In Vitro Azole and Amphotericin B Susceptibilities of Malassezia furfur from Bloodstream Infections Using E-Test and CLSI Broth Microdilution Methods
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Malassezia Furfur Strains
4.2. Antifungal Susceptibility Tests
4.3. Data Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cafarchia, C.; Gallo, S.; Capelli, G.; Otranto, D. Occurrence and population size of Malassezia spp. in the external ear canal of dogs and cats both healthy and with otitis. Mycopathologia 2005, 160, 143–149. [Google Scholar] [CrossRef]
- Theelen, B.; Cafarchia, C.; Gaitanis, G.; Bassukas, I.D.; Boekhout, T.; Dawson, T.L., Jr. Malassezia ecology, pathophysiology, and treatment. Med. Mycol. 2018, 56, S10–S25. [Google Scholar] [CrossRef] [Green Version]
- Rhimi, W.; Theelen, B.; Boekhout, T.; Otranto, D.; Cafarchia, C. Malassezia spp. a yeast of emerging concern in fungemia. Front. Microbiol. 2020, in press. [Google Scholar]
- Iatta, R.; Battista, M.; Miragliotta, G.; Boekhout, T.; Otranto, D.; Cafarchia, C. Blood culture procedures and diagnosis of Malassezia furfur bloodstream infections: Strength and weakness. Med. Mycol. 2018, 56, 828–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedrosa, A.F.; Lisboa, C.; Rodrigues, A.G. Malassezia infections with systemic involvement: Figures and facts. J. Dermatol. 2018, 45, 1278–1282. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.T.; Chen, C.C.; Huang, H.C.; Kuo, K.C. Malassezia furfur Emergence and Candidemia Trends in a Neonatal Intensive Care Unit During 10 Years: The Experience of Fluconazole Prophylaxis in a Single Hospital. Adv. Neonatal Care 2019, 20, E3. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Cho, Y.G.; Kim, D.S.; Choi, S.I.; Lee, H.S. First Case of Catheter-related Malassezia pachydermatis Fungemia in an Adult. Ann. Lab. Med. 2019, 39, 99–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iatta, R.; Figueredo, L.A.; Montagna, M.T.; Otranto, D.; Cafarchia, C. In vitro antifungal susceptibility of Malassezia furfur from bloodstream infections. Med. Microbiol. 2014, 63, 1467–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhury, S.; Marte, R.L. Malassezia pachydermatis fungemia in an adult on posaconazole prophylaxis for acute myeloid leukaemia. Pathol. J. RCPA 2014, 46, 466–467. [Google Scholar]
- Al-Sweih, N.; Ahmad, S.; Joseph, L.; Khan, S.; Khan, Z. Malassezia pachydermatis fungemia in a preterm neonate resistant to fluconazole and flucytosine. Med. Mycol. Case Rep. 2014, 5, 9–11. [Google Scholar] [CrossRef]
- Angileri, M.; Pasquetti, M.; De Lucia, M.; Peano, A. Azole resistance of Malassezia pachydermatis causing treatment failure in a dog. Med. Mycol. Case Rep. 2019, 23, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Iatta, R.; Puttilli, M.R.; Immediato, D.; Otranto, D.; Cafarchia, C. The role of drug efflux pumps in Malassezia pachydermatis and Malassezia furfur defence against azoles. Mycoses 2017, 60, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Kohli, Y.; Summerbell, R.C. Molecular Differentiation of Seven Malassezia Species. J. Clin. Microbiol. 2000, 38, 1869–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garau, M.; Pereiro, M., Jr.; Del Palacio, A. In vitro susceptibilities of Malassezia species to a new triazole, albaconazole (UR-9825), and other antifungal compounds. Antimicrob. Agents Chemother. 