A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture?
Abstract
:1. What Are Bacteriophages?
2. A Look at the Past
3. The Path to the Future
3.1. Agriculture
3.1.1. Potato Diseases
3.1.2. Tomato Diseases
3.1.3. Additional Agricultural Crops
3.1.4. Fruit Trees
3.2. Aquaculture
4. Challenges to Be Address in Phage Therapy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wommack, K.E.; Colwell, R.R. Virioplankton: Viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 2000, 64, 69–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmonds, P.; Adams, M.J.; Benko, M.; Breitbart, M.; Brister, J.R.; Carstens, E.B.; Davison, A.J.; Delwart, E.; Gorbalenya, A.E.; Harrach, B.; et al. Consensus statement: Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 2017, 15, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Adriaenssens, E.M.; Wittmann, J.; Kuhn, J.H.; Dann Turner, D.; Sullivan, M.B.; Dutilh, B.-E.; Jang, H.B.; Zyl, L.J.V.; Klumpp, J.; Lobocka, M.; et al. Taxonomy of prokaryotic viruses: 2017 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch. Virol. 2018, 166, 1125–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barylski, J.; Enault, F.; Dutilh, B.E.; Schuller, M.B.; Edwards, R.A.; Gillis, A.; Klumpp, J.; Knezevic, P.; Krupovic, M.; Kuhn, J.H.; et al. Taxonomy proposal to create one (1) new family, Herelleviridae, in the order Caudovirales. In ICTV Online: International Committee on Taxonomy of Viruses (ICTV); International Committee on Taxonomy of Viruses (ICTV): London, UK, 2018; p. 2018.118B. [Google Scholar]
- Walker, P.J.; Siddell, S.G.; Lekowitz, E.J.; Mushegian, A.R.; Dempsey, D.M.; Dutilh, B.E.; Harrach, B.; Harrision, R.L.; Hendrickson, R.C.; Junglen, S.; et al. Changes to virus taxonomy and International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses. Arch. Virol. 2019, 164, 2417–2429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakonjac, J.; Bennett, N.J.; Spagnuolo, J.; Gagic, D.; Russel, M. Filamentous bacteriophage: Biology, phage display and nanotechnology applications. Curr. Issues Mol. Biol. 2011, 13, 51–76. [Google Scholar]
- Cenens, W.; Makumi, A.; Mebrhatu, M.T.; Lavigne, R.; Aertsen, A. Phage–host interactions during pseudolysogeny: Lessons from the Pid/dgo interaction. Bacteriophage 2013, 3, e25029. [Google Scholar] [CrossRef] [Green Version]
- Villa, T.G.; Veiga-Crespo, P. Enzybiotics: Antibiotic Enzymes as Drugs and Therapeutics; John Wiley and Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Hankin, E.H. An outbreak of cholera in an officers’ mess. Br. Med. J. 1896, 2, 1817–1819. [Google Scholar] [CrossRef] [Green Version]
- Twort, F. An investigation on the nature of ultra-microscopic viruses. Lancet 1915, 186, 1241–1243. [Google Scholar] [CrossRef] [Green Version]
- D’Hérelle, F. Sur un microbe invisible antagoniste des bacilles dysentériques. Compt. Rend. Acad. Sci. 1917, 165, 373–375. [Google Scholar]
- Summers, W.C. Bacteriophage research: Early history. In Bacteriophages: Biology and Applications; Kutter, E., Sulakvelidze, A., Eds.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Brunoghe, R.; Maisin, J. Essais de therapeutique au moyen du bacteriophage du staphylocoque. C. R. Soc. Biol. 1921, 85, 1120–1121. [Google Scholar]
- Sulakvelidze, A.; Alavidze, Z.; Morris, J.G. Bacteriophage therapy. Antimicrob. Agents Chemother. 2001, 45, 649–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedon, S.T.; Kuhl, S.J.; Blasdel, B.G.; Kutter, E.M. Phage treatment of human infections. Bacteriophage 2011, 1, 66–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Shibiny, A.; El-Sahhar, S. Bacteriophages: The possible solution to treat infections caused by pathogenic bacteria. Can. J. Microbiol. 2017, 63, 865–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallmann, W.L.; Hemstreet, C.J. Isolation of an inhibitory substance from plants. Agric. Res. 1924, 69, 599–602. [Google Scholar]
- Moore, E.S. d’Herelle’s bacteriophage in relation to plant parasites. S. Afr. J. Sci. 1926, 23, 306. [Google Scholar]
- Coons, G.; Kotila, J. The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathology. 1925, 15, 357–370. [Google Scholar]
- Kotila, J.E.; Coons, G.H. Investigations on the Blackleg Disease of Potato; Michigan State University. Agricultural Experiment Station: Urbana, IL, USA, 1925; pp. 3–29. [Google Scholar]
- Massey, R.E. Studies on blackarm disease of cotton III. Empire Cotton Grow. Rev. 1934, 11, 188–193. [Google Scholar]
- Kutateladze, M.; Adamia, R. Bacteriophages as potential new therapeutics or supplement antibiotics. Trends Biotechnol. 2010, 28, 591–595. [Google Scholar] [CrossRef]
- Chanishvili, N. Literature Review of the Practical Application of Bacteriophage Research; Nova Science Publishers: Hauppauge, NY, USA, 2012. [Google Scholar]
- Okabe, N.; Goto, M. Bacteriophages of plant pathogens. Annu. Rev. Phytopathol. 1963, 1, 397–418. [Google Scholar] [CrossRef]
- Sundin, G.W.; Wang, N. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 2018, 56, 161–180. [Google Scholar] [CrossRef]
