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Abstract: Antimicrobial resistance is one of today’s major public health challenges. Infections caused
by multidrug-resistant bacteria have been responsible for an increasing number of deaths in recent
decades. These resistant bacteria are also a concern in the food chain, as bacteria can resist common
biocides used in the food industry and reach consumers. As a consequence, the search for alternatives
to common antimicrobials by the scientific community has intensified. Substances obtained from
nature have shown great potential as new sources of antimicrobial activity. The aim of this study
was to evaluate the antimicrobial activity of five bee venoms, also called apitoxins, against two
common foodborne pathogens. A total of 50 strains of the Gram-negative pathogen Salmonella enterica
and 8 strains of the Gram-positive pathogen Listeria monocytogenes were tested. The results show
that the minimum inhibitory concentration (MIC) values were highly influenced by the bacterial
genus. The MIC values ranged from 256 to 1024 pug/mL in S. enterica and from 16 to 32 pug/mL in
L. monocytogenes. The results of this study demonstrate that apitoxin is a potential alternative agent
against common foodborne pathogens, and it can be included in the development of new models to
inhibit the growth of pathogenic bacteria in the food chain.

Keywords: apitoxin; antimicrobial resistance; natural antimicrobial compounds; foodborne
pathogens; Salmonella; Listeria monocytogenes

1. Introduction

The discovery and development of antimicrobial agents in the first half of the 20th century
created a new paradigm. Since that time, common infections that would have caused death have
become treatable with antibiotics, saving millions of lives. At first, the use of antimicrobials was
generalized, and they were used to treat both human and animal infections [1]. Antimicrobials
were, and still are, used for zootechnical purposes in farm animals [1]. Soon after the discovery of
antibiotics, the phenomenon of antimicrobial resistance was addressed. In his 1945 Nobel Prize lecture,
Sir Alexander Fleming stated that “there is the danger that the ignorant man may easily under dose
himself and by exposing his microbes to non-lethal quantities of the drug make them resistant” [2].
This warning has become a reality; antimicrobial resistance is a global public health problem [3].
It is estimated that antimicrobial resistance in common bacterial infections is responsible for 700,000
deaths worldwide each year, with the potential to reach millions of deaths per year by 2050. In the
European Union alone, there are 25,000 deaths each year related to antimicrobial resistance. In addition,
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antimicrobial resistance causes serious economic damage, estimated at $1.5 trillion in health care costs
and lost productivity [4]. Multidrug-resistant bacteria are also a serious problem in the food production
chain [5]. Studies in recent years have found a large number of strains of multidrug-resistant foodborne
pathogens. The use of antibiotics in production animals and the resultant selective pressure on the
environmental microbiota together constitute one of the main causes of the current exponential increase
in antimicrobial resistance.

Therefore, a current research priority is the search for and discovery of alternatives to conventional
antibiotics. The three principal research strategies can be classified as (i) naturally occurring alternatives,
(ii) synthetic designs, and (iii) biotechnology-based strategies [6]. The most common naturally occurring
alternatives are bacteriocins, bacteriophages, and antimicrobial peptides (AMPs) [6]. Of these,
AMPs have received great attention from the research community in recent years. These naturally
derived molecules are part of the innate immune system in both prokaryotic and eukaryotic cells;
their main advantages with respect to other natural alternatives are their broad-spectrum activity
and lack of susceptibility to resistance development [6-8]. AMPs” mode of action is based on the
permeabilization of bacterial membranes and the formation of cytotoxic pores, but they can also
inhibit nucleotides, proteins, and cell wall biosynthesis [9]. Practical studies have demonstrated that
AMPs are a promising alternative for combating common foodborne pathogens such as Salmonella,
L. monocytogenes, and Staphylococcus aureus [8,10,11]. The water-soluble peptide melittin from honeybee
venom is one of these promising AMPs. Melittin has demonstrated both antimicrobial and antiviral
activity in in vitro studies [12,13]. Melittin is a 26 amino acid cationic linear peptide with an N-terminal
hydrophobic region, a C-terminal hydrophilic region, and asymmetrical distribution of polar and
nonpolar amino acid residues. This suggests an amphipathic nature in a-helical conformation that
makes melittin a membrane-active molecule. Due to its nature, melittin exerts antimicrobial activity by
destabilizing the bacterial membrane and causing pore formation, which induces a loss of osmotic
balance and, ultimately, cell lysis. Specifically, the perpendicular orientation of melittin to the cell
membrane causes its insertion, peptide aggregation, and the bending of lipids, resulting in the leakage
of cytoplasmic contents [14-16]. However, honeybee venom, or apitoxin, is also composed of other
peptides such as adolapin, apamin, and MCD peptide, and enzymes such as phospholipase A2 and
hyaluronidase [16]. Although melittin is the most bioactive component of apitoxin, its bioactivity is
enhanced by other components of bee venom [17]. In this sense, it has been demonstrated that melittin
and phospholipase A2 have synergistic activity. Melittin exposes membrane phospholipids through
pore formation to the catalytic site of phospholipase A2 [14]. Although the antimicrobial properties of
melittin have been studied in depth, only limited studies have evaluated the antimicrobial ability of
apitoxin, and very few strains were included [12,18]. It is therefore necessary to determine whether
the apitoxins obtained in different geographic locations and tested in different studies show similar
inhibition values. It is also important that these types of studies include a large collection of wild
strains to increase the significance of the data obtained.