2003, 47, 2342–2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velegraki, A.; Alexopoulos, E.C.; Kritikou, S.; Gaitanis, G. Use of fatty acid RPMI 1640 media for testing susceptibilities of eight Malassezia species of the new triazole Posaconazole and to six established antifungal agents by a modified NCCLS M27-A2 microdilution method and E-test. J. Clin. Microbiol. 2004, 42, 3589–3593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugita, T.; Tajima, M.; Ito, T.; Saito, M.; Tsuboi, R.; Nishikawa, A. Antifungal activities of tacrolimus and azole agents against the eleven currently accepted Malassezia species. J. Clin. Microbiol. 2005, 43, 2824–2829. [Google Scholar] [CrossRef] [Green Version]
- Rincon, S.; Cepero de Garcıa, M.C.; Espinel-Ingroff, A. A modified Christensen’s urea and CLSI broth microdilution method for testing susceptibilities of six Malassezia species to voriconazole, itraconazole, and ketoconazole. J. Clin. Microbiol. 2006, 44, 3429–3431. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Muñoz, A.J.; Rojas, F.; Tur-Tur, C.; De Los Ángeles Sosa, M.; Diez, G.O.; Espada, C.M.; María, J.P.; Giusiano, G. In vitro antifungal activity of topical and systemic antifungal drugs against Malassezia species. Mycoses 2013, 56, 571–575. [Google Scholar] [CrossRef]
- Rojas, F.D.; Sosa, M.D.L.A.; Fernandez, M.S.; Cattana, M.E.; Cordoba, S.B.; Giusiano, G.E. Antifungal susceptibility of Malassezia furfur, Malassezia sympodialis, and Malassezia globosa to azole drugs and amphotericin B evaluated using a broth microdilution method. Sabouraudia 2014, 52, 641–646. [Google Scholar] [CrossRef] [Green Version]
- Cafarchia, C.; Iatta, R.; Immediato, D.; Puttilli, M.R.; Otranto, D. Azole susceptibility of Malassezia pachydermatis and Malassezia furfur and tentative epidemiological cut-off values. Med. Mycol. 2015, 53, 743–748. [Google Scholar] [CrossRef] [Green Version]
- Rojas, F.D.; Córdoba, S.B.; De Los Ángeles Sosa, M.; Zalazar, L.C.; Fernández, M.S.; Cattana, M.E.; Susana, B.; Córdoba, S.B.; Giusiano, G.E. Antifungal susceptibility testing of Malassezia yeast: Comparison of two different methodologies. Mycoses 2017, 60, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Rabha, D.; Ahmed, G. In vitro antifungal susceptibility of Malassezia isolates from pityriasis versicolor lesions. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 249. [Google Scholar] [CrossRef] [PubMed]
- Pasquetti, M.; Chiavassa, E.; Tizzani, P.; Danesi, P.; Peano, A. Agar Diffusion Procedures for Susceptibility Testing of Malassezia pachydermatis: Evaluation of Mueller-Hinton Agar Plus 2% Glucose and 0.5 µg/mL Methylene Blue as the Test Medium. Mycopathologia 2015, 180, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Cafarchia, C.; Figueredo, L.A.; Iatta, R.; Colao, V.; Montagna, M.T.; Otranto, D. In vitro evaluation of Malassezia pachydermatis susceptibility to azole compounds using E-test and CLSI microdilution methods. Med. Mycol. 2012, 50, 795–801. [Google Scholar] [CrossRef] [Green Version]
- Yurayart, C.; Nuchnoul, N.; Moolkum, P.; Jirasuksiri, S.; Niyomtham, W.; Kajiwara, S.; Prapasarakul, N. Antifungal agent susceptibilities and interpretation of Malassezia pachydermatis and Candida parapsilosis isolated from dogs with and without seborrheic dermatitis skin. Med. Mycol. 2013, 51, 721–730. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Koike, A.; Kano, R.; Nagata, M.; Chen, C.H.; Hwang, C.H.; Hasegawa, A.; Hiroshi, K. In vitro susceptibility of Malassezia pachydermatis isolates from canine skin with atopic dermatitis to ketoconazole and itraconazole in East Asia. J. Vet. Med. Sci. 2014, 76, 579–581. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Pérez, S.; Blanco, J.L.; Peláez, T.; Cutuli, M.; García, M.E. In vitro amphotericin B susceptibility of Malassezia pachydermatis determined by the CLSI broth microdilution method and Etest using lipid-enriched media. Antimicrob. Agents Chemother. 2014, 58, 4203–4206. [Google Scholar] [CrossRef] [Green Version]