- La Torre, A.; Iovino, V.; Caradonia, F. Copper implant protection: Current situation and prospects. Phytopathol. Mediterr. 2018, 57, 201–236. [Google Scholar]
- Amador, P.; Duarte, I.; da Costa, R.P.; Fernandes, R.; Prudêncio, C. Characterization of Antibiotic Resistance in Enterobacteriaceae From Agricultural Manure and Soil in Portugal. Soil Sci. 2017, 182, 292–301. [Google Scholar] [CrossRef]
- Vivas, R.; Barbosa, A.A.T.; Dolabela, S.S.; Jain, S. Multidrug-Resistant Bacteria and Alternative Methods to Control Them: An Overview. Microb. Drug Resist. 2019, 25, 890–908. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.; Tribot, N.; Boyer, C.; Terville, M.; Boyer, K.; Javegny, S.; Roux-Cuvelier, M.; Pruvost, O. First report of copper-resistant Xanthomonas citri pv. citri Pathotype a causing Asiatic citrus canker in Réunion, France. Plant. Dis. 2016, 101, 503. [Google Scholar]
- Colombi, E.; Straub, C.; Künzel, S.; Templeton, M.D.; McCann, H.C.; Rainey, P.B. Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids. Environ. Microbiol. 2017, 19, 819–832. [Google Scholar]
- Chevrette, M.G.; Currie, C.R. Emerging evolutionary paradigms in antibiotic discovery. J. Ind. Microbiol. Biotechnol. 2019, 46, 257–271. [Google Scholar] [CrossRef]
- Dunleavy, J.M.; Urs, N.V.R. Isolation and characterization of bacteriophage SBX-1 and its bacterial host, both endemic in soybeans. J. Virol. 1973, 12, 188. [Google Scholar] [CrossRef] [Green Version]
- Meaden, S.; Koskella, B. Exploring the risks of phage application in the environment. Front. Microbiol. 2013, 4, 358. [Google Scholar] [CrossRef] [Green Version]
- Kolozsvári, N.J.; Király, L.; Schwarczinger, I. Phage therapy for plant disease control with a focus on fire blight. Cent. Eur. J. Biol. 2012, 7, 1–12. [Google Scholar]
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and Bacterial Plant Diseases. Front. Microbiol. 2017, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Kering, K.K.; Kibii, B.J.; Wei, H. Biocontrol of phytobacteria with bacteriophage cocktails. Pest. Manag. Sci. 2019, 75, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Breezea, T.D.; Baileyb, A.P.; Balcombec, K.G.; Pottsa, S.G. Pollination services in the UK: How important are honeybees? Agric. Ecosyst. Environ. 2011, 142, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.B.; Oliveira, A.; Melo, L.D.R.; Azeredo, J. Identification of the first endolysin Cell Binding Domain (CBD) targeting Paenibacillus larvae. Sci. Rep. 2019, 9, 2568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, T.S.; Merrill, B.D.; Hilton, J.A.; Payne, A.M.; Stephenson, M.B.; Hope, S. Bacteriophages as an alternative to conventional antibiotic use for the prevention or treatment of Paenibacillus larvae in honeybee hives. J. Invertebr. Pathol. 2017, 150, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, H.G.; Melo, L.D.R.; Oliveira, H.; Boon, M.; Lavigne, R.; Noben, J.-P.; Azeredo, J.; Oliveira, A. Characterization of a new podovirus infecting Paenibacillus larvae. Sci. Rep. 2019, 9, 20355. [Google Scholar] [CrossRef]
- Tsourkas, P.K. Paenibacillus larvae bacteriophages: Obscure past, promising future. Microb. Genom. 2020, 6, e000329. [Google Scholar] [CrossRef]
- Nakai, T.; Park, S.C. Bacteriophage therapy of infectious diseases in aquaculture. Res. Microbiol. 2002, 153, 13–18. [Google Scholar] [CrossRef]
- Almeida, A.; Cunha, A.; Gomes, N.C.; Alves, E.; Costa, L.; Faustino, A.F.M. Phage therapy and photodynamic therapy: Low environmental impact approaches to inactivate microorganisms in fish farming plants. Mar. Drugs 2009, 7, 268–313. [Google Scholar] [CrossRef] [Green Version]
- Muroga, K. Viral and bacterial diseases of marine fish and shellfish in Japanese hatcheries. Aquaculture 2001, 202, 23–44. [Google Scholar] [CrossRef]
- Oliveira, J.; Castilho, F.; Cunha, A.; Pereira, M.J. Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquacult. Int. 2012, 20, 879–910. [Google Scholar] [CrossRef]
- Hektoen, H.; Berge, J.A.; Hormazabal, V.; Yndestad, M. Persistence of antibacterial agents in marine sediments. Aquaculture 1995, 133, 175–184. [Google Scholar] [CrossRef]
- Defoirdt, T.; Sorgeloos, P.; Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 2011, 14, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, A.; Sapkota, A.R.; Kucharski, M.; Burke, J.; McKenzie, S.; Walker, P.; Lawrence, R. Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environ. Int. 2008, 34, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Nakai, T.; Sugimoto, R.; Park, K.H.; Matsuoka, S.; Mori, K.; Nishioka, T.; Maruyama, K. Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis. Aquat. Organ. 1999, 37, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Richards, G.P. Bacteriophage remediation of bacterial pathogens in aquaculture: A review of the technology. Bacteriophage 2014, 4, e975540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letchumanan, V.; Chan, K.; Pusparajah, P.; Saokaew, S.; Duangjai, A.; Goh, B.; Mutalib, N.; Lee, L. Insights into Bacteriophage Application in Controlling Vibrio Species. Front. Microbiol. 2016, 7, 1114. [Google Scholar] [CrossRef] [Green Version]
