Antibacterial Activity of Bacteriocinogenic Commensal Escherichia coli against Zoonotic Strains Resistant and Sensitive to Antibiotics
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Detection of Bacteriocins Producers among E. coli from Humans
4.3. Identification of Bacteriocins Genes
4.4. Evaluation of Antibacterial Activity of Bacteriocinogenic E. coli against Zoonotic Strains
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pickard, J.M.; Núñez, G. Pathogen colonization resistance in the gut and its manipulation for improved health. Am. J. Pathol. 2019, 189, 1300–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006, 124, 837–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stecher, B.; Hardt, W.D. Mechanisms controlling pathogen colonization of the gut. Curr. Opin. Microbiol. 2011, 14, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Jubelin, G.; Desvaux, M.; Schüller, S.; Etienne-Mesmin, L.; Muniesa, M.; Blanquet-Diot, S. Modulation of enterohaemorrhagic Escherichia coli. Survival and virulence in the human gastrointestinal tract. Microorganisms 2018, 6, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, M.A.; Gordon, D.M. A survey of col plasmids in natural isolates of Escherichia coli and an investigation into the stability of col plasmid lineages. J. Gen. Microbiol. 1992, 138, 1345–1352. [Google Scholar] [CrossRef] [Green Version]
- Gordon, D.M.; O’Brien, C.L. Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology 2006, 152, 3239–3244. [Google Scholar] [CrossRef] [Green Version]
- Cascales, E.; Buchanan, S.K.; Duchac, D.; Kleanthous, C.; Lloubas, R.; Postle, K.; Riley, M.; Slatin, S.; Cavard, D. Colicin biology. Microbiol. Mol. Biol. 2007, 71, 158–229. [Google Scholar] [CrossRef] [Green Version]
- Kleanthous, C.; Walker, D. Immunity proteins: Enzyme inhibitors that avoid the active site. Trends Biochem. Sci. 2001, 26, 624–631. [Google Scholar] [CrossRef]
- Helbig, S.; Braun, V. Mapping functional domains of colicin M. J. Bacteriol. 2011, 193, 815–821. [Google Scholar] [CrossRef] [Green Version]
- Rebuffat, S. Chapter 20—Microcins. In Handbook of Biologically Active Peptides, 2nd ed.; Kastin, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 129–137. [Google Scholar] [CrossRef]
- Baquero, F.; Lanza, V.F.; Baquero, M.R.; del Campo, R.; Bravo-Vázquez, D.A. Microcins in Enterobacteriaceae: Peptide antimicrobials in the eco-active intestinal chemosphere. Front. Microbiol. 2019, 10, 2261. [Google Scholar] [CrossRef]
- Gillor, O.; Kirkup, B.C.; Riley, M.A. Colicins and microcins: The next generation antimicrobials. Adv. Appl. Microbiol. 2004, 54, 129–146. [Google Scholar]
- Sharp, C.; Boinett, C.; Cain, A.; Housden, N.G.; Kumar, S.; Turner, K.; Parkhill, J.; Kleanthous, C. O-Antigen-dependent colicin insensitivity of uropathogenic Escherichia coli. J. Bacteriol. 2019, 201, e00545-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Steven, R. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, J.; Hur, H.G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T.; Ishii, S. Environmental Escherichia coli: Ecology and public health implications–A review. J. Appl. Microbiol. 2017, 123, 570–581. [Google Scholar] [CrossRef] [Green Version]
- Blount, Z.D. The unexhausted potential of E. coli. Elife 2015, 4, e05826. [Google Scholar] [CrossRef]
