Biological Activities of Essential Oils from Leaves of Paramignya trimera (Oliv.) Guillaum and Limnocitrus littoralis (Miq.) Swingle
Abstract
:1. Introduction
2. Results
2.1. Cytotoxicity and Antiviral Activity
2.2. Antimicrobial Activities
2.3. Antitrichomonas Activity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction of the Essential Oils
4.3. Cells and Cytotoxicity Assays
4.4. Viruses and Antiviral Assays
4.5. Antimicrobial Activities
4.6. Determination of Minimum Inhibitory Concentrations (MIC) and Minimum Lethal Concentration (MLC)
4.7. Antitrichomonas Activity
4.8. Linear Regression Analysis and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid.-Based Complement. Altern. Med. 2016, 2016, 1–21. [Google Scholar] [CrossRef] [PubMed]
- De Andrade, T.U.; Brasil, G.A.; Endringer, D.C.; Da Nóbrega, F.R.; De Sousa, D.P. Cardiovascular activity of the chemical constituents of essential oils. Molecules 2017, 22, 1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paola Angelini, A.P. Some Biological Activities of Essential Oils. Med. Aromat. Plants 2012, 2, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Perricone, M.; Arace, E.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Bioactivity of essential oils: A review on their interaction with food components. Front. Microbiol. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaaban, H.A.E.; El-Ghorab, A.H.; Shibamoto, T. Bioactivity of essential oils and their volatile aroma components: Review. J. Essent. Oil Res. 2012, 24, 203–212. [Google Scholar] [CrossRef]
- Blowman, K. Anticancer Properties of Essential Oils and Other Natural Products. Anat. Rec. 2018, 8, 525–551. [Google Scholar] [CrossRef]
- Prabuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med. 2006, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bua, A.; Usai, D.; Donadu, M.G.; Delgado Ospina, J.; Paparella, A.; Chaves-Lopez, C.; Serio, A.; Rossi, C.; Zanetti, S.; Molicotti, P. Antimicrobial activity of Austroeupatorium inulaefolium (H.B.K.) against intracellular and extracellular organisms. Nat. Prod. Res. 2018, 32, 2869–2871. [Google Scholar] [CrossRef]
- Son, N.T. Notes on the genus Paramignya: Phytochemistry and biological activity. Bull. Fac. Pharm. Cairo Univ. 2018, 56, 1–10. [Google Scholar] [CrossRef]
- Ho, P.H. Vietnamese Plants-An Illustrated Flora of Vietnam; Young publisher: Ho Chi Minh City, Vietnam, 1999; Volume 2, pp. 427–429. [Google Scholar]
- Tuan, D.Q.; Duc, H.V.; Nhan, L.T.; Anh, L.T.; Hoai, N.T.; Raal, A. Constituents of Essential Oils from the Leaves of Paramignya trimera (Oliv.) Guillaum from Vietnam. J. Essent. Oil-Bear. Plants 2019, 5026, 20–25. [Google Scholar] [CrossRef]
- Chi, V.V. The Dictionary of Medicinal Plants in Vietnam; Med. Publ. House: Ha Noi, Vietnam, 2012. [Google Scholar]
- Doan, T.Q.; Ho, D.V.; Trong Le, N.; Le, A.T.; Van Phan, K.; Nguyen, H.T.; Raal, A. Chemical composition and anti-inflammatory activity of the essential oil from the leaves of Limnocitrus littoralis (Miq.) Swingle from Vietnam. Nat. Prod. Res. 2019, 20, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nkanwen, E.R.S.; Gatsing, D.; Ngamga, D.; Fodouop, S.P.C.; Tane, P. Antibacterial agents from the leaves of Crinum purpurascens herb (Amaryllidaceae). Afr. Health Sci. 2009, 9, 264–269. [Google Scholar] [PubMed]
- Neta, M.C.S.; Vittorazzi, C.; Guimarães, A.C.; Martins, J.D.L.; Fronza, M.; Endringer, D.C.; Scherer, R. Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies. Pharm. Biol. 2017, 55, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Oluwaseun Ademiluyi, A.; et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef]