Therefore, the aim of this study is to evaluate the antimicrobial activity and determine the minimum
inhibitory concentration (MIC) of five apitoxins obtained from apiaries located in different parts of
Ecuador on a large collection of wild-strain foodborne pathogens. For this purpose, 50 Salmonella
strains belonging to different serotypes and subspecies and 8 L. monocytogenes strains were included
in this study. These pathogens were selected because Salmonella spp. and L. monocytogenes are two
of the main foodborne pathogens in the European Union, with 91,662 and 2480 confirmed cases of
human infections in 2017, respectively. Moreover, by including these two pathogens, we tested both
Gram-positive and Gram-negative bacteria.

2. Results

The amount of apitoxin collected each time was between 29 and 40 mg. The amount collected
from apitoxin 1 was 34.33 + 2.98 mg, from apitoxin 2 was 36.55 + 1.46 mg, from apitoxin 3 was
37.25 £ 495 mg, from apitoxin 4 was 39.66 + 0.67 mg, and from apitoxin 5 was 39.66 + 0.78 mg.
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There were significant differences (p < 0.05) in the amounts between apitoxin 1 and apitoxins 4 and
5. There were no significant differences (p < 0.05) in the concentration of melittin in the apitoxins
tested in this study, with values around 129 pug/mL. The five tested apitoxins showed antimicrobial
activity against all S. enterica and L. monocytogenes strains included in this study. In S. enterica, the MIC
values ranged between 256 and 1024 pg/mL (Table 1), but most of the strains showed an MIC value of
512 ug/mL. The lowest inhibitory concentration in Apitoxins 1 and 4 was 256 ug/mL, and four and
three strains, respectively, showed an MIC value of 1024 pg/mL. On the other hand, apitoxin 5 showed
the most strains in which growth was inhibited at 256 pg/mL.

Table 1. Minimum inhibitory concentrations (MICs) of five apitoxins tested in 50 Salmonella strains
isolated from poultry.

MIC (ug/mL)
Strain Source Code Apitoxin1l Apitoxin2 Apitoxin3 Apitoxin4 Apitoxin5