- Kalatzis, P.G.; Castillo, D.; Katharios, P.; Middelboe, M. Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy. Antibiotics 2018, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Lindsey, A.; Murugan, S.; Renitta, R.E. Microbial disease management in agriculture: Current status and future prospects. Biocatal. Agric. Biotechnol. 2020, 23, 101468. [Google Scholar] [CrossRef]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant. Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [Green Version]
- Sundin, G.W.; Castiblanco, L.F.; Yuan, X.; Zeng, Q.; Yang, C.H. Bacterial disease management: Challenges, experience, innovation and future prospects in molecular and plant pathology. Mol. Plant. Pathol. 2016, 17, 1506–1518. [Google Scholar] [CrossRef] [PubMed]
- Demayo, A.; Taylor, M.C.; Taylor, K.W.; Wiersma, G.B. Effects of copper on humans, laboratory and farm animals, terrestrial plants, and aquatic life. Crit. Rev. Environ. Control 2009, 12, 183–255. [Google Scholar] [CrossRef]
- Grenni, P.; Ancona, V.; Caracciolo, A.B. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Bender, C.L.; Malvick, D.K.; Conway, K.E.; George, S.; Cooksey, D.A. Characterization of pXv10A, a copper resistance plasmid in Xanthomonas campestris pv. vesicatoria. Appl. Environ. Microbiol. 1990, 56, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Basim, H.; Stall, R.E.; Minsavage, G.V.; Jones, J.B. Chromosomal gene transfer by conjugation in the plant pathogen Xanthomonas axonopodis pv. vesicatoria. Phytopathology 1999, 89, 1044–1049. [Google Scholar] [CrossRef] [Green Version]
- Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Köhl, J.; Jones, J.; Aubertot, J.N. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev. 2018, 38, 28. [Google Scholar] [CrossRef] [Green Version]
- Thayer, P.L.; Stall, R.E. A survey of Xanthomonas vesicatoria resistance to streptomycin. Proc. Fla. Hortic. Soc. 1961, 75, 163–165. [Google Scholar]
- Tancos, K.A.; Villani, S.; Kuehne, S.; Borejsza-Wysocka, E.; Breth, D.; Carol, J.; Aldwinckle, H.S.; Cox, K.D. Prevalence of streptomycin-resistant Erwinia amylovora in New York apple orchards. Plant. Dis. 2016, 100, 802–809. [Google Scholar] [CrossRef] [Green Version]
- Meek, R.W.; Vyas, H.; Piddock, L.J.V. Nonmedical Uses of Antibiotics: Time to Restrict Their Use? PLoS Biol. 2015, 13, e1002266. [Google Scholar] [CrossRef]
- Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus 2017, 9, e1403. [Google Scholar]
- Chen, Q.L.; Cui, H.L.; Su, J.Q.; Penuelas, J.; Zhu, Y.G. Antibiotic Resistomes in Plant Microbiomes. Trends Plant. Sci. 2019, 24, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Jess, S.; Kildea, S.; Moody, A.; Rennick, G.; Murchie, A.K.; Cooke, L.R. European Union policy on pesticides: Implications for agriculture in Ireland. Pest. Manag. Sci. 2014, 70, 1646–1654. [Google Scholar] [CrossRef] [PubMed]
- López-Seijas, J.; García-Fraga, B.; da Silva, A.F.; Sieiro, C. Wine Lactic Acid Bacteria with Antimicrobial Activity as Potential Biocontrol Agents against Fusarium oxysporum f. sp. lycopersici. Agronomy 2020, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Ab Rahman, S.F.S.; Singh, E.; Pieterse, C.M.J.; Schenk, P.M. Emerging microbial biocontrol strategies for plant pathogens. Plant. Sci. 2017, 267, 102–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, F.; El-Tarabily, K.A.; Hardy, G.E.S.J.; Dell, B. Novel in vivo use of a polyvalent Streptomyces phage to disinfest Streptomyces scabies-infected seed potatoes. Plant. Pathol. 2001, 50, 666–675. [Google Scholar] [CrossRef]
- Adriaenssens, E.M.; VanVaerenbergh, J.; Vandenheuvel, D.; Dunon, V.; Ceyssens, P.J.; De Proft, M.; Kropinski, A.M.; Noben, J.P.; Maes, M.; Lavigne, R. T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by ‘Dickeya solani’. PLoS ONE 2012, 7, e33227. [Google Scholar] [CrossRef] [Green Version]
- Czajkowski, R.; Ozymko, Z.; Lojkowska, E. Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (“D. solani”). Plant. Pathol. 2014, 63, 758–772. [Google Scholar] [CrossRef]
- Czajkowski, R.; Ozymko, Z.; de Jager, V.; Siwinska, J.; Smolarska, A.; Ossowicki, A.; Narajczyk, M.; Lojkowska, E. Genomic, proteomic and morphological characterization of two novel broad host lytic bacteriophages ΦPD10.3 and ΦPD23.1 infecting pectinolytic Pectobacterium spp. and Dickeya spp. PLoS ONE 2015, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Liu, J.; Maina, A.N.; Mwaura, F.B.; Yu, J.; Yan, C.; Zhang, R. Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt. Virol. Sin. 2017, 32, 476–484. [Google Scholar] [CrossRef]
- Buttimer, C.; Hendrix, H.; Lucid, A.; Neve, H.; Noben, J.P.; Franz, C.; O’Mahony, J.; Lavigne, R.; Coffey, A. Novel N4-Like bacteriophages of Pectobacterium atrosepticum. Pharmaceuticals 2018, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Carstens, A.B.; Djurhuus, A.M.; Kot, W.; Jacobs-Sera, D.; Hatfull, G.F.; Hansen, L.H. Unlocking the potential of 46 new bacteriophages for biocontrol of Dickeya solani. Viruses 2018, 10, 621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muturi, P.; Yu, J.; Maina, A.N.; Kariuki, S.; Mwaura, F.B.; Wei, H. Bacteriophages Isolated in China for the Control of Pectobacterium carotovorum causing Potato Soft Rot in Kenya. Virol. Sin. 2019, 34, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, J.E.; Somodi, G.C.; Jones, J.B.; Harbaugh, B.K.; Jackson, L.E. Control of Bacterial Spot on Tomato in the Greenhouse and Field with H-mutant Bacteriophages. HortScience 2000, 35, 882–884. [Google Scholar] [CrossRef]