- Imelouane, B.; Amhamdi, H.; Wathelet, J.P.; Ankit, M.; Khedid, K.; El Bachiri, A. Chemical composition and antimicrobial activity of essential oil of thyme (Thymus vulgaris) from eastern Morocco. Int. J. Agric. Biol. 2009, 11, 205–208. [Google Scholar]
- Li, Z.H.; Cai, M.; Liu, Y.S.; Sun, P.L.; Luo, S.L. Antibacterial Activity and Mechanisms of Essential Oil from Citrus medica L. Var. Sarcodactylis. Molecules 2019, 24, 1577. [Google Scholar] [CrossRef] [Green Version]
- Baali, F.; Boumerfeg, S.; Napoli, E.; Boudjelal, A.; Righi, N.; Deghima, A.; Baghiani, A.; Ruberto, G. Chemical Composition and Biological Activities of Essential Oils from Two Wild Algerian Medicinal Plants: Mentha pulegium L. and Lavandula stoechas L. J. Essent. Oil-Bear. Plants 2019, 22, 821–837. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Zeragui, B.; Hachem, K.; Halla, N.; Kahloula, K. Essential Oil from Artemisia judaica L. (ssp. sahariensis) Flowers as a Natural Cosmetic Preservative: Chemical Composition, and Antioxidant and Antibacterial Activities. J. Essent. Oil-Bear. Plants 2019, 22, 685–694. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M.S.A. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Ali, N.; Chhetri, B.; Dosoky, N.; Shari, K.; Al-Fahad, A.; Wessjohann, L.; Setzer, W. Antimicrobial, Antioxidant, and Cytotoxic Activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) Essential Oils. Medicines 2017, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Zomorodian, K.; Saharkhiz, M.J.; Rahimi, M.J.; Bandegi, A.; Shekarkhar, G.; Bandegani, A.; Pakshir, K.; Bazargani, A. Chemical composition and antimicrobial activities of the essential oils from three ecotypes of Zataria multiflora. Pharmacogn. Mag. 2011, 7, 53–59. [Google Scholar] [PubMed]
- Halcon, L.; Milkus, K. Staphylococcus aureus and wounds: A review of tea tree oil as a promising antimicrobial. Am. J. Infect. 2004, 32, 402–408. [Google Scholar]
- Kwiatkowski, P.; Mnichowska-Polanowska, M.; Pruss, A.; Dzięcioł, M.; Masiuk, H. Activity of essential oils against Staphylococcus aureus strains isolated from skin lesions in the course of staphylococcal skin infections. Herba Pol. 2017, 63, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, V.; Lal, P.; Pruthi, V. Effect of Plant Oils on Candida albicans. J. Microbiol. Immunol. Infect. 2010, 43, 447–451. [Google Scholar] [CrossRef]
- Goel, N.; Rohilla, H.; Sing, G.; Punia, P. Antifungal activity of Cinnamon oil and Olive oil against Candida spp. Isolated from blood stream infections. J. Clin. Diagn. Res. 2016, 10, DC09–DC11. [Google Scholar] [CrossRef]
- Cannas, S.; Usai, D.; Tardugno, R.; Benvenuti, S.; Pellati, F.; Zanetti, S.; Molicotti, P. Chemical composition, cytotoxicity, antimicrobial and antifungal activity of several essential oils. Nat. Prod. Res. 2016, 30, 332–339. [Google Scholar] [CrossRef]
- Donadu, M.G.; Usai, D.; Marchetti, M.; Usai, M.; Mazzarello, V.; Molicotti, P.; Montesu, M.A.; Delogu, G.; Zanetti, S. Antifungal activity of oils macerates of North Sardinia plants against Candida species isolated from clinical patients with candidiasis. Nat. Prod. Res. 2019, 1–5. [Google Scholar] [CrossRef]