- Belotserkovsky, I.; Sansonetti, P.J. Shigella and Enteroinvasive Escherichia coli. Curr. Top. Microbiol. Immunol. 2018, 416, 1–26. [Google Scholar] [CrossRef]
- Baldy-Chudzik, K.; Bok, E.; Mazurek, J. Well-known and new variants of pathogenic Escherichia coli as a consequence of the plastic genome. Post. Hig. Med. Dosw. 2015, 69, 345–361. [Google Scholar] [CrossRef]
- Fletcher, S.M.; McLaws, M.L.; Ellis, J.T. Prevalence of gastrointestinal pathogens in developed and developing countries: Systematic review and meta-analysis. J. Public Health Res. 2013, 2, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Książczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, C. Enteroaggregative Escherichia coli. Curr. Top. Microbiol. Immunol. 2018, 416, 27–50. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, L.; Garenaux, A.; Harel, J.; Boulianne, M.; Nadeau, E.; Dozois, C.M. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunol. Med. Microbiol. 2011, 62, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heredia, N.; García, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef]
- Manges, A.R.; Johnson, J.R. Reservoirs of extraintestinal pathogenic Escherichia coli. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Manges, A.R. Escherichia coli and urinary tract infections: The role of poultry-meat. Clin. Microbiol. Infect. 2016, 22, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Markland, S.M.; LeStrange, K.J.; Sharma, M.; Kniel, K.E. Old friends in new places: Exploring the role of extraintestinal E. coli in intestinal disease and foodborne illness. Zoonoses Public Health 2015, 62, 491–496. [Google Scholar] [CrossRef]
- Tamang, M.D.; Nam, H.M.; Gurung, M.; Jang, G.C.; Kim, S.R.; Jung, S.C.; Park, Y.H.; Lim, S.K. Molecular characterization of CTX-M β-lactamase and associated addiction systems in Escherichia coli circulating among cattle, farm workers, and the farm environment. Appl. Environ. Microbiol. 2013, 79, 3898–3905. [Google Scholar] [CrossRef] [Green Version]
- Wasiński, B. Extra-intestinal pathogenic Escherichia coli–threat connected with food-borne infections. Ann. Agric. Environ. Med. 2019, 26, 532–537. [Google Scholar] [CrossRef]
- Singh, A.P.; Preet, S.; Rishi, P. Nisin/β-lactam adjunct therapy against Salmonella enterica serovar Typhimurium: A mechanistic approach. J. Antimicrob. Chemother. 2014, 69, 1877–1887. [Google Scholar] [CrossRef] [Green Version]
- Diez-Gonzalez, F. Applications of bacteriocins in livestock. Curr. Issues Intest. Microbiol. 2007, 8, 15–23. [Google Scholar]
- Ben Lagha, A.; Haas, B.; Gottschalk, M.; Grenier, D. Antimicrobial potential of bacteriocins in poultry and swine production. Vet. Res. 2017, 48, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askari, N.; Ghanbarpour, R. Molecular investigation of the colicinogenic Escherichia coli strains that are capable of inhibiting E. coli O157:H7 in vitro. BMC Vet. Res. 2019, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Styková, E.; Kubašová, I.; Gancarčíková, S.; Plachá, I.; Mudroňová, D.; Kandričáková, A.; Miltko, R.; Belzecki, G.; Valocký, I.; et al. Enterocin M and its beneficial effects in horses-a pilot experiment. Probiotics Antimicrob. Proteins. 2018, 10, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Simons, A.; Alhanout, K.; Duval, R.E. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 2020, 8, 639. [Google Scholar] [CrossRef]