- Balogh, B.; Jones, J.B.; Momol, M.T.; Olson, S.M.; Obradovic, A.; King, P.; Jackson, L.E. Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant. Dis. 2003, 87, 949–954. [Google Scholar] [CrossRef] [Green Version]
- Obradovic, A.; Jones, J.B.; Momol, M.T.; Balogh, B.; Olson, S.M. Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant. Dis. 2004, 88, 736–740. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, A.; Fujisawa, M.; Hamasaki, R.; Kawasaki, T.; Fujie, M.; Yamada, T. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl. Environ. Microbiol. 2011, 77, 4155–4162. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.Y.; Wu, J.; Lee, H.J.; Jo, E.J.; Murugaiyan, S.; Chung, E.; Lee, S.W. Biocontrol Potential of a Lytic Bacteriophage PE204 against Bacterial Wilt of Tomato. J. Microbiol. Biotechnol. 2012, 22, 1613–1620. [Google Scholar] [CrossRef]
- Goyer, C. Isolation and characterization of phages Stsc1 and Stsc3 infecting Streptomyces scabiei and their potential as biocontrol agents. Can. J. Plant. Pathol. 2005, 27, 210–216. [Google Scholar] [CrossRef]
- Lang, J.M.; Gent, D.H.; Schwartz, H.F. Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant. Dis. 2007, 91, 871–878. [Google Scholar] [CrossRef]
- Lim, J.A.; Jee, S.; Lee, D.H.; Roh, E.; Jung, K.; Oh, C.; Heu, S. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. J. Microbiol. Biotechnol. 2013, 23, 1147–1153. [Google Scholar] [CrossRef] [Green Version]
- Rombouts, S.; Volckaert, A.; Venneman, S.; Declercq, B.; Vandenheuvel, D.; Allonsius, C.N.; Van Malderghem, C.; Jang, H.B.; Briers, Y.; Noben, J.P.; et al. Characterization of novel bacteriophages for bio-control of bacterial blight in leek caused by Pseudomonas syringae pv. porri. Front. Microbiol. 2016, 7, 279. [Google Scholar] [PubMed] [Green Version]
- Ranjani, P.; Gowthami, Y.; Gnanamanickam, S.S.; Palani, P. Bacteriophages: A New Weapon for the Control of Bacterial Blight Disease in Rice Caused by Xanthomonas oryzae. Microbiol. Biotechnol. Lett. 2018, 46, 346–359. [Google Scholar] [CrossRef]
- Balogh, B.; Canteros, B.I.; Stall, R.E.; Jones, J.B. Control of citrus canker and citrus bacterial spot with bacteriophages. Plant. Dis. 2008, 92, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Boulé, J.; Sholberg, P.L.; Lehman, S.M.; O’gorman, D.T.; Svircev, A.M. Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada. Can. J. Plant. Pathol. 2011, 33, 308–317. [Google Scholar] [CrossRef]
- Das, M.; Bhowmick, T.S.; Ahern, S.J.; Young, R.; Gonzalez, C.F. Control of pierce’s disease by phage. PLoS ONE 2015, 10, e0128902. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.G.; Lim, J.A.; Song, Y.R.; Heu, S.; Kim, G.H.; Koh, Y.J.; Oh, C.S. Isolation and Characterization of Bacteriophages Against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit. J. Microbiol. Biotechnol. 2016, 26, 385–393. [Google Scholar]
- Pinheiro, L.A.M.; Pereira, C.M.; Barreal, M.E.; Gallego, P.P.; Balcão, V.M.; Almeida, A. Use of phage ϕ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: In vitro and ex vivo experiments. Appl. Microbiol. Biotechnol. 2020, 104, 1319–1330. [Google Scholar]
- Ni, P.; Wang, L.; Deng, B.; Jiu, S.; Ma, C.; Zhang, C.; Almeida, A.; Wang, D.; Xu, W.; Wang, S. Combined application of bacteriophages and carvacrol in the control of Pseudomonas syringae pv. actinidiae planktonic and biofilm forms. Microorganisms 2020, 8, 837. [Google Scholar]
- Nguyen, H.T.; Yoon, S.; Kim, M.H.; Kim, Y.K.; Yoon, M.Y.; Cho, Y.H.; Lim, Y.; Shin, S.H.; Kim, D.E. Characterization of bacteriophage φPto-bp6g, a novel phage that lyses Pseudomonas tolaasii causing brown blotch disease in mushrooms. J. Microbiol. Methods 2012, 91, 514–519. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the Unites Nations (FAO). The State of World Fisheries and Aquaculture: Contributing to Food Security and Nutrition for All. 2016. Available online: http://www.fao.org/3/a-i5555e.pdf (accessed on 6 May 2020).
- Plaza, N.; Castillo, D.; Pérez-Reytor, D.; Higuera, G.; García, K.; Bastías, R. Bacteriophages in the control of pathogenic vibrios. Electron. J. Biotechnol. 2018, 31, 24–33. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Tomava, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschamann, A.H. Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.E.M.; Schreier, H.J.; Lanska, L.; Hale, M.S. The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Antimicrobial Resistance: Global Report on Surveillance. 2014. Available online: https://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf;jsessionid=D6530529B3B36FE8EEAF9A19CFD718AB?sequence=1 (accessed on 6 May 2020).