S. Anatum PF Al 512 256 256 512 512

S. Anatum PF A6 512 512 512 512 512

S. Anatum PF A15 512 512 512 512 512

5. enterica PF AZ1 512 256 256 512 512
subspec1es arizonae

. enterica PF AZ6 512 256 256 512 256
subspecies arizonae

5. enterica PF  AZI2 256 256 256 512 512
subspecies arizonae

5. enterica PE  AZI16 1024 512 512 512 512
subspec1es arizonae

5. enterica PF AZ20 512 256 512 512 512
subspec1es arizonae

5. enterica PF  AZ21 512 512 256 256 256
subspec1es arizonae

S. Bardo PF B2 512 512 512 512 512

S. Bardo PF B3 512 512 512 512 512

S. Bredeney PF BR1 1024 512 512 512 512

S. Dabou PF DA1 512 512 512 512 256

S. Drac PF DC4 1024 512 512 512 512

S. Enteritidis CK ET1 512 512 256 256 256

S. Enteritidis PF ET2 512 512 256 256 512

S. Infantis PF 4l 256 256 256 512 256

S. Infantis PF 2 256 256 256 512 256

S. Infantis PF 3 256 256 256 512 256

S. Infantis PF 14 256 256 256 1024 256

S. Infantis PF 17 512 512 512 256 256

S. Infantis PF 112 512 512 512 512 512

S. Infantis PF 11 512 512 512 512 512

S. Infantis PF 118 512 512 512 256 512

S. Isangi PF IG1 512 512 512 512 512

S. Isangi PF 1G9 512 512 512 512 512

S. Montevideo PF M1 512 512 512 512 512

S. Mbandaka PF MBI 512 512 512 512 256

S. Ndolo PF NDI 512 512 512 512 512

S. Ndolo PF ND2 512 512 512 512 512

S. Ndolo PF ND5 512 512 512 256 256

S. Newport PF N1 512 512 512 512 512

S. Newport PF N6 512 512 512 512 512

S. Rissen PF R1 512 512 512 512 256

5. enterica PF SA1 512 512 512 1024 512

subspecies salamae
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Table 1. Cont.

MIC (ug/mL)
Strain Source Code Apitoxin1l Apitoxin2 Apitoxin3 Apitoxin4 Apitoxin5
5. enterica PF SA2 1024 512 512 1024 512
subspecies salamae
5. enterica PF SA3 1024 1024 1024 1024 1024
subspecies salamae

S. Seftenberg PF S1 512 512 512 512 512
S. Stanleyville PF ST1 512 512 512 512 512
S. Thompson PF ™1 1024 512 512 512 512
S. Typhimurium CK T2 512 256 512 512 256
S. Typhimurium CK T3 512 512 256 512 512
S. Typhimurium PF T6 512 512 512 512 512
S. Typhimurium PF T10 512 512 256 512 256
S. Typhimurium PF T12 512 512 512 512 256
S. Typhimurium PF T13 512 256 256 512 256
S. Typhimurium PF T18 512 512 512 512 512
S. Typhimurium PF T21 256 512 256 256 256
S. Typhimurium PF T24 512 512 512 512 512
S. Typhimurium CC i§9C5T 512 512 512 512 512
n (%) n (%) n (%) n (%) n (%)

256 6 (12%) 11 (22%) 15 (30%) 7 (14%) 17 (34%)

MIC (ug/mL) 512 38(76%)  38(76%)  34(68%)  39(78%) 33 (64%)

1024 6(12%) 1(2%) 1(2%) 4 (8%) 1 (2%)

CC, culture collection; CK, chicken meat; PF, poultry farm.

The value of MICyy and MICsq for S. enterica was 512 ug/mL for four of the apitoxins tested.
However, the MICq of apitoxin 1 was 1024 pug/mL, which could indicate lower antimicrobial activity.
There were no significant differences (p > 0.05) in MIC values between the five apitoxins tested. It is
also remarkable that four S. Infantis strains showed an MIC of 256 pg/mL in four of the apitoxins
tested. This indicates a higher susceptibility of those strains to apitoxin in comparison with the other
strains of S. Infantis. In this sense, there were significant differences (p < 0.05) in resistance results
between S. Infantis and the other strains of S. enterica subspecies enterica. On the other hand, the strain
S. enterica subspecies salamae SA3 showed higher values, with an MIC of 1024 pg/mL in the five
apitoxins tested. In fact, S. enterica subspecies salamae was significantly more resistant (p < 0.05) than
S. enterica subspecies arizonae or S. enterica subspecies enterica.

In the case of L. monocytogenes, the MIC values observed were lower than those found in S. enterica
strains, ranging between 16 and 32 pg/mL (Table 2). There were differences in the MICsg of the
apitoxins used in this study. For apitoxins 1, 2, and 4, the MICsy was 16 ug/mL, and for apitoxins 3
and 5, it was 32 ug/mL. All apitoxins had an MICyj of 32 ug/mL. It is also remarkable that all tested
L. monocytogenes strains showed an MIC of 32 pg/mL with apitoxin 5. The MIC value of L. monocytogenes
was significantly lower (p < 0.05) than that of Salmonella spp.
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Table 2. Minimum inhibitory concentrations of five apitoxins tested in eight L. monocytogenes strains
isolated from foodstuff.