- Caballero, S.; Kim, S.; Carter, R.A.; Leiner, I.M.; Sušac, B.; Miller, L.; Kim, G.J.; Ling, L.; Pamer, E.G. Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe 2017, 21, 592–602.e4. [Google Scholar] [CrossRef]
- Meade, E.; Slattery, M.A.; Garvey, M. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: Resistance is futile? Antibiotics 2020, 9, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kommineni, S.; Bretl, D.J.; Lam, V.; Chakraborty, R.; Hayward, M.; Simpson, P.; Cao, Y.; Bousounis, P.; Kristich, C.J.; Salzman, N.H. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 2015, 526, 719–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micenková, L.; Bosák, J.; Kucera, J.; Hrala, M.; Dolejšová, T.; Šedo, O.; Linke, D.; Fišer, R.; Šmajs, D. Colicin Z, a structurally and functionally novel colicin type that selectively kills enteroinvasive Escherichia coli and Shigella strains. Sci. Rep. 2019, 9, 11127. [Google Scholar] [CrossRef]
- Budič, M.; Rijavec, M.; Petkovšek, Z.; Zgur-Bertok, D. Escherichia coli bacteriocins: Antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS ONE 2011, 6, e28769. [Google Scholar] [CrossRef]
- Jin, X.; Kightlinger, W.; Hong, S.H. Optimizing cell-free protein synthesis for increased yield and activity of colicins. Methods Protoc. 2019, 2, 28. [Google Scholar] [CrossRef] [Green Version]
- Sassone-Corsi, M.; Nuccio, S.P.; Liu, H.; Hernandez, D.; Vu, C.T.; Takahashi, A.A.; Edwards, R.A.; Raffatellu, M. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 2016, 540, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Schamberger, G.P.; Phillips, R.L.; Jacobs, J.L.; Diez-Gonzalez, F. Reduction of Escherichia coli O157:H7 populations in cattle by addition of colicin E7-producing E. coli to feed. Appl. Environ. Microbiol. 2004, 70, 6053–6060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rijavec, M.; Budic, M.; Mrak, P.; Müller-Premru, M.; Podlesek, Z.; Zgur-Bertok, D. Prevalence of ColE1-like plasmids and colicin K production among uropathogenic Escherichia coli strains and quantification of inhibitory activity of colicin K. Appl. Environ. Microbiol. 2007, 73, 1029–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zihler, A.; Le Blay, G.; de Wouters, T.; Lacroix, C.; Braegger, C.P.; Lehner, A.; Tischler, P.; Rattei, T.; Hächler, H.; Stephan, R. In vitro inhibition activity of different bacteriocin-producing Escherichia coli against Salmonella strains isolated from clinical cases. Lett. Appl. Microbiol. 2009, 49, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Patton, B.S.; Dickson, J.S.; Lonergan, S.M.; Cutler, S.A.; Stahl, C.H. Inhibitory activity of colicin E1 against Listeria monocytogenes. J. Food Prot. 2007, 70, 1256–1262. [Google Scholar] [CrossRef]
- Pons, A.M.; Delalande, F.; Duarte, M.; Benoit, S.; Lanneluc, I.; Sablé, S.; Van Dorsselaer, A.; Cottenceau, G. Genetic Analysis and Complete Primary Structure of Microcin L. Antimicrob. Agents Chemother. 2004, 48, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Soudy, R.; Wang, L.; Kaur, K. Synthetic peptides derived from the sequence of a lasso peptide microcin J25 show antibacterial activity. Bioorg. Med. Chem. 2012, 20, 1794–1800. [Google Scholar] [CrossRef] [Green Version]
- Bosák, J.; Micenková, L.; Hrala, M.; Pomorská, K.; Kunova Bosakova, M.; Krejci, P.; Göpfert, E.; Faldyna, M.; Šmajs, D. Colicin FY inhibits pathogenic Yersinia enterocolitica in mice. Sci. Rep. 2018, 8, 12242. [Google Scholar] [CrossRef]