- Falaise, C.; Francois, C.; Travers, M.A.; Morga, B.; Haure, J.; Tremblay, R.; Turcotte, F.; Pasetto, P.; Gastineau, R.; Hardivillier, Y.; et al. Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Mar. Drugs 2016, 14, 159. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Sánchez, T.; Mora-Sánchez, B.; Balcázar, J.L. Biological Approaches for Disease Control in Aquaculture: Advantages, Limitations and Challenges. Trends Microbiol. 2018, 26, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Soliman, W.S.; Shaapan, R.M.; Mohamed, L.A.; Gayed, S.S.R. Recent biocontrol measures for fish bacterial diseases, in particular to probiotics, bio-encapsulated vaccines, and phage therapy. Open Vet. J. 2019, 9, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Nikapitiya, C.; Chandrarathna, H.P.S.U.; Dananjaya, S.H.S.; De Zoysa, M.; Lee, J. Isolation and characterization of phage (ETP-1) specific to multidrug resistant pathogenic Edwardsiella tarda and its in vivo biocontrol efficacy in zebrafish (Danio rerio). Biologicals 2020, 63, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Matamp, N.; Bhat, S.G. Phage Endolysins as Potential Antimicrobials against Multidrug Resistant Vibrio alginolyticus and Vibrio parahaemolyticus: Current Status of Research and Challenges Ahead. Microorganisms 2019, 7, 84. [Google Scholar] [CrossRef] [Green Version]
- Park, S.C.; Nakai, T. Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis. Dis. Aquat. Organ. 2003, 53, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Karunasagar, I.; Shivu, M.M.; Girisha, S.K.; Krohne, G.; Karunasagar, I. Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture 2007, 268, 288–292. [Google Scholar] [CrossRef]
- Shivu, M.M.; Rajeeva, B.C.; Girisha, S.K.; Karunasagar, I.; Krohne, G.; Karunasagar, I. Molecular characterization of Vibrio harveyi bacteriophages isolated from aquaculture environments along the coast of India. Environ. Microbiol. 2007, 9, 322–331. [Google Scholar] [CrossRef]
- Crothers-Stomps, C.; Hoj, L.; Bourne, D.G.; Hall, M.R.; Owens, L. Isolation of lytic bacteriophage against Vibrio harveyi. J. Appl. Microbiol. 2010, 108, 1744–1750. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Barton, M.; Elliott, L.; Li, X.; Abraham, S.; O’Dea, M.; Munro, J. Bacteriophage therapy for the control of Vibrio harveyi in greenlip abalone (Haliotis laevigata). Aquaculture 2017, 473, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Jun, J.W.; Kim, H.J.; Yun, S.K.; Chai, J.Y.; Park, S.C. Eating oysters without risk of vibriosis: Application of a bacteriophage against Vibrio parahaemolyticus in oysters. Int. J. Food. Microbiol. 2014, 188, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liang, Y.; Huang, S.; Zhang, J.; Wang, J.; Chen, H.; Ye, Y.; Gao, X.; Wu, Q.; Tan, Z. Isolation and Characterization of the Novel Phages vB_VpS_BA3 and vB_VpS_CA8 for Lysing Vibrio parahaemolyticus. Front. Microbiol. 2020, 11, 259. [Google Scholar] [CrossRef] [PubMed]
- Matamp, N.; Bhat, S.G. Genome characterization of novel lytic Myoviridae bacteriophage ϕVP-1 enhances its applicability against MDR-biofilm-forming Vibrio parahaemolyticus. Arch. Virol. 2020, 165, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Higuera, G.; Bastías, R.; Tsertsvadze, G.; Romero, J.; Espejo, R.T. Recently discovered Vibrio anguillarum phages can protect against experimentally induced Vibriosis in Atlantic salmon, Salmo salar. Aquaculture 2013, 392, 128–133. [Google Scholar] [CrossRef]
- Katharios, P.; Kalatzis, P.G.; Kokkari, C.; Sarropoulou, E.; Middelboe, M. Isolation and characterization of a N4-like lytic bacteriophage infecting Vibrio splendidus, a pathogen of fish and bivalves. PLoS ONE 2017, 12, e0190083. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Jun, J.W.; Giri, S.S.; Chi, C.; Yun, S.; Kim, S.G.; Kim, S.W.; Kang, J.W.; Han, S.J.; Kwon, J.; et al. Application of the bacteriophage pVco-14 to prevent Vibrio coralliilyticus infection in Pacific oyster (Crassostrea gigas) larvae. J. Invert. Pathol. 2019, 167, 107244. [Google Scholar] [CrossRef]
- Chen, L.; Fan, J.; Yan, T.; Liu, Q.; Yuan, S.; Zhang, H.; Yang, J.; Deng, D.; Huang, S.; Ma, Y. Isolation and Characterization of Specific Phages to Prepare a Cocktail Preventing Vibrio sp. Va-F3 Infections in Shrimp (Litopenaeus vannamei). Front. Microbiol. 2019, 10, 2337. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.H.; Lo, C.Y.; Liu, J.K.; Lin, C.S. Control of the eel (Anguilla japonica) pathogens, Aeromonas hydrophila and Edwardsiella tarda, by bacteriophages. J. Fish. Soc. Taiwan 2000, 27, 21–31. [Google Scholar]
- Le, T.S.; Nguyen, T.H.; Vo, H.P.; Doan, V.C.; Nguyen, H.L.; Tran, M.T.; Tran, T.T.; Southgate, P.C.; Kurtböke, D.I. Protective Effects of Bacteriophages against Aeromonas hydrophila Causing Motile Aeromonas Septicemia (MAS) in Striped Catfish. Antibiotics 2018, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akmal, M.; Rahimi-Midani, A.; Hafeez-ur-Rehman, M.; Hussain, A.; Choi, T.J. Isolation, Characterization, and Application of a Bacteriophage Infecting the Fish Pathogen Aeromonas hydrophila. Pathogens 2020, 9, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imbeault, S.; Parent, S.; Lagace, M.; Uhland, C.F.; Blais, J.F. Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed Brook Trout. J. Aquat. Anim. Health 2006, 18, 203–214. [Google Scholar] [CrossRef]
