 | 3 | ||
100 | 17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, E.; Freitas, F.B.; São Braz, B.; Moreira da Silva, J.; Tavares, L.; Veiga, A.S.; Oliveira, M. Polyphasic Validation of a Nisin-Biogel to Control Canine Periodontal Disease. Antibiotics 2020, 9, 180. https://doi.org/10.3390/antibiotics9040180
Cunha E, Freitas FB, São Braz B, Moreira da Silva J, Tavares L, Veiga AS, Oliveira M. Polyphasic Validation of a Nisin-Biogel to Control Canine Periodontal Disease. Antibiotics. 2020; 9(4):180. https://doi.org/10.3390/antibiotics9040180
Chicago/Turabian StyleCunha, Eva, Ferdinando Bernardino Freitas, Berta São Braz, Jorge Moreira da Silva, Luís Tavares, Ana Salomé Veiga, and Manuela Oliveira. 2020. "Polyphasic Validation of a Nisin-Biogel to Control Canine Periodontal Disease" Antibiotics 9, no. 4: 180. https://doi.org/10.3390/antibiotics9040180
APA StyleCunha, E., Freitas, F. B., São Braz, B., Moreira da Silva, J., Tavares, L., Veiga, A. S., & Oliveira, M. (2020). Polyphasic Validation of a Nisin-Biogel to Control Canine Periodontal Disease. Antibiotics, 9(4), 180. https://doi.org/10.3390/antibiotics9040180