- Keith, J.W.; Pamer, E.G. Enlisting commensal microbes to resist antibiotic-resistant pathogens. J. Exp. Med. 2019, 216, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Palmer, J.D.; Mortzfeld, B.M.; Piattelli, E.; Silby, M.W.; McCormick, B.A.; Bucci, V. Microcin H47: A Class IIb microcin with potent activity against multidrug resistant Enterobacteriaceae. ACS Infect. Dis. 2020, 6, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Y.; Zhu, X.Q.; Wang, Y.; Liu, H.B.; Dai, L.; He, J.K.; Li, B.B.; Wu, C.M.; Shen, J.Z. Co-carriage of qnrS1, floR, and bla(CTX-M-14) on a multidrug-resistant plasmid in Escherichia coli isolated from pigs. Foodborne Pathog. Dis. 2012, 9, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef]
- Niero, G.; Bortolaia, V.; Vanni, M.; Intorre, L.; Guardabassi, L.; Piccirillo, A. High diversity of genes and plasmids encoding resistance to third-generation cephalosporins and quinolones in clinical Escherichia coli from commercial poultry flocks in Italy. Vet. Microbiol. 2018, 216, 93–98. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Johnson, T.A.; Su, J.Q.; Qiao, M.; Guo, G.X.; Stedtfeld, R.D.; Hashsham, S.; Liu, H.B.; Dai, L.; He, J.K.; et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435–3440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazurek, J.; Bok, E.; Baldy-Chudzik, K. Complexity of antibiotic resistance in commensal Escherichia coli derived from pigs from an intensive-production farm. Microbes. Environ. 2018, 33, 242–248. [Google Scholar] [CrossRef] [PubMed]
- WHO Regional Office for Europe. Tackling antibiotic resistance from a food safety perspective in Europe; WHO Regional Office for Europe: Copenhagen, Denmark, 2011; ISBN 978-92-890-1422-9. [Google Scholar]
- Haley, B.J.; Kim, S.W.; Salaheen, S.; Hovingh, E.; Van Kessel, J.A.S. Differences in the microbial community and resistome structures of feces from preweaned calves and lactating dairy cows in commercial dairy herds. Foodborne Pathog Dis. 2020. [Google Scholar] [CrossRef]
- Mazurek, J.; Bok, E.; Stosik, M.; Baldy-Chudzik, K. Antimicrobial resistance in commensal Escherichia coli from pigs during metaphylactic trimethoprim and sulfamethoxazole treatment and in the post-exposure period. Int. J. Environ. Res. Public Health 2015, 12, 2150–2163. [Google Scholar] [CrossRef]
- Devleesschauwer, B.; Pires, S.M.; Young, I.; Gill, A.; Majowicz, S.E. Associating sporadic, foodborne illness caused by Shiga toxin-producing Escherichia coli with specific foods: A systematic review and meta-analysis of case-control studies. Epidemiol. Infect. 2019, 147, e235. [Google Scholar] [CrossRef] [Green Version]
- Gorman, R.; Bloomfield, S.; Adley, C.C. A study of cross-contamination of food-borne pathogens in the domestic kitchen in the Republic of Ireland. Int. J. Food Microbiol. 2002, 76, 143–150. [Google Scholar] [CrossRef]
- Yang, S.C.; Lin, C.H.; Aljuffali, I.A.; Fang, J.Y. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch. Microbiol. 2017, 199, 811–825. [Google Scholar] [CrossRef] [PubMed]