MIC (ug/mL)
Strain Source Code Apitoxin1 Apitoxin2 Apitoxin3 Apitoxin4 Apitoxin5
L. monocytogenes RM LHICA 1 16 16 32 16 32
L. monocytogenes RM LHICA 2 16 16 32 16 32
L. monocytogenes CH LHICA 3 32 16 32 32 32
L. monocytogenes CH LHICA 4 32 32 16 32 32
L. monocytogenes CH LHICA 5 16 16 32 32 32
L. monocytogenes FP LHICA 6 16 16 16 32 32
L. monocytogenes FpP LHICA 7 32 32 32 16 32
L. monocytogenes CC CECT 934 32 16 32 16 32
n (%) n (%) n (%) n (%) n (%)

MIC (ug/mL) 16 4 6 2 4 0
32 4 2 6 4 8

CC, culture collection; CH, cheese; FP, fish product; RM, rabbit meat.
3. Discussion

The discovery and evaluation of new and natural antimicrobial substances is one of the main
strategies to decrease the use of antibiotics and avoid the increase in multidrug-resistant strains [6].
In the last several decades, compounds isolated from natural products have shown promising activity
against resistant bacteria [19]. In this sense, venoms have been shown to be composed of various
substances, such as antimicrobial peptides, with high inhibitory activity [15,20,21]. In this study
the antimicrobial activity of bee venom was tested. Different works have observed that the main
components of apitoxin, such as pure melittin and phospholipase A, have high antimicrobial activity
against different bacterial pathogens [15]. However, a very limited number of studies have tested the
inhibitory capacity of pure apitoxin in bacteria, and the information available on foodborne pathogens
is currently insufficient [22]. The results of this study show significant differences in MIC values
between Salmonella (256-1024 ug/mL) and L. monocytogenes (16-32 ng/mL) strains. A previous study
that evaluated the activity of commercially available apitoxin against oral bacteria such as Enterococcus
faecalis and Streptococcus salivarius found MIC values between 20 and 40 ug/mL [18], very similar to
the results observed in L. monocytogenes in this study. Additionally, a recent study found an MIC of
7.2 pg/mL in strains of Gram-positive Staphylococcus aureus bacteria [12]. In the same way, Picoli et
al. [23] observed that S. aureus had lower MIC values (6-7 ug/mL) than Gram-negative Escherichia coli
(40-42.5 pg/mL) and Pseudomonas aeruginosa (65-70 pug/mL) bacteria for the AMP of bee venom melittin.
These differences can be related to structural differences between Gram-positive and Gram-negative
bacteria. In this sense, it has been suggested that melittin can penetrate the peptidoglycan layer of
Gram-positive bacteria more easily than the membrane of Gram-negative bacteria, which is protected by
a layer of lipopolysaccharides [13,14]. In the same way, the phospholipase A2 present in apitoxin causes
phospholipid membrane degradation, resulting in cell death [13,14]. However, the outer membrane
in Gram-negative bacteria reduces the efficacy of phospholipase A2 by reducing the interaction of
this enzyme with the cytoplasmic membrane [16]. Therefore, the combination of apitoxin with other
substances that disrupt the outer membrane of Gram-negative bacteria could increase the antimicrobial
activity of apitoxin. One of the main advantages of the present study in comparison with the studies
previously described is the number of strains included. Salmonella spp. are composed of more than 2600
serotypes and six subspecies, which differ in their pathogenicity [24]. The results of this study show
that the observed MIC values were very stable through the Salmonella enterica species, but there were
some significant differences between some subspecies and serotypes of Salmonella enterica subspecies
enterica. In addition, the differences observed between the five apitoxins were not due to different
concentrations of melittin, as no significant differences were observed between them.
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4. Materials and Methods

4.1. Apitoxin Collection

Bee venom, or apitoxin, was collected from 5 Apis mellifera apiaries in Ecuador: El Inca (apitoxin 1),
Apiary Caranqui (apitoxin 2), Apiary Clatura (apitoxin 3), Apiary Cotacachi (apitoxin 4), and Apiary
ECAA (apitoxin 5) (Figure 1). The collections were made between 11:00 and 13:00 from 9 January to
28 May 2016, with an interval of 21 days between collections, until 5 collections per apiary and hive
were completed. Apitoxin was collected by using an electric stimulus, as previously described [25].
Briefly, when bees land on a woven copper wire located inside the beehive, an electric stimulus is
applied, causing the release of bee venom without killing the bees. The bee venom is collected on glass
slides, where the apitoxin crystallizes. The glass slides are transported to the laboratory, where the
crystallized bee venom is detached with a scraper, collected in microtubes, and weighed. This crude
apitoxin was used in subsequent analyses.

®

Figure 1. Geographic location of five apiaries in the province of Imbabura (Ecuador). 1: Apiary El Inca;
2: Apiary Caranqui; 3: Apiary Clatura; 4: Apiary Cotacachi; and 5: Apiary ECAA.