- Fakhrieh Kashan, Z.; Delavari, M.; Arbabi, M.; Hooshyar, H. Therapeutic effects of Iranian herbal extracts against Trichomonas vaginalis. Iran. Biomed. J. 2017, 21, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Scopel, M.; dos Santos, O.; Frasson, A.P.; Abraham, W.R.; Tasca, T.; Henriques, A.T.; Macedo, A.J. Anti-Trichomonas vaginalis activity of marine-associated fungi from the South Brazilian Coast. Exp. Parasitol. 2013, 133, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaha, C.; Duchêne, M.; Aspöck, H.; Walochnik, J. In vitro activity of hexadecylphosphocholine (miltefosine) against metronidazole-resistant and -susceptible strains of Trichomonas vaginalis. J. Antimicrob. Chemother. 2006, 57, 273–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krashin, J.W.; Koumans, E.H.; Bradshaw-Sydnor, A.C.; Braxton, J.R.; Secor, W.E.; Sawyer, M.K.; Markowitz, L.E. Trichomonas vaginalis prevalence, incidence, risk factors and antibiotic-resistance in an adolescent population. Sex. Transm. Dis. 2010, 37, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Akbari, Z.; Dastan, D.; Maghsood, A.H.; Fallah, M.; Matini, M. Investigation of In vitro Efficacy of Marrubium vulgare L. Essential Oil and Extracts Against Trichomonas vaginalis. Zahedan J. Res. Med. Sci. 2018. in Press. [Google Scholar] [CrossRef] [Green Version]
- Ezz Eldin, H.M.; Badawy, A.F. In vitro anti-Trichomonas vaginalis activity of Pistacia lentiscus mastic and Ocimum basilicum essential oil. J. Parasit. Dis. 2015, 39, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Ziaei Hezarjaribi, H.; Nadeali, N.; Fakhar, M.; Soosaraei, M. Medicinal plants with anti-Trichomonas vaginalis activity in Iran: A systematic review. Iran. J. Parasitol. 2019, 14, 1–9. [Google Scholar] [CrossRef]
- Moon, T.; Wilkinson, J.M.; Cavanagh, H.M.A. Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamita inflata. Parasitol. Res. 2006, 99, 722–728. [Google Scholar] [CrossRef]
- Dai, M.; Peng, C.; Peng, F.; Xie, C.; Wang, P.; Sun, F. Anti-Trichomonas vaginalis properties of the oil of Amomum tsao-ko and its major component, geraniol. Pharm. Biol. 2016, 54, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res. 2018, 36, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Cannas, S.; Molicotti, P.; Usai, D.; Maxia, A.; Zanetti, S. Antifungal, anti-biofilm and adhesion activity of the essential oil of Myrtus communis L. against Candida species. Nat. Prod. Res. 2014, 28, 2173–2177. [Google Scholar] [CrossRef] [PubMed]
- Fisher, K.; Phillips, C. Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends Food Sci. Technol. 2008, 19, 156–164. [Google Scholar] [CrossRef]
- Vietnamese Pharmacopoeia; Med. Publ. House: Hanoi, Vietnam, 2017.
- Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods 1988, 20, 309–321. [Google Scholar] [CrossRef]
- Carta, A.; Sanna, G.; Briguglio, I.; Madeddu, S.; Vitale, G.; Piras, S.; Corona, P.; Peana, A.T.; Laurini, E.; Pricl, S.; et al. Quinoxaline derivatives as new inhibitors of coxsackievirus B5. Eur. J. Med. Chem. 2017, 145, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Ninth Edition: M07-A9; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Thu, T.T.T.; Margarita, V.; Cocco, A.R.; Marongiu, A.; Dessì, D.; Rappelli, P.; Fiori, P.L. Trichomonas vaginalis Transports Virulent Mycoplasma hominis and Transmits the Infection to Human Cells after Metronidazole Treatment: A Potential Role in Bacterial Invasion of Fetal Membranes and Amniotic Fluid. J. Pregnancy 2018, 2018, 1–6. [Google Scholar]
- Nu, P.A.T.; Nguyen, V.Q.H.; Cao, N.T.; Dessì, D.; Rappelli, P.; Fiori, P.L. Prevalence of Trichomonas vaginalis infection in symptomatic and asymptomatic women in central vietnam. J. Infect. Dev. Ctries. 2015, 9, 655–660. [Google Scholar]
Cell Lines and Virus | MT-4 | HIV-1IIIB | BHK-21 | YFV | Reo-1 | MDBK | BVDV | Vero-76 | RSV | VSV | HSV-1 | VV | Sb-1 | CV-B4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC50 a | EC50 b | CC50 c | EC50 d | EC50 d | CC50 e | EC50 f | CC50 g | EC50 h | ||||||