- Buffie, C.G.; Pamer, E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 2013, 13, 790–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micenková, L.; Bosák, J.; Štaudová, B.; Kohoutová, D.; Čejková, D.; Woznicová, V.; Vrba, M.; Ševčíková, A.; Bureš, J.; Šmajs, D. Microcin determinants are associated with B2 phylogroup of human fecal Escherichia coli isolates. Microbiologyopen 2016, 5, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Šmajs, D.; Cejková, D.; Micenková, L.; Lima-Bittencourt, C.I.; Chartone-Souza, E.; Smarda, J.; Nascimento, A.M. Human Escherichia coli strains of different geographical and time source: Bacteriocin types and their gene sequences are population-specific. Environ. Microbiol. Rep. 2012, 4, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Smarda, J.; Obdrzálek, V. Incidence of colicinogenic strains among human Escherichia coli. J. Basic Microbiol. 2001, 41, 367–374. [Google Scholar] [CrossRef]
- Bok, E.; Mazurek, J.; Myc, A.; Stosik, M.; Wojciech, M.; Baldy-Chudzik, K. Comparison of commensal Escherichia coli isolates from adults and young children in Lubuskie Province, Poland: Virulence potential, phylogeny and antimicrobial resistance. Int. J. Environ. Res. Public Health 2018, 15, 617. [Google Scholar] [CrossRef] [Green Version]
- Micenková, L.; Štaudová, B.; Bosák, J.; Mikalová, L.; Littnerová, S.; Vrba, M.; Ševčíková, A.; Woznicová, V.; Šmajs, D. Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiol. 2014, 14, 109. [Google Scholar] [CrossRef] [Green Version]
- Kohoutova, D.; Smajs, D.; Moravkova, P.; Cyrany, J.; Moravkova, M.; Forstlova, M.; Cihak, M.; Rejchrt, S.; Bures, J. Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect. Dis. 2014, 14, 733. [Google Scholar] [CrossRef] [Green Version]
- Šmajs, D.; Micenková, L.; Smarda, J.; Vrba, M.; Sevčíková, A.; Vališová, Z.; Woznicová, V. Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: Colicin E1 is a potential virulence factor. BMC Microbiol. 2010, 10, 288. [Google Scholar] [CrossRef] [Green Version]
- Abraham, S.; Chapman, T.A.; Zhang, R.; Chin, J.; Mabbett, A.M.; Totsika, M.; Schembric, M.A. Molecular characterization of Escherichia coli strains that cause symptomatic and asymptomatic urinary tract infections. J. Clin. Microbiol. 2012, 50, 1027–1030. [Google Scholar] [CrossRef] [Green Version]
- Jeziorowski, A.; Gordon, D.M. Evolution of microcin V and colicin Ia plasmids in Escherichia coli. J. Bacteriol. 2007, 189, 7045–7052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nedialkova, L.P.; Denzler, R.; Koeppel, M.B.; Diehl, M.; Ring, D. Inflammation fuels colicin Ib-dependent competition of Salmonella Serovar Typhimurium and E. coli in Enterobacterial Blooms. PLoS Pathog. 2014, 10, e1003844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, W.L. Lex marks the spot: The virulent side of SOS and a closer look at the LexA regulon. Mol. Microbiol. 2006, 62, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.; Thomsen, L.E.; Gaggero, C.; Mosseri, R.; Ingmer, H.; Cohen, S.N. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 2004, 305, 1629–1631. [Google Scholar] [CrossRef]
- Goerlich, O.; Quillardet, P.; Hofnung, M. Induction of the SOS response by hydrogen peroxide in various Escherichia coli mutants with altered protection against oxidative DNA damage. J. Bacteriol. 1989, 171, 6141–6147. [Google Scholar] [CrossRef] [Green Version]
- Hol, F.J.; Voges, M.J.; Dekker, C.; Keymer, J.E. Nutrient-responsive regulation determines biodiversity in a colicin-mediated bacterial community. BMC Biol. 2014, 12, 68. [Google Scholar] [CrossRef] [Green Version]