- Nijima, M.; Kano, R.; Nagata, M.; Hasegawa, A.; Kamata, H. An Azole-resistant isolate of Malassezia pachydermatis. Vet. Microbiol. 2011, 149, 288–290. [Google Scholar] [CrossRef]
- Iatta, R.; Immediato, D.; Montagna, M.T.; Otranto, D.; Cafarchia, C. In vitro activity of two amphotericin B formulations against Malassezia furfur strains recovered from patients with bloodstream infections. Med. Mycol. 2015, 53, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, J.H. Selection criteria for an antimicrobial susceptibility testing system. J. Clin. Microbiol. 1993, 31, 2841–2844. [Google Scholar] [CrossRef] [Green Version]
- Galvis-Marín, J.C.; Rodríguez-Bocanegra, M.X.; Del Pilar Pulido-Villamarín, A.; Castañeda-Salazar, R.; Celis-Ramírez, A.M.; Linares-Linares, M.Y. Actividad antifúngica in vitro de azoles y anfotericina B frente a Malassezia furfur por el método de microdilución M27-A3 del CLSI y Etest®. Rev. Iberoam. Micol. 2017, 34, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Nascente, P.S.; Mano Meinerz, A.R.; Faria, R.O.D.; Schuch, L.F.D.; Meireles, M.C.A.; Mello, J.R.B.D. CLSI broth microdilution method for testing susceptibility of Malassezia pachydermatis to thiabendazole. Braz. J. Microbiol. 2009, 40, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J. Clin. Microbiol. 2012, 50, 2846–2856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guého, E.; Midgley, G.; Guillot, J. The genus Malassezia with description of four new species. Antonie Leeuwenhoek 1996, 69, 337–355. [Google Scholar] [CrossRef]
- Cafarchia, C.; Gasser, R.B.; Figueredo, L.A.; Latrofa, M.S.; Otranto, D. Advances in the identification of Malassezia. Mol. Cell. Probes 2011, 25, 1–7. [Google Scholar] [CrossRef]
- Kolecka, A.; Khayhan, K.; Arabatzis, M.; Velegraki, A.; Kostrzewa, M.; Andersson, A.; Scheynius, A.; Cafarchia, C.; Iatta, R.; Montagna, M.T.; et al. Efficient identification of Malassezia yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Br. J. Dermatol. 2014, 170, 332–341. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed.; CLSI M27–A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Cuenca-Estrella, M.; Gomez-Lopez, A.; Alastruey-Izquierdo, A.; Bernal- Martinez, L.; Cuesta, I.; Buitrago, M.J.; Rodriguez-Tudela, J.L. Comparison of the Vitek 2 antifungal susceptibility system with the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution reference methods and with the Sensititre Yeast One and Etest techniques for in vitro detection of antifungal resistance in yeast isolates. J. Clin. Microbiol. 2010, 48, 1782–1786. [Google Scholar] [CrossRef] [Green Version]
Drugs | Antifungal Test | MIC Range | MIC50 | MIC90 | mMIC (sd) | EA with CLSI BMD | Discrepancies | |
---|---|---|---|---|---|---|---|---|
NSD | SD | |||||||
N/Tot (%) | N/Tot (%) | |||||||
FLZ | CLSI BMD | 32–128 | 128 | 128 | 91.2 (40.7) a | |||
E-test SAB + Tween | 32–128 | 64 | 128 | 89.2 (34.5) d,f | 100 | 0/39 (0) | 0/39 (0) | |
E-test mDixon | 32–256 | 96 | 96 | 92.4 (68.7) i | 100 | 0/20 (0) | 0/39 (0) | |
ITZ | CLSI BMD | 0.008–4 | 0.06 | 0.25 | 0.2 (0.6) a,b | |||