4.2. Mellitin Determination of Apitoxin by HPLC-UV

The melittin content of the 5 apitoxin samples was determined according the method developed
by Rybak-Chmielewska and Szczésna [26] with some modifications. A melittin standard with 96.5%
purity was obtained from Sigma-Aldrich (Germany). Briefly, 5 mg of apitoxin was mixed with
5 mL of ultrapure water and sonicated for 5 min, and the liquid was filtered through a 0.45 pm
polytetrafluoroethylene syringe filter and collected in an amber glass vial. A volume of 5 uL of 85%
phosphoric acid was added to the vial. The samples were analyzed by HPLC in a Jasco LC-Net II/ADC
(Jasco, Spain) coupled with a UV-2070 detector (Jasco). A Machery-Nagel C-18 column with a length of
250 mm, internal diameter of 4 mm, and particle size of 5 um was used. Gradient chromatography was
performed by the linear method with 5-80% of eluent (acetonitrile in 20% phosphoric acid) for 45 min
with flow velocity of the moving phase at 1 mL-min~!. Melittin was identified at 220 nm wavelength.
The data were collected through the use of Chrom NAV software (Jasco).
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4.3. Salmonella and L. monocytogenes Strains

A total of 50 S. enterica and 8 L. monocytogenes strains, including culture collection strains Salmonella
CECT 4395 and L. monocytogenes CECT 934, were used in this study. The rest of the Salmonella strains
were isolated in our laboratory from poultry farms within the framework of the national Salmonella
control plan and from chicken meat according ISO 6579:2017 [27]. All Salmonella strains were serotyped
using the Kauffman-White typing scheme for the detection of somatic (O) and flagellar (H) antigens
with standard antisera (Bio-Rad Laboratories, Irvine, CA, USA). The rest of the L. monocytogenes
strains were isolated in our laboratory from food products (rabbit meat, cheese, fish products) by
routine analysis for the food industry according to ISO 11290-1:2017 [28]. Salmonella strains were
kept at —20 °C in Tryptic Soy Broth (TSB; Oxoid, Basingstoke, UK) supplemented with 20% glycerol,
and L. monocytogenes strains were kept in Brain Heart Infusion (PanReac AppliChem, Barcelona, Spain)
supplemented with 20% glycerol until use.

4.4. Determination of Minium Inhibitory and Biocidal Concentrations

The MIC of the 5 apitoxins included in this study was determined according Clinical and
Laboratory Standards Institute (CLSI) guidelines by using the broth microdilution method. Briefly,
an initial stock of 4096 ug/mL of each apitoxin was prepared. Dilutions of apitoxin in Mueller-Hinton
agar from 2048 pg/mL to 2 pg/mL were made. Salmonella and L. monocytogenes strains were grown in
nutrient agar (PanReac, AppliChem, Spain) for 24 h at 37 °C. Isolated colonies were used to obtain a
saline suspension of 0.5 McFarland equivalent to 108 colony-forming units (CFU)/mL. This suspension
was diluted to 1:20 to obtain a final concentration of 10° CFU/mL. The broth volume in a 96-well
microtiter plate was 0.1 mL, and 0.01 mL of the diluted bacterial suspension was inoculated to a final
bacterial concentration of 10* CFU/mL. The 96-well microtiter plates were incubated for 24 h at 37 °C,
and the MIC value of each strain with each apitoxin was determined. The MIC was defined as the
lowest concentration of antimicrobial agent that completely inhibited the visual growth of the organism
in the wells.

4.5. Stastitical Analysis

GraphPad Prism 8 (GraphPad, San Diego, CA, USA) was used in this research for statistical
analysis. Chi-squared tests were performed to evaluate the differences between the 5 apitoxins tested
and between genera, subspecies, and serotypes. Analysis of variance (one-way ANOVA) and Tukey’s
honestly significant difference test (p < 0.05) were used to determine the differences between the
amounts of apitoxin collected from the apiaries.

5. Conclusions

This study increases the information available on the antimicrobial capacity of apitoxin against
foodborne pathogens. The results demonstrate that apitoxin is a potential alternative agent to inhibit
the growth of common foodborne pathogens in the food chain at low concentrations, especially
in L. monocytogenes strains. Therefore, apitoxin can potentially be used alone as an alternative to
common antimicrobials or even in combination with them to enhance the antimicrobial activity of both
substances. Future studies should be focused on developing new models to apply this substance at
different steps of the food chain in order to translate in vitro results to real-life applications.
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