O.P.t | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
O.L.l | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
* Reference Compound | ||||||||||||||
RC1 | 40 | 0.003 ± 0.0003 | - | - | - | - | - | - | - | - | - | - | - | - |
RC2 | - | - | 80 | 1.4 ± 0.2 | - | >100 | 1.7 ± 0.3 | - | - | - | - | - | - | - |
RC3 | - | - | - | - | - | - | - | >100 | - | - | - | - | 2 | 2 ± 0.5 |
RC4 | - | - | - | - | - | - | - | ≥14 | 2 ± 0.2 | - | - | - | - | - |
RC5 | - | - | - | - | - | - | - | >100 | - | - | 3.0 ± 0.1 | - | - | - |
RC6 | - | - | - | - | - | - | - | >100 | - | - | - | 1.7 ± 0.1 | - | - |
RC7 | - | - | >100 | - | 17 | - | - | - | - | - | - | - | - | - |
Strains | P. trimera Oil | L. littoralis Oil | ||
---|---|---|---|---|
MIC (% v/v) | MLC (% v/v) | MIC (% v/v) | MLC (% v/v) | |
Gram-Positive Bacteria | ||||
Staphylococcus aureus ATCC 43300 | 2 ± 0.5 | 2 ± 0.5 | >16 ± 0.5 | >16 ± 0.5 |
Staphylococcus aureus clinical strain | 2 ± 0.5 | 2 ± 0.5 | >16 ± 0.5 | >16 ± 1 |
Enterococcus faecalis clinical strain | 16 ± 0.5 | 16 ± 1 | >16 ± 1 | >16 ± 1 |
Gram-Negative Bacteria | ||||
Escherichia coli ATCC 35218 | >16 ± 1 | >16 ± 1 | >16 ± 1 | >16 ± 0.5 |
Escherichia coli clinical strain | >16 ± 1 | >16 ± 0.5 | >16 ± 0.5 | >16 ± 0.5 |
Pseudomonas aeruginosa ATCC 27853 | 16 ± 0.5 | >16 ± 1 | >16 ± 1 | >16 ± 1 |
Pseudomonas aeruginosa clinical strain | 16 ± 0.5 | >16 ± 0.5 | >16 ± 0.5 | >16 ± 1 |
Klebsiella pneumoniae clinical strain | >16 ± 0.5 | >16 ± 0.5 | >16 ± 0.5 | >16 ± 1 |
Yeast | ||||
Candida albicans 556 RM | 16 ± 1 | 16 ± 0.5 | 16 ± 0.5 | 16 ± 1 |
Candida glabrata clinical | 16 ± 1.5 | 16 ± 1 | >16 ± 0.5 | >16 ± 0.5 |
Candida tropicalis 1011 RM | 16 ± 0.5 | 16 ± 1 | 2 ± 0.5 | 2 ± 0.5 |
Candida parapsilosis RM | 8 ± 0.5 | 8 ± 0.5 | 2 ± 0.5 | 2 ± 0.5 |
Time | P. trimera Oil | L. littoralis Oil | ||||
---|---|---|---|---|---|---|
IC50 | IC90 | MLC | IC50 | IC90 | MLC | |
1 h | 2 | 4 | 8 | 2 | 8 | 16 |
4 h | 0.5 | 1 | 2 | 1 | 4 | 8 |
24 h | 0.03 | 0.06 | 0.12 | 0.12 | 0.25 | 0.5 |
48 h | 0.016 | 0.03 | 0.06 | 0.03 | 0.06 | 0.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trong Le, N.; Viet Ho, D.; Quoc Doan, T.; Tuan Le, A.; Raal, A.; Usai, D.; Sanna, G.; Carta, A.; Rappelli, P.; Diaz, N.; et al. Biological Activities of Essential Oils from Leaves of Paramignya trimera (Oliv.) Guillaum and Limnocitrus littoralis (Miq.) Swingle. Antibiotics 2020, 9, 207. https://doi.org/10.3390/antibiotics9040207
Trong Le N, Viet Ho D, Quoc Doan T, Tuan Le A, Raal A, Usai D, Sanna G, Carta A, Rappelli P, Diaz N, et al. Biological Activities of Essential Oils from Leaves of Paramignya trimera (Oliv.) Guillaum and Limnocitrus littoralis (Miq.) Swingle. Antibiotics. 2020; 9(4):207. https://doi.org/10.3390/antibiotics9040207
Chicago/Turabian StyleTrong Le, Nhan, Duc Viet Ho, Tuan Quoc Doan, Anh Tuan Le, Ain Raal, Donatella Usai, Giuseppina Sanna, Antonio Carta, Paola Rappelli, Nicia Diaz, and et al. 2020. "Biological Activities of Essential Oils from Leaves of Paramignya trimera (Oliv.) Guillaum and Limnocitrus littoralis (Miq.) Swingle" Antibiotics 9, no. 4: 207. https://doi.org/10.3390/antibiotics9040207
APA StyleTrong Le, N., Viet Ho, D., Quoc Doan, T., Tuan Le, A., Raal, A., Usai, D., Sanna, G., Carta, A., Rappelli, P., Diaz, N., Cappuccinelli, P., Zanetti, S., Thi Nguyen, H., & Donadu, M. G. (2020). Biological Activities of Essential Oils from Leaves of Paramignya trimera (Oliv.) Guillaum and Limnocitrus littoralis (Miq.) Swingle. Antibiotics, 9(4), 207. https://doi.org/10.3390/antibiotics9040207