- Kim, J.H.; Choresca, C.H.; Shin, S.P.; Han, J.E.; Jun, J.W.; Park, S.C. Biological Control of Aeromonas salmonicida subsp. salmonicida Infection in Rainbow Trout (Oncorhynchus mykiss) Using Aeromonas Phage PAS-1. Transbound. Emerg. Dis. 2015, 62, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.; Pereira, C.; Moreirinha, C.; Salvio, R.; Lopes, A.; Wang, D.; Almeida, A. New insights on phage efficacy to control Aeromonas salmonicida in aquaculture systems: An in vitro preliminary study. Aquaculture 2018, 495, 970–982. [Google Scholar] [CrossRef]
- Carrias, A.; Welch, T.J.; Waldbieser, G.C.; Mead, D.A.; Terhune, J.S.; Liles, M.R. Comparative genomic analysis of bacteriophages specific to the channel catfish pathogen. Edwardsiella ictaluri. Virol. J. 2011, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Stenholm, A.R.; Dalsgaard, I.; Middelboe, M. Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol. 2008, 74, 4070–4078. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Gomez, D.K.; Nakai, T.; Park, S.C. Isolation and identification of bacteriophages infecting ayu Plecoglossus altivelis altivelis specific Flavobacterium psychrophilum. Vet. Microbiol. 2010, 140, 109–115. [Google Scholar] [CrossRef]
- Prasad, Y.; Kumar, D.A.; Sharma, A.K. Lytic bacteriophages specific to Flavobacterium columnare rescue catfish, Clarias batrachus (Linn.) from columnaris disease. J. Environ. Biol. 2011, 32, 161–168. [Google Scholar]
- Iriarte, F.; Balogh, B.; Momol, M.T.; Smith, L.M.; Wilson, M.; Jones, J.B. Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl. Environ. Microbiol. 2007, 73, 1704–1711. [Google Scholar] [CrossRef] [Green Version]
- Iriarte, F.; Obradovic, A.; Wernsing, M.H.; Jackson, L.E.; Balogh, B.; Hong, J.A.; Momol, M.T.; Jones, J.B.; Vallad, G.E. Soil-based systemic delivery and phyllosphere in vivo propagation of bacteriophages: Two possible strategies for improving bacteriophage persistence for plant disease control. Bacteriophage 2012, 2, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandeep, K. Bacteriophage precision drug against bacterial infections. Curr. Sci. 2006, 90, 631–633. [Google Scholar]
- Summers, W.C. Bacteriophage therapy. Annu. Rev. Microbiol. 2011, 55, 437–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakai, T. References. In Bacteriophages in the Control of Food- and Waterborne Pathogens; Sabour, P.M., Griffiths, P.M., Eds.; American Society for Microbiology: Washington, DC, USA, 2010; Volume 1, pp. 257–272. ISBN 978-1-55581-502-8. [Google Scholar]
- Chan, B.K.; Abedon, S.T.; Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013, 8, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Koskella, B.; Taylor, T.B. Multifaceted impacts of bacteriophages in the plant microbiome. Annu. Rev. Phytopathol. 2018, 56, 361–380. [Google Scholar] [CrossRef] [PubMed]
- García, R.; Latz, S.; Romero, J.; Higuera, G.; Gastón, H.; García, K.; Bastías, R. Bacteriophage production models: An overview. Front. Microbiol. 2019, 10, 1187. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, X.; Zhang, H.; Watts, A.B.; Ghosh, D. Manufacturing and ambient stability of shelf freeze dried bacteriophage poder formulations. Int. J. Pharm. 2018, 542, 1–7. [Google Scholar] [CrossRef]
- Fauconnier, A. Phage Therapy Regulation: From Night to Dawn. Viruses 2019, 11, 352. [Google Scholar] [CrossRef] [Green Version]
- Oechslin, F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses 2018, 10, 351. [Google Scholar] [CrossRef] [Green Version]
- Weinbauer, M.G. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 2004, 28, 127–181. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.E.; Timms, A.R.; Connerton, P.L.; Carrillo, C.L.; Radzum, K.A.; Connerton, I.F. Genome dynamics of Campylobacter jejuni in response to bacteriophage predation. PLoS Pathog. 2007, 3, 1142–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Tanji, Y.; Shimada, T.; Yoichi, M.; Miyanaga, K.; Hori, K.; Unno, H. Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Appl. Microbiol. Biotechnol. 2004, 64, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Barrow, P.A.; Soothill, J.S. Bacteriophage therapy and prophylaxis: Rediscovery and renewed assessment of potential. Trends Microbiol. 1997, 5, 268–271. [Google Scholar]
- Wendling, C.C.; Piecyk, A.; Refardt, D.; Chibani, C.; Hertel, R.; Liesegang, H.; Bunk, B.; Overmann, J.; Roth, O. Tripartite species interaction: Eukaryotic hosts suffer more from phage susceptible than from phage resistant bacteria. BMC Evol. Biol. 2017, 17, 98. [Google Scholar] [CrossRef] [Green Version]
- Laanto, E.; Bamford, J.K.H.; Laakso, J.; Sundberg, L.R. Phage-driven loss of virulence in a fish pathogenic bacterium. PLoS ONE 2012, 7, e53157. [Google Scholar] [CrossRef] [Green Version]
