Cinnamon (Cinnamomum zeylanicum) Oil as a Potential Alternative to Antibiotics in Poultry
Abstract
:1. Introduction
2. Chemical Composition
3. Effects on Growth Performance
3.1. Body Weight and Body Weight Gain
3.2. Feed Intake and Feed Conversion Rate
4. Carcass Traits
5. Blood Parameters
6. Intestinal Microbiota
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Khafaga, A.F.; Taha, A.E.; Dhama, K. Use of licorice (Glycyrrhiza glabra) herb as a feed additive in poultry: Current knowledge and prospects. Animals 2019, 9, 536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R. Use of liquorice (Glycyrrhiza glabra) in poultry nutrition: Global impacts on performance, carcass and meat quality. World’s Poult. Sci. J. 2019, 75, 293–304. [Google Scholar] [CrossRef]
- Abd El-Hack, A.; Mohamed, E.; Alagawany, M.; Shaheen, H.; Samak, D.; Othman, S.I.; Allam, A.; Taha, A.; Khafaga, A.F.; Osman, A.; et al. Ginger and Its Derivatives as Promising Alternatives to Antibiotics in Poultry Feed. Animals 2020, 10, 452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Khafaga, A.F.; Taha, A.E.; Dhama, K. Omega-3 and Omega-6 fatty acids in poultry nutrition: Effect on production performance and health. Animals 2019, 9, 573. [Google Scholar] [CrossRef] [Green Version]
- Gado, A.R.; Ellakany, H.F.; Elbestawy, A.R.; Abd El-Hack, M.E.; Khafaga, A.F.; Taha, A.E.; Mahgoub, S.A. Herbal medicine additives as powerful agents to control and prevent avian influenza virus in poultry–a review. Annal. Anim. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Reda, F.M.; Alagawany, M.; Mahmoud, H.K.; Mahgoub, S.A.; Elnesr, S.S. Use of red pepper oil in quail diets and its effect on performance, carcass measurements, intestinal microbiota, antioxidant indices, immunity and blood constituents. Animal 2019, 1–9. [Google Scholar] [CrossRef]
- Gutiérrez, R.M.P.; Mitchell, S.; Solis, R.V. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008, 117, 1–27. [Google Scholar] [CrossRef]
- Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Shaheen, H.M.; Abdel-Latif, M.A.; Noreldin, A.E.; Khafaga, A.F. The applications of Origanum vulgare and its derivatives in human, ruminant and fish nutrition–a review. Ann. Anim. Sci. 2020, 1. [Google Scholar] [CrossRef]
- Abd El-Hack, M.; Alagawany, M.; Farag, M.; Tiwari, R.; Karthik, K.; Dhama, K.; Zorriehzahra, J.; Adel, M. Beneficial impacts of thymol essential oil on health and production of animals, fish and poultry: A review. J. Essen. Oil Res. 2016, 28, 365–382. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Mahgoub, S.A.; Alagawany, M.; Dhama, K. Influences of dietary supplementation of antimicrobial cold pressed oils mixture on growth performance and intestinal microflora of growing Japanese quails. Int. J. Pharmacol. 2015, 11, 689–696. [Google Scholar]