- Versalovic, J.; Schneider, M.; de Bruijn, F.J.; Lupski, J.R. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell Biol. 1994, 5, 25–40. [Google Scholar]
- Patzer, S.I.; Baquero, M.R.; Bravo, D.; Moreno, F.; Hantke, K. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 2003, 149, 2557–2570. [Google Scholar] [CrossRef] [Green Version]
Bacteriocin Type | Number/Percent of Bacteriocin Genes Detected in E. coli From | Total Bacteriocinogenic (n = 78) | |
---|---|---|---|
Adults (n = 42) | Children (n = 36) | ||
E1 | 17/40.5% | 5/13.9% | 22/28.2% |
E2 | 0 | 2/5.5% | 2/2.5% |
E7 | 1/2.4% | 0 | 1/1.3% |
Ia | 11/26.2% | 5/13.9% | 16/20.5% |
Ib | 17/40.5% | 6/16.6% | 23/29.5% |
K | 9/21.4% | 0 | 9/11.5% |
M | 3/7.1% | 12/33.3% | 15/19.2% |
B | 2/4.8% | 6/16.7% | 8/10.2% |
MccH47 | 4/9.5% | 13/36.1% | 17/22.1% |
MccV | 5/11.9% | 6/16.7% | 11/14.1% |
Strains Carried Bacteriocin Genes | Number/Percent of Zoonotic Strains Inhibited by Bacteriocinogenic E. coli | p-Value | ||
---|---|---|---|---|
Total (n = 60) | Resistant to Antibiotics (n = 30) | Sensitive to Antibiotics (n = 30) | ||
E1 | 45/75% | 25/83.3% | 20/66.7% | 0.4561 |
E7 | 53/88.3% | 28/93.3% | 25/83.3% | 0.6803 |
Ia | 19/32% | 3/10% | 16/53.3% | 0.0029 |
Ib | 8/13.3% | 6/20% | 2/6.7% | - |
K | 39/65% | 19/63.3% | 20/66.7% | 0.8728 |
M | 40/66.6% | 22/73.3% | 18/60% | 0.5271 |
MccH47 | 3/5% | 2/6.7% | 1/3.3% | - |
MccV | 15/25% | 14/46.7% | 1/3.3% | 0.0008 |
E1, Ia | 17/28.3% | 6/20% | 11/36.7% | 0.2253 |
E1, Ib | 36/60% | 16/53.3% | 20/66.7% | 0.5050 |
E1, MccH47 | 12/20% | 9/30% | 3/10% | 0.0833 |
E2, M | 10/16.6% | 4/13.3% | 6/20% | - |
Ia, MccV | 17/28.3% | 9/30% | 8/26.7% | 0.8084 |
Ib, M | 6/10% | 4/13.3% | 2/6.7% | - |
Ib, MccV | 36/60% | 15/50% | 21/70% | 0.3173 |
Ib, K | 11/18.3% | 10/33.3% | 1/3.3% | 0.0067 |
K, MccV | 26/43.3% | 20/66.7% | 6/20% | 0.0060 |
B, M | 29/48.3% | 19/63.3% | 10/33.3% | 0.0947 |
MccV, MccH47 | 51/85% | 22/73.3% | 29/96.7% | 0.3270 |
E1, Ia, M | 49/81.6% | 22/73.3% | 27/90% | 0.4751 |
E1, Ib, K | 0% | 0% | 0% | - |
Ib, M, MccV | 21/35% | 9/30% | 12/40% | 0.5127 |
Ib, B, M | 25/41.6% | 4/13.3% | 21/70% | 0.0007 |
E1, Ia, K, MccH47 | 51/85% | 24/80% | 27/90% | 0.6744 |
E1, Ia, B, M | 11/18.3% | 9/30% | 2/6.7% | 0.0348 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazurek-Popczyk, J.; Pisarska, J.; Bok, E.; Baldy-Chudzik, K. Antibacterial Activity of Bacteriocinogenic Commensal Escherichia coli against Zoonotic Strains Resistant and Sensitive to Antibiotics. Antibiotics 2020, 9, 411. https://doi.org/10.3390/antibiotics9070411
Mazurek-Popczyk J, Pisarska J, Bok E, Baldy-Chudzik K. Antibacterial Activity of Bacteriocinogenic Commensal Escherichia coli against Zoonotic Strains Resistant and Sensitive to Antibiotics. Antibiotics. 2020; 9(7):411. https://doi.org/10.3390/antibiotics9070411
Chicago/Turabian StyleMazurek-Popczyk, Justyna, Justyna Pisarska, Ewa Bok, and Katarzyna Baldy-Chudzik. 2020. "Antibacterial Activity of Bacteriocinogenic Commensal Escherichia coli against Zoonotic Strains Resistant and Sensitive to Antibiotics" Antibiotics 9, no. 7: 411. https://doi.org/10.3390/antibiotics9070411
APA StyleMazurek-Popczyk, J., Pisarska, J., Bok, E., & Baldy-Chudzik, K. (2020). Antibacterial Activity of Bacteriocinogenic Commensal Escherichia coli against Zoonotic Strains Resistant and Sensitive to Antibiotics. Antibiotics, 9(7), 411. https://doi.org/10.3390/antibiotics9070411