E-test SAB + Tween | 0.064–4 | 0.19 | 0.5 | 0.5 (0.8) d | 69.2 | 7/39 (17.9) | 5/39 (12.8) | |
E-test mDixon | 0.38–1.5 | 0.75 | 1 | 0.8 (0.2) i,j | 60 | 6/20 (30) | 2/20 (10) | |
VOR | CLSI BMD | 0.03–4 | 1 | 1 | 0.8 (0.6) a | |||
E-test SAB + Tween | 0.32–4 | 0.75 | 2 | 1.1 (0.8) d,f,g | 94.9 | 1/39 (2.6) | 1/39 | |
E-test mDixon | 0.125–3 | 0.5 | 3 | 1.1 (1) i,k | 100 | 0/20 (0) | 0/20 (0) | |
POS | CLSI BMD | 0.016–2 | 0.06 | 0.25 | 0.16 (0.3) a,c | |||
E-test SAB + Tween | 0.19–1 | 0.125 | 0.1 | 0.4 (0.3) d,g,h* | 66.6 | 11/39 (28.2) | 2/39 (5.1) * | |
E-test mDixon | 0.25–1.5 | 1.5 | 1.5 | 1.2 (0.5) i,j,l* | 40 | 4/20 (20) | 8/20 (40) * | |
AmB | CLSI BMD | 2–16 | 16 | 16 | 10.4 (6.5) a,b,c | |||
E-test SAB + Tween | 4–32 | 32 | 32 | 24.5 (12.8) d,f,g,h | 97.4 | 1/39 (2.5) * | 0/39 (0) | |
E-test mDixon | 32 | 32 | 32 | 32 (0) i,j,k,l | 75 | 5/20 (2.5) * | 0/20 (0) |
Drugs | Antifungal Test | MIC Range | MIC50 | MIC90 | mMIC (sd) | EA with CLSI BMD | Discrepancies | |
---|---|---|---|---|---|---|---|---|
NSD | SD | |||||||
N/Tot (%) | N/Tot (%) | |||||||
FLZ | CLSI BMD | 32–128 | 128 | 128 | 111.2 (29.9) a | |||
E-test SAB + Tween | 32–256 | 128 | 256 | 172.8 (84.4) e | 100 | 0/39 (0) | 0/39 (0) | |
E-test mDixon | 64–256 | 96 | 128 | 110 (60.1) j | 100 | 0/20 (0) | 0/39 (0) | |
ITZ | CLSI BMD | 0.03–4 | 0.06 | 0.25 | 0.2 (0.2) a,b | |||
E-test SAB + Tween | 0.064–4 | 0.19 | 0.5 | 0.5 (0.1) e,fn | 72 | 6/39 (15.4) * | 5/39 (12.8) | |
E-test mDixon | 0.38–1.5 | 1 | 1.5 | 1.1 (0.3) j,k* | 40 | 8/20 (40) * | 4/20 (20) | |
VOR | CLSI BMD | 0.03–4 | 1 | 1 | 0.9 (0.6) a,b,c | |||
E-test SAB + Tween | 0.32–4 | 0.75 | 2 | 1.1 (0.8) e,f,h | 97.4 | 0/39 (0) | 1/39 (2.6) | |
E-test mDixon | 0.25–3 | 1.5 | 3 | 1.1 (1) j,l | 100 | 0/20 (0) | 0/20 (0) | |
POS | CLSI BMD | 0.016–2 | 0.06 | 0.25 | 0.16 (0.3) a,c,d | |||
E-test SAB + Tween | 0.19–1 | 0.125 | 1 | 0.4 (0.3) e,h,i* | 66.6 | 11/39(28.2) * | 2/39 (5.1) * | |
E-test mDixon | 0.5–1.5 | 1.5 | 1.5 | 1.3 (0.4) j,m* | 30 | 6/20 (30) * | 8/20 (40) * | |
AmB | CLSI BMD | 4–16 | 16 | 16 | 10.8 (5.9) a,b,c,d | |||
E-test SAB + Tween | 6–32 | 32 | 32 | 24.5 (12.8) e,f,h,i* | 97.4 | 1/39 (2.5) * | 0/39 (0) | |
E-test mDixon | 32 | 32 | 32 | 32 (0) j,k,l,m* | 75 | 5/20 (25) * | 0/20 (0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhimi, W.; Inyang Aneke, C.; Mosca, A.; Otranto, D.; Cafarchia, C. In Vitro Azole and Amphotericin B Susceptibilities of Malassezia furfur from Bloodstream Infections Using E-Test and CLSI Broth Microdilution Methods. Antibiotics 2020, 9, 361. https://doi.org/10.3390/antibiotics9060361
Rhimi W, Inyang Aneke C, Mosca A, Otranto D, Cafarchia C. In Vitro Azole and Amphotericin B Susceptibilities of Malassezia furfur from Bloodstream Infections Using E-Test and CLSI Broth Microdilution Methods. Antibiotics. 2020; 9(6):361. https://doi.org/10.3390/antibiotics9060361
Chicago/Turabian StyleRhimi, Wafa, Chioma Inyang Aneke, Adriana Mosca, Domenico Otranto, and Claudia Cafarchia. 2020. "In Vitro Azole and Amphotericin B Susceptibilities of Malassezia furfur from Bloodstream Infections Using E-Test and CLSI Broth Microdilution Methods" Antibiotics 9, no. 6: 361. https://doi.org/10.3390/antibiotics9060361
APA StyleRhimi, W., Inyang Aneke, C., Mosca, A., Otranto, D., & Cafarchia, C. (2020). In Vitro Azole and Amphotericin B Susceptibilities of Malassezia furfur from Bloodstream Infections Using E-Test and CLSI Broth Microdilution Methods. Antibiotics, 9(6), 361. https://doi.org/10.3390/antibiotics9060361