- Abd El-Hack, M.E.; Mahgoub, S.A.; Hussein, M.M.; Saadeldin, I.M. Improving growth performance and health status of meat-type quail by supplementing the diet with black cumin cold-pressed oil as a natural alternative for antibiotics. Environ. Sci. Pollut. Res. 2018, 25, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; Abdelnour, S.A.; Taha, A.E.; Khafaga, A.F.; Arif, M.; Ayasan, T.; Abdel-Daim, M.M. Herbs as thermoregulatory agents in poultry: An overview. Sci. Total. Environ. 2019, 17, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Osman, N.; Talat, G.; Mehmet, C.; Bestami, D.; Simsek, G. The effect of an essential oil mix derived from oregano, clove and aniseed on broiler performance. Intern. J. Poult. Sci. 2005, 4, 879–884. [Google Scholar]
- Chang, S.T.; Chen, P.F.; Chang, S.C. Antibacterial activity of leaf essential oils and their constituents from Cinnamomun osmophloeum. J. Ethnopharmacol. 2001, 77, 123–127. [Google Scholar] [CrossRef]
- Lin, C.C.; Wu, S.J.; Chang, C.H.; Ng, L.T. Antioxidant activity of Cinnamomum cassia. Phytother. Res. 2003, 17, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Wenk, C. Why all the discussion about herbs? Lyons, T.P., Ed.; Alltech Tech. Publ., Nottingham University Press: Nicholasville, KY, USA, 2000; pp. 79–96. [Google Scholar]
- Schmidt, E.; Jirovetz, L.; Buchbauer, G.; Eller, G.A.; Stoilova, I.; Krastanov, A.; Geissler, M. Composition and antioxidant activities of the essential oil of cinnamon (Cinnamomum zeylanicum Blume) leaves from Sri Lanka. J. Essent. Oil Bear. Plants. 2006, 9, 170–182. [Google Scholar] [CrossRef]
- Vazirian, M.; Alehabib, S.; Jamalifar, H.; Fazeli, M.R.; Najarian Toosi, A.; Khanavi, M. Antimicrobial effect of cinnamon (Cinnamomum verum J. Presl) bark essential oil in cream-filled cakes and pastries. Res. J. Pharmacogn. 2015, 2, 11–16. [Google Scholar]
- Kamaliroosta, L.; Gharachorloo, M.; Kamaliroosta, Z.; Alimohammad Zadeh, K.H. Extraction of cinnamon essential oil and identification of its chemical compounds. J. Med. Plants Res. 2012, 6, 609–614. [Google Scholar] [CrossRef]
- Ainane, T.; Khammour, F.; Merghoub, N. Cosmetic bio-product based on cinnamon essential oil “Cinnamomum verum” for the treatment of mycoses: Preparation, chemical analysis and antimicrobial activity. MOJ Toxicol. 2019, 5, 5–8. [Google Scholar]
- Abdelwahab, S.I.; Mariod, A.A.; Taha, M.M.E.; Zaman, F.Q.; Abdelmageed, A.H.A.; Khamis, S.; Sivasothy, K.; Awang, K. Chemical composition and antioxidant properties of the essential oil of Cinnamomum altissimum Kosterm. (Lauraceae). Arabian J. Chem. 2017, 10, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Liyanage, T.; Madhujith, T.; Wijesinghe, K.G.G. Comparative study on major chemical constituents in volatile oil of true cinnamon (Cinnamomum verumPresl. syn. C. zeylanicum Blum.) and five wild cinnamon species grown in Sri Lanka. Trop. Agric. Res. 2017, 28, 270–280. [Google Scholar] [CrossRef]
- Paranagama, P.A.; Wimalasena, S.; Jayatilake, G.S.; Jayawardena, A.L.; Senanayake, U.M.; Mubarak, A.M.A. Comparison of essential oil constituents of bark, leaf, root and fruit of cinnamon (Cinnamomum zeylanicum Blum) grown in Sri Lanka. J. Natn. Sci. Foundation Sri Lanka 2001, 29, 147–153. [Google Scholar] [CrossRef]
- Kasim, N.N.; Ismail, S.N.A.S.; Masdar, N.D.; Ab Hamid, F.; Nawawi, W.I. Extraction and potential of cinnamon essential oil towards repellency and insecticidal activity. Int. J. Sci. Res. Pub. 2014, 4, 2250–3153. [Google Scholar]