- Castillo, D.; Christiansen, R.H.; Dalsgaard, I.; Madsen, L.; Middelboe, M. Bacteriophage resistance mechanisms in the fish pathogen Flavobacterium psychrophilum: Linking genomic mutations to changes in bacterial virulence factors. Appl. Environ. Microbiol. 2015, 81, 1157–1167. [Google Scholar] [CrossRef] [Green Version]
- Rørbo, N.; Rønneseth, A.; Kalatzis, P.G.; Rasmussen, B.B.; Engell-Sørensen, K.; Kleppen, H.P.; Wergeland, H.I.; Gram, L.; Middelboe, M. Exploring the effect of phage therapy in preventing Vibrio anguillarum infections in cod and turbot larvae. Antibiotics 2018, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Tovkach, F.I. A study of Erwinia carotovora phage resistance with the use of temperate bacteriophage ZF40. Microbiology 2002, 71, 72–78. [Google Scholar] [CrossRef]
- Evans, T.J.; Ind, A.; Komitopoulou, E.; Salmond, G.P. Phage-selected lipopolysaccharide mutants of Pectobacterium atrosepticum exhibit different impacts on virulence. J. Appl. Microbiol. 2010, 109, 505–514. [Google Scholar]
- Park, S.C.; Shimamura, I.; Fukunaga, M.; Mori, K.; Nakai, T. Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl. Environ. Microbiol. 2000, 66, 1416–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuoka, S.; Hashizume, T.; Kanzaki, H.; Iwamoto, E.; Chang, P.S.; Yoshida, T.; Nakai, T. Phage therapy against beta-hemolytic streptococcicosis of Japanese flounder Paralichthys olivaceus. Fish. Pathol. 2007, 42, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Parmar, K.M.; Hathi, Z.J.; Dafale, N.A. Control of Multidrug-Resistant Gene Flow in the Environment through Bacteriophage Intervention. Appl. Biochem. Biotechnol. 2017, 181, 1007–1029. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Liu, X.; Li, Y.; Han, W.; Lei, L.; Yang, Y.; Zhao, H.; Gao, Y.; Song, J.; Lu, R.; et al. A Method for Generation Phage Cocktail with GreatTherapeutic Potential. PLoS ONE 2012, 7, e31696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilcher, S.; Loessner, M.J. Engineering Bacteriophages as Versatile Biologics. Trends Microbiol. 2019, 27, 355–367. [Google Scholar] [CrossRef] [PubMed]
Phage/Phages Cocktails (Family) | Target Microorganism | Plant | Disease | Relevant Achievements | Reference |
---|---|---|---|---|---|
ΦAS1 (Siphoviridae) | Streptomyces scabies | Potato | Common scab |
| [70] |
vB_DsoM_LIMEstone1, vB_DsoM_LIMEstone2 (Myoviridae) | Dickeya solani | Potato | Soft rot/Blackleg |
| [71] |
ΦD1, ΦD2, ΦD3, ΦD4, ΦD5, ΦD7, ΦD9, ΦD10, ΦD11 (Myoviridae) | Dickeya solani | Potato | Soft rot/Blackleg |
| [72] |
ΦPD10.3, ΦPD23.1 (Myoviridae) | Pectobacterium carotovorum ssp. carotovorum P. wasabiae Dickeya solani | Potato | Soft rot/Blackleg |
| [73] |
P-PSG-1 (Siphoviridae), P-PSG-2, P-PSG-3, P-PSG-7 (Siphoviridae), P-PSG-8, and P-PSG-9 | Ralstonia solanacearum | Potato | Bacterial wilt |
| [74] |
vB_PatP_CB1, vB_PatP_CB3, vB_PatP_CB4 (Podoviridae) | Pectobacterium atrosepticum | Potato | Soft rot/Blackleg |
| [75] |
Dagda, Dagda_B1, Katbat, Luksen, Mysterion, P694 (Podoviridae) | Dickeya solani | Potato | Soft rot/Blackleg |
| [76] |
Wc5r, Phage cocktail | Pectobacterim atrosepticum P. carotovorum | Potato | Soft rot/Blackleg |
| [77] |
Mixture of four h-mutant (Agriphage, Agriphi, Logan, Utah) | Xanthomonas campestris pv. vesicatoria | Tomato | Bacterial spot |
| [78] |
Formulated phage cocktails | Xanthomonas campestris pv. vesicatoria | Tomato | Bacterial spot |
| [79] |
6 Phages (Agriphage, OmniLytics, Inc., Salt Lake Cith, UT) combined with plant activator (ASM) | Xanthomonas campestris pv. vesicatoria | Tomato | Bacterial spot |
| [80] |
ΦRSL1 (Myoviridae) | Ralstonia solanacearum | Tomato | Bacterial wilt |
| [81] |
PE204 (Podoviridae) | Ralstonia solanacearum | Tomato | Bacterial wilt |
| [82] |
Stsc1, Stsc3 (Siphoviridae) | Streptomyces scabies | Radish | Common scab |
| [83] |
Bacteriophage mixture (AgriPhage, OmniLytics, Salt Lake City, UT) | Xanthomonas axonopodis pv. allii | Onion | Xanthomonas leaf blight |
| [84] |
PP1 (Podoviridae) | Pectobacterium carotovorum ssp. carotovorum | Lettuce | Soft rot/Blackleg |
| [85] |
vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, vB_PsyM_KIL4, and vB_PsyM_KIL5, vB_PsyM_KIL3b (Myoviridae) | Pseudomonas syringae pv. porri | Leek | Bacterial blight |
| [86] |
ΦXOT1, ΦXOT2, ΦXOM1, ΦXOM2, ΦXOF1, ΦXOF2, ΦXOF3, ΦXOF4 (Siphoviridae) | Xanthomonas oryzae | Rice | Leaf blight disease (BLB) |
| [87] |
CP2, ΦXac2005-1, ccΦ7, ccΦ13, ΦXacm2004-4, ΦXacm2004-16, ΦX44, ΦXaacA1 | Xanthomonas axonopodis pv. citri | Grapefruit | Asiatic citrus canker |
| [88] |
ΦEa1337-26 (Podoviridae), ΦEa2345-6 (Myoviridae) | Erwinia amylovora | Pear and apple trees | Fire blight |
| [89] |
CP2, ΦXac2005-1, ccΦ7, ccΦ13, ΦXacm2004-4, ΦXacm2004-16, ΦX44, ΦXaacA1 | Xanthomonas axonopodis pv. citrumelo | Orange | Citrus bacterial spot |
| [88] |
Sano, Salvo, Prado, Paz | Xylella fastidiosa subsp. fastidiosa | Grapevines | Pierce’s disease (PD) |
| [90] |
KHUΦ34 (Myoviridae), KHUΦ38 (Podoviridae), KHUΦ44 (Myoviridae) | Pseudomonas syringae pv. actinidiae | Kiwifruit | Canker disease |
| [91] |