- Atiphasaworn, P.; Monggoot, S.; Pripdeevech, P. Chemical composition, antibacterial and antifungal activities of Cinamomum bejolghota bark oil from Thailand. J. Appl. Pharm. Sci. 2017, 7, 69–73. [Google Scholar]
- Adinew, B. GC-MS and FT-IR analysis of constituents of essential oil from Cinnamon bark growing in South-west of Ethiopia. Int. J. Herb. Med. 2014, 1, 22–31. [Google Scholar]
- Şimşek, Ü.G.; Ciftci, M.; Doğan, G.; Özçelik, M. Antioxidant activity of cinnamon bark oil (Cinnamomum zeylanicum L.) in Japanese quails under thermo neutral and heat stressed conditions. Kafkas. Univ. Vet. Fak. Derg. 2013, 19, 889–894. [Google Scholar]
- El-Baroty, G.S.; El-Baky, H.A.; Farag, R.S.; Saleh, M.A. Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. African J. Biochem. Res. 2010, 4, 167–174. [Google Scholar]
- Al-Kassie, G.A. Influence of two plant extracts derived from thyme and cinnamon on broiler performance. Pakistan Vet. J. 2009, 29, 169–173. [Google Scholar]
- Sarica, S.; Corduk, M.; Yarim, G.F.; Yenisehirli, G.; Karatas, U. Effects of novel feed additives in wheat based diets on performance, carcass and intestinal tract characteristics of quail. South African J. Anim. Sci. 2009, 39. [Google Scholar] [CrossRef]
- Toghyani, M.; Gheisari, A.; Ghalamkari, G.; Eghbalsaied, S. Evaluation of cinnamon and garlic as antibiotic growth promoter substitutions on performance, immune responses, serum biochemical and haematological parameters in broiler chicks. Livest. Sci. 2011, 138, 167–173. [Google Scholar] [CrossRef]
- Mehdipour, Z.; Afsharmanesh, M.; Sami, M. Effects of dietary synbiotic and cinnamon (Cinnamomum verum) supplementation on growth performance and meat quality in Japanese quail. Livest. Sci. 2013, 154, 152–157. [Google Scholar] [CrossRef]
- Shirzadegan, K. Reactions of modern broiler chickens to administration of cinnamon powder in the diet. Iranian J. Appl. Anim. Sci. 2014, 4, 367–371. [Google Scholar]
- Devi, P.C.; Samanta, A.K.; Das, B.; Kalita, G.; Behera, P.S.; Barman, S. Effect of plant extracts and essential oil blend as alternatives to antibiotic growth promoters on growth performance, nutrient utilization and carcass characteristics of broiler chicken. Indian J. Anim. Nutr. 2018, 35, 421–427. [Google Scholar] [CrossRef]
- Lee, K.W.; Everts, H.; Kappert, H.J.; Frehner, M.; Losa, R.; Beynen, A.C. Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. Br. Poult. Sci. 2003, 44, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Muhl, A.; Liebert, F. Growth, nutrient utilization and threonine requirement of growing chicken fed threonine limiting diets with commercial blends of phytogenic feed additives. J. Poult. Sci. 2007, 44, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Koochaksaraie, R.R.; Irani, M.; Gharavysi, S. The effects of cinnamon powder feeding on some blood metabolites in broiler chicks. Brazilian J. Poult. Sci. 2011, 13, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Tonbak, F.; Çiftçi, M. Effects of cinnamon oil (Cinnamomumzeylanicum L.) supplemented to ration on growth performance and carcass characteristics in heat-stressed Japanese quails. Sağlık Bilimleri Vet. Derg. Fırat Üniv. 2012, 26, 157–164. [Google Scholar]
- Symeon, G.K.; Athanasiou, A.; Lykos, N.; Charismiadou, M.A.; Goliomytis, M.; Demiris, N.; Ayoutanti, A.; Simitzis, P.E.; Deligeorgis, S.G. The effects of dietary cinnamon (Cinnamomum zeylanicum) oil supplementation on broiler feeding behaviour, growth performance, carcass traits and meat quality characteristics. Annal. Anim. Sci. 2014, 14, 883–895. [Google Scholar] [CrossRef] [Green Version]
- Kishawy, A.T.; Amer, S.A.; Abd El-Hack, M.E.; Saadeldin, I.M.; Swelum, A.A. The impact of dietary linseed oil and pomegranate peel extract on broiler growth, carcass traits, serum lipid profile, and meat fatty acid, phenol, and flavonoid contents. Asian-Austral. J. Anim. Sci. 2019, 32, 1161–1171. [Google Scholar] [CrossRef]
- Saeed, M.; Ali, A.; Syed, S.F.; Babazadeh, D.; Suheryani, I.; Shah, Q.A.; Umar, M.; Kakar, I.; Naveed, M.; Abd El-Hack, M.E.; et al. Phytochemistry and beneficial impacts of cinnamon (Cinnamomum zeylanicum) as a dietary supplement in poultry diets. World’s Poult. Sci. J. 2018, 74, 331–346. [Google Scholar] [CrossRef]
- Mahgoub, S.A.M.; Abd El-Hack, M.E.; Saadeldin, I.M.; Hussein, M.A.; Swelum, A.A.; Alagawany, M. Impact of Rosmarinus officinalis cold-pressed oil on health, growth performance, intestinal bacterial populations, and immunocompetence of Japanese quail. Poult. Sci. 2019, 98, 2139–2149. [Google Scholar] [CrossRef] [PubMed]
- Abo Ghanima, M.; Esadek, M.; Taha, A.; Abd El-Hack, M.E.; Alagawany, M.; Ahmed, B.; Elshafie, M.; El-Sabrout, K. Effect of housing system and rosemary and cinnamon essential oils on layers performance, egg quality, haematological traits, blood chemistry, immunity, and antioxidant. Animals 2020, 10, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Şimşek, Ü.G.; Ciftci, M.; Özçelik, M.; Azman, M.A.; Tonbak, F.; Özhan, N. Effects of cinnamon and rosemary oils on egg production, egg quality, hatchability traits and blood serum mineral contents in laying quails (Coturnixcoturnix Japonica). Ankara Üniv. Vet. Fak. Derg. 2015, 62, 229–236. [Google Scholar]
- Torki, M.; Akbari, M.; Kaviani, K. Single and combined effects of zinc and cinnamon essential oil in diet on productive performance, egg quality traits, and blood parameters of laying hens reared under cold stress condition. Int. J. Biometeorol. 2015, 59, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, M.; Dalkilic, B.; Cerci, I.H.; Guler, T.; Ertas, O.N.; Arslan, O. Influence of dietary cinnamon oil supplementation on performance and carcass characteristics in broilers. J. Appl. Anim. Res. 2009, 36, 125–128. [Google Scholar] [CrossRef]
- Mehdipour, Z.; Afsharmanesh, M. Evaluation of synbiotic and cinnamon (Cinnamomum verum) as antibiotic growth promoter substitutions on growth performance, intestinal microbial populations and blood parameters in Japanese quail. J. Livest. Sci. Technol. 2018, 6, 1–8. [Google Scholar]
- Pathak, M.; Mandal, G.P.; Patra, A.K.; Samanta, I.; Pradhan, S.; Haldar, S. Effects of dietary supplementation of cinnamaldehyde and formic acid on growth performance, intestinal microbiota and immune response in broiler chickens. Anim. Prod. Sci. 2017, 57, 821–827. [Google Scholar] [CrossRef]