Φ6 (Cystoviridae) Leibniz- Institute DSMZ collection | Pseudomonas syringae pv. actinidiae | Kiwifruit | Canker disease |
| [92] |
PN05 PN09 Cocktail of both phages (Myoviridae) | Pseudomonas syringae pv. actinidiae | Kiwifruit | Canker disease |
| [93] |
ΦPto-bp6g | Pseudomonas tolaasii | Pleurotus ostreatus | Brown blotch disease |
| [94] |
Phage/Phages Cocktails (Family) | Target Microorganism | Fish or Aquaculture Product | Disease | Relevant Achievements | Reference |
---|---|---|---|---|---|
PLgY-16, PLgY-30, PLgW-1 (Siphoviridae) | Lactococcus garvieae | Yellowtail (Seriola quinqueradiata) | Lactococcosis |
| [49] |
PPpW-3 (Podoviridae) PPpW-4 (Myoviridae) and a mixture of PPpW-3/W-4 | Pseudomonas plecoglossicida PTH-9802 strain | Ayu fish (Plecoglossus altivelis) | Bacterial hemorrhagic ascites disease |
| [105] |
Viha8, Viha10 (Siphoviridae) Viha9, Viha11 | Vibrio harveyi | Shimp larvae (Penaeus monodon) | Luminescent vibriosis |
| [106] |
Viha 1, Viha 2, Viha 3,Viha 5, Viha 6, Viha 7 (Siphoviridae) Viha4 (Myoviridae) | Vibrio harveyi | Penaeid shrimp | Luminescent vibriosis |
| [107] |
VhCCS-01, VhCCS-02, VhCCS-04, VhCCS-06, VhCCS-17, VhCCS-20 (Siphoviridae) VhCCS-19, VhCCS-21 (Myoviridae) | Vibrio harveyi | Phyllosoma larvae of the tropical rock lobster (Panulirus ornatus) | Luminescent vibriosis |
| [108] |
vB_VhaS-a, vB_VhaS (Siphoviridae) | Vibrio harveyi | Abalone (Haliotis laevigata). | Vibriosis |
| [109] |
pVp-1 (Siphoviridae) | Vibrio parahaemolyticus | Oysters | Luminescent vibriosis |
| [110] |
vB_VpS_BA3, vB-VpS_ CA8 (Siphoviridae) | Vibrio parahaemolyticus | - | - |
| [111] |
ΦVP-1 (Myoviridae) | Multiple-drug-resistat Vibrio parahaemolyticus and Vibrio alginolyticus | Penaeid shrimp | Antibiofilm activity |
| [112] |
309, ALMED, CHOED, ALME, CHOD, CHOB | Vibrio anguillarum | Fish Atlantic salmon (Salmo salar) | Hemorrhagic septicemia |
| [113] |
vB_VspP_pVa5 (N4-like podovirus) | Vibrio splendidus | Fish and bivalves | Severe epizootics Skin Ulceration Syndrome (SUS) |
| [114] |
pVco-14 (Siphoviridae) | Vibrio coralliilyticus | Pacific oyster larvae (Crassostrea gigas) | Massive mortality of Pacific oyster larvae |
| [115] |
ValLY-3, VspDsh-1, VspSw-1, VpaJT-1, and ValSw4-1 (Siphoviridae) | Vibrio sp. Va-F3 strain | Shrimp (Litopenaeus vannamei) | Vibriosis |
| [116] |
Different bacteriophages | Aeromonas hydrophila and Edwardsiella tarda | Japanese eel (Anguilla Japonica) | Hemorrhagic septicaemia and edwardsiellosis |
| [117] |
Φ2, Φ5 (Myoviridae) | Aeromonas hydrophila | Catfish (Pangasianodon hypophthalmus) | Motile Aeromonas Septicemia (MAS) |
| [118] |
Akh-2 (Siphoviridae) | Aeromonas hydrophila | Loach (Misgurnus anguillicaudatu) | Septicemia |
| [119] |
HER 110 (Myoviridae) | Aeromonas salmonicida HER 1107 strain | Brook trout (Oncorhynchus fontinalis) formerly, (Salvelinus fontinalis) | Furunculosis |
| [120] |
PAS-1 | Aeromonas salmonicida | Rainbow trout (Oncorhynchus mykiss) | Furunculosis |
| [121] |
AS-A AS-D AS-E Cocktails combining two or three phages | Aeromonas salmonicida | - | Furunculosis |
| [122] |
ETP-1 (Podoviridae) | Multidrug resistant Edwardsiella tarda | Zebrafish (Danio rerio) | Edwardsiellosis |
| [103] |
ΦeiDWF, ΦeiAU, ΦeiMSLS (Siphoviridae) | Edwardsiella ictaluri | Catfish | Enteric septicemia |
| [123] |
FpV-1 to FpV-22: FpV2, FpV4 (Podoviridae) FpV7, FpV9, FpV10 (Siphoviridae) FpV14, FpV19 (Myoviridae) | Flavobacterium psychrophilum | Rainbow trout (Oncorhynchus mykiss) and other species of trouts | Rainbow trout fry syndrome (RTFS) and bacterial coldwater disease (CWD) |
| [124] |
PFpW-3, PFpC-Y (Myoviridae) PFpW-6, PFpW-7 (Podoviridae) PFpW-8 (Siphoviridae) | Flavobacterium psychrophilum | Ayu fish (Plecoglossus altivelis altivelis) | Systemic bacterial coldwater disease (CWD) |
| [125] |
FCP1–FCP9 FCP1 (Podovariedae) | Flavobacterium columnare | Catfish (Clarias batrachus) | Columnaris disease |
| [126] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sieiro, C.; Areal-Hermida, L.; Pichardo-Gallardo, Á.; Almuiña-González, R.; de Miguel, T.; Sánchez, S.; Sánchez-Pérez, Á.; Villa, T.G. A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture? Antibiotics 2020, 9, 493. https://doi.org/10.3390/antibiotics9080493
Sieiro C, Areal-Hermida L, Pichardo-Gallardo Á, Almuiña-González R, de Miguel T, Sánchez S, Sánchez-Pérez Á, Villa TG. A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture? Antibiotics. 2020; 9(8):493. https://doi.org/10.3390/antibiotics9080493
Chicago/Turabian StyleSieiro, Carmen, Lara Areal-Hermida, Ángeles Pichardo-Gallardo, Raquel Almuiña-González, Trinidad de Miguel, Sandra Sánchez, Ángeles Sánchez-Pérez, and Tomás G. Villa. 2020. "A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture?" Antibiotics 9, no. 8: 493. https://doi.org/10.3390/antibiotics9080493
APA StyleSieiro, C., Areal-Hermida, L., Pichardo-Gallardo, Á., Almuiña-González, R., de Miguel, T., Sánchez, S., Sánchez-Pérez, Á., & Villa, T. G. (2020). A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture? Antibiotics, 9(8), 493. https://doi.org/10.3390/antibiotics9080493