- Hernandez, F.; Madrid, J.; Garcia, V.; Orengo, J.; Megias, M.D. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult. Sci. 2004, 83, 169–174. [Google Scholar] [CrossRef]
- Dalkilic, B.; Ciftci, M.; Guler, T.; Cerci, I.H.; Ertas, O.N.; Guvenc, M. Influence of dietary cinnamon oil supplementation on fatty acid composition of liver and abdominal fat in broiler chicken. J. Appl. Anim. Res. 2009, 35, 173–176. [Google Scholar] [CrossRef]
- Gomathi, G.; Senthilkumar, S.; Natarajan, A.; Amutha, R.; Purushothaman, M.R. Effect of dietary supplementation of cinnamon oil and sodium butyrate on carcass characteristics and meat quality of broiler chicken. Vet. World. 2018, 11, 959–964. [Google Scholar] [CrossRef]
- Ciftci, M.; Simsek, U.G.; Yuce, A.; Yilmaz, O.; Dalkilic, B. Effects of dietary antibiotic and cinnamon oil supplementation on antioxidant enzyme activities, cholesterol levels and fatty acid compositions of serum and meat in broiler chickens. Acta Vet. Brno. 2010, 79, 33–40. [Google Scholar] [CrossRef]
- Yang, Y.F.; Zhao, L.L.; Shao, Y.X.; Liao, X.D.; Zhang, L.Y.; Lu, L.; Luo, X.G. Effects of dietary graded levels of cinnamon essential oil and its combination with bamboo leaf flavonoid on immune function, antioxidative ability and intestinal microbiotaof broilers. J. Integr. Agric. 2019, 18, 2123–2132. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Alyemni, A.H.; Dafalla, Y.M.; Khan, R.U. The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge. J. Appl. Anim. Res. 2018, 46, 691–695. [Google Scholar] [CrossRef] [Green Version]
- Elson, C.E.; Underbakke, G.L.; Hanson, P.; Shrago, E.; Wainberg, R.H.; Quereshi, A.A. Impact of lemongrass oil an essential oil on serum cholesterol. Lipids 1989, 26, 677–679. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.L.; Brown, M.S. Regulation of the mavalonate pathway. Nature 1990, 343, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Naidu, K.A. Eugenol: An inhibitor of lipoxygenase dependent lipid peroxidation. Prostagl Leuko Essent Fatty Acids 1995, 53, 381–383. [Google Scholar] [CrossRef]
- Elnesr, S.S.; Ropy, A.; Abdel-Razik, A.H. Effect of dietary sodium butyrate supplementation on growth, blood biochemistry, haematology and histomorphometry of intestine and immune organs of Japanese quail. Animal 2019, 13, 1234–1244. [Google Scholar] [CrossRef]
- Elnesr, S.S.; Alagawany, M.; Elwan, H.A.; Fathi, M.A.; Farag, M.R. Effect of sodium butyrate on intestinal health of poultry–a review. Annal. Anim. Sci. 2020, 20, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Gupta, C.; Garg, A.P.; Uniyal, R.C.; Kumari, A. Comparative analysis of the antimicrobial activity of cinnamon oil and cinnamon extract on some food-borne microbes. African J. Microbiol. Res. 2008, 2, 247–251. [Google Scholar]
- Basilico, M.Z.; Basilico, J.C. Inhibitory effects of same spice essential oils on Aspergillus ochraceus NRRL 3174 growth and ochratoxin A production. Lett. Appl. Microbiol. 1999, 29, 238–241. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.J.; Nychas, G.J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Faix, Š.; Faixová, Z.; Plachá, I.; Koppel, J. Effect of Cinnamomumzeylanicum essential oil on antioxidative status in broiler chickens. Acta Veterinaria Brno 2009, 78, 411–417. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plants extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.L.; Liao, X.D.; Zhang, L.Y.; Luo, X.G.; Lu, L. Bacteriostatic effects of plant extracts and their compounds on chicken pathogenic bacteria in vitro. Chinese J. Anim. Nutr. 2017, 29, 3277–3286. [Google Scholar]
- Chowdhury, S.; Mandala, G.P.; Patraa, A.K.; Kumara, P.; Samantab, I.; Pradhanc, S.; Samantad, A.K. Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Anim. Feed Sci. Technol. 2018, 236, 39–47. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Tiihonen, K.; Kettunen, H.; Peuranen, S.; Schulze, H.; Rautonen, N. In vitro effects of essential oils on potential pathogens and beneficial members of the normal microbiota. Vet. Med. 2010, 55, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Tiihonen, K.; Kettunen, H.; Bento, M.H.; Saarinen, M.; Lahtinen, S.; Ouwehand, A.C.; Schulze, H.; Rautonen, N. The effect of feeding essential oils on broiler performance and gut microbiota. Br. Poult. Sci. 2010, 51, 381–392. [Google Scholar] [CrossRef]
- Jamroz, D.; Wiliczkiewicz, A.; Wertelecki, T.; Orda, J.; Skorupińska, J. Use of active substances of plant origin in chicken diets based on maize and locally grown cereals. Br. Poult. Sci. 2005, 46, 485–493. [Google Scholar] [CrossRef]
- Jamroz, D.; Wertelecki, T.; Houszka, M.; Kamel, C. Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken. J. Anim. Physiol. Anim. Nutr. 2006, 90, 2555–2568. [Google Scholar] [CrossRef]
- Kollanoor-Johny, A.; Darre, M.J.; Donoghue, A.M.; Donoghue, D.J.; Venkitanarayanan, K. Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella Enteritidis and Campylobacter jejuni in chicken cecal contents in vitro. J. Appl. Poult. Res. 2010, 19, 237–244. [Google Scholar] [CrossRef]
- Gawande, S.D. Effect of Essential Oil of Thyme and Cinnamon on the Performance of Broilers. Ph.D. Thesis, Nanaji Deshmukh Veterinary Science University, Jabalpur, India, 2015. [Google Scholar]
Compound | 1 Concentration (%) in Cinnamon Leaf Oil | 2 Concentration (%) in Cinnamon Bark Oil |
---|---|---|
Caryophyllene oxide | 0.5 | 0.35 |
1,8-Cineole | 0.6 | 1.02 |
Benzyl benzoate | 3.0 | 0.01–0.37 |
Benzyl alcohol | 0.2 | 0.14 |
Eugenol | 74.9 | 0.39–2.37 |
Benzaldehyde | 0.1 | 0.23–0.31 |
Camphene | 0.3 | 0.08–0.12 |
Cinnamaldehyde | 1.1 | 62.09–89.31 |
Cinnamyl acetate | 1.8 | 1.48–2.44 |
Linalool | 2.5 | 1.6–4.08 |
α-Pinene | 1.2 | 0.37–0.50 |
β-Phellandrene | 0.2 | 0.23–0.25 |
α-Cubebene | 0.9 | 0.12–0.21 |
α-Humulene | 0.6 | 0.01–0.28 |
Myrcene | 0.1 | 0.05–0.40 |
Limonene | 0.5 | 0.19–0.33 |
Cymene | 0.8 | 0.02–1.31 |
β-Pinene | 0.3 | 0.07–0.15 |
Delta-3-Carene | 0.6 | 0.37 |
β-Caryophyllene | 4.1 | 0.89–2.05 |
Phenylethyl alcohol | 0.1 | 0.15 |
α-Terpinene | 0.1 | 0.03 |
α-Phellandrene | 0.9 | 0.01 |
α-Terpineol | 0.3 | 0.01 |
α-Thujene | 0.2 | - |
Safrole | 1.3 | - |
Styrene | 0.1 | - |
Elemene | - | 0.08–0.33 |
Borneol | - | 0.01–0.12 |
Coumarin | - | 0.41–0.47 |
Benzenepropanal | - | 0.41 |
Hinesol | - | 0.36 |
T-cadinol | - | 2.47 |
α-Muurolene | - | 4.32 |
α-Amorphene | - | 1.98 |
Level | Bird Type | Age | Results | References |
---|---|---|---|---|
200 mg/kg | Broiler chicks | 42 days | Improved body weight gain (BWG), feed conversion rate (FCR) and dressing% Decreased Abdominal fat% Decreased Cholesterol Improved blood haematology | Al-Kassie [29] |
500 mg/kg | Broiler chicks | 38 days | Increased glutathione peroxidase activity in the kidney and liver Reduced plasma malondialdehyde level and ALT activity Increased the phagocytic activity | Faix et al. [62] |
500 mg/kg | Broiler chicks | 35 days | Improved BWG and FCR No effects on carcass traits | Ciftci et al. [46] |
1g/kg | Japanese quail | 35 days | Decreased lipid profile | Sarica et al. [30] |
1g/kg | Broiler chicks | 35 days | Increased concentration of glutathione peroxidase and catalase Reduced level of malondialdehyde Lowered cholesterol levels of serum Decreased breast and thigh meat | Ciftci et al. [52] |
200 mg/kg | Japanese quail | 35 days | Improved BWG and FCR Increase water holding capacity of meat | Mehdipour et al. [32] |
300 mg/kg | Broiler chicks | 35 days | Improved the performance indices (BWG, FCR and performance index) Increased the carcass yield (dressed weight, drawn weight and eviscerated weight). Increased various hematobiochemical parameters | Gawande [72] |
3 and 4 g/kg | Broiler chicks | 42 days | Improved BWG and FCR No effects on carcass traits | Devi et al. [34] |
200 mg/kg | Broiler chicks | 35 days | Improved FCR Increased Lactobacillus and decreased Coliforms count in the intestine | Mehdipour and Afsharmanesh, [47] |
250 mg/kg | Broiler chicks | 35 days | Decreased meat cholesterol No effect on carcass characteristics, meat quality | Gomathi et al. [51] |
400 mg/kg | Broiler chicks | 42 days | Improved the immunity Decreased cecal E. coli Increased cecal Lactobacillus and Bifidobacterium | Yang et al. [53] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Hack, M.E.; Alagawany, M.; Abdel-Moneim, A.-M.E.; Mohammed, N.G.; Khafaga, A.F.; Bin-Jumah, M.; Othman, S.I.; Allam, A.A.; Elnesr, S.S. Cinnamon (Cinnamomum zeylanicum) Oil as a Potential Alternative to Antibiotics in Poultry. Antibiotics 2020, 9, 210. https://doi.org/10.3390/antibiotics9050210
Abd El-Hack ME, Alagawany M, Abdel-Moneim A-ME, Mohammed NG, Khafaga AF, Bin-Jumah M, Othman SI, Allam AA, Elnesr SS. Cinnamon (Cinnamomum zeylanicum) Oil as a Potential Alternative to Antibiotics in Poultry. Antibiotics. 2020; 9(5):210. https://doi.org/10.3390/antibiotics9050210
Chicago/Turabian StyleAbd El-Hack, Mohamed E., Mahmoud Alagawany, Abdel-Moneim E. Abdel-Moneim, Noureldeen G. Mohammed, Asmaa F. Khafaga, May Bin-Jumah, Sarah I. Othman, Ahmed A. Allam, and Shaaban S. Elnesr. 2020. "Cinnamon (Cinnamomum zeylanicum) Oil as a Potential Alternative to Antibiotics in Poultry" Antibiotics 9, no. 5: 210. https://doi.org/10.3390/antibiotics9050210
APA StyleAbd El-Hack, M. E., Alagawany, M., Abdel-Moneim, A. -M. E., Mohammed, N. G., Khafaga, A. F., Bin-Jumah, M., Othman, S. I., Allam, A. A., & Elnesr, S. S. (2020). Cinnamon (Cinnamomum zeylanicum) Oil as a Potential Alternative to Antibiotics in Poultry. Antibiotics, 9(5), 210. https://doi.org/10.3390/antibiotics9050210