Characterizing Antimicrobial Resistance in Chicken Pathogens: A Step towards Improved Antimicrobial Stewardship in Poultry Production in Vietnam
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Antimicrobial Susceptibility Testing
4.3. Data Analyses
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Action Plan on Antimicrobial Resistance (2015). Available online: https://www.who.int/antimicrobial-resistance/global-action-plan/en/ (accessed on 12 May 2020).
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. 2015. Available online: https://amr-review.org/Publications.html (accessed on 2 April 2020).
- Da Costa, P.M.; Loureiro, L.; Matos, A.J. Transfer of multidrug-resistant bacteria between intermingled ecological niches: The interface between humans, animals and the environment. Int. J. Environ. Res. Public Health 2013, 10, 278–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grace, D. Review of evidence on antimicrobial resistance and animal agriculture in developing countries. Dep. Int. Dev. 2015. Available online: https://www.gov.uk/dfid-research-outputs/review-of-evidence-on-antimicrobial-resistance-and-animal-agriculture-in-developing-countries-201309 (accessed on 18 April 2020). [CrossRef]
- Choisy, M.; Cuong, N.V.; Bao, T.D.; Kiet, B.T.; Hien, V.B.; Thu, H.V.; Chansiripornchai, N.; Setyawan, E.; Thwaites, G.; Rushton, J.; et al. Assessing antimicrobial misuse in small-scale chicken farms in Vietnam from an observational study. BMC Vet. Res. 2019, 15, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD/FAO. OECD-FAO Agricultural Outlook 2016–2025; OECD Publishing: Paris, France, 16 July 2020; Available online: http://www.fao.org/3/a-i5778e.pdf (accessed on 27 April 2020). [CrossRef]
- Nhung, N.T.; Chansiripornchai, N.; Carrique-Mas, J.J. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review. Front. Vet. Sci. 2017, 4, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrique-Mas, J.; Van, N.T.B.; Cuong, N.V.; Truong, B.D.; Kiet, B.T.; Thanh, P.T.H.; Lon, N.N.; Giao, V.T.Q.; Hien, V.B.; Padungtod, P.; et al. Mortality, disease and associated antimicrobial use in commercial small-scale chicken flocks in the Mekong Delta of Vietnam. Prev. Vet. Med. 2019, 165, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Van, N.T.B.; Yen, N.T.P.; Nhung, N.T.; Cuong, N.V.; Kiet, B.T.; Hoang, N.V.; Hien, V.B.; Chansiripornchai, N.; Choisy, M.; Ribas, A.; et al. Characterization of viral, bacterial, and parasitic causes of disease in small-scale chicken flocks in the Mekong Delta of Vietnam. Poult. Sci. 2020, 99, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Carrique-Mas, J.J.; Trung, N.V.; Hoa, N.T.; Mai, H.H.; Thanh, T.H.; Campbell, J.I.; Wagenaar, J.A.; Hardon, A.; Hieu, T.Q.; Schultsz, C. Antimicrobial usage in chicken production in the Mekong Delta of Vietnam. Zoonoses Public Health 2015, 62, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Nhung, N.T.; Cuong, N.V.; Campbell, J.I.; Hoa, N.T.; Bryant, J.E.; Truc, V.N.; Kiet, B.T.; Jombart, T.; Trung, N.V.; Hien, V.B.; et al. High levels of antimicrobial resistance among escherichia coli isolates from livestock farms and synanthropic rats and shrews in the Mekong Delta of Vietnam. Appl. Environ. Microbiol. 2015, 81, 812–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.T.; Nguyen, H.M.; Nguyen, C.V.; Nguyen, T.V.; Nguyen, M.T.; Thai, H.Q.; Ho, M.H.; Thwaites, G.; Ngo, H.T.; Baker, S.; et al. Use of colistin and other critical antimicrobials on pig and chicken farms in southern Vietnam and its association with resistance in commensal Escherichia coli Bacteria. Appl. Environ. Microbiol. 2016, 82, 3727–3735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals. 2017. Available online: https://www.who.int/foodsafety/areas_work/antimicrobial-resistance/cia_guidelines/en/ (accessed on 2 April 2020).
- Advice on Impacts of Using Antimicrobials in Animals. Available online: https://www.ema.europa.eu/en/veterinary-regulatory/overview/antimicrobial-resistance/advice-impacts-using-antimicrobials-animals#advice-on-classification,-authorisation-and-risk-mitigation-section (accessed on 29 April 2020).
- Department of Health 2017. Ireland’s National Action Plan on Antimicrobial Resistance 2017–2020. Available online: http://health.gov.ie/national-patient-safety-office/patient-safety-surveillance/antimicrobialresistance-amr (accessed on 15 April 2020).
- World Health Organization. Critically Important Antimicrobials for Human Medicine (WHO CIA List), 6th revision. World Health Organization. 2019. Available online: https://www.who.int/foodsafety/areas_work/antimicrobial-resistance/cia/en/ (accessed on 10 April 2020).
- Turnidge, J.; Patterson, D.L. Setting and revising antibacterial susceptibility breakpoints. Clin. Microbiol. Rev. 2007, 20, 391–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devriese, L.A.; Hommez, J.; Vandamme, P.; Kersters, K.; Haesebrouck, F. In vitro antibiotic sensitivity of Ornithobacterium rhinotracheale strains from poultry and wild birds. Vet. Rec. 1995, 137, 435–436. [Google Scholar] [CrossRef] [PubMed]
- Devriese, L.A.; De Herdt, P.; Haesebrouck, F. Antibiotic sensitivity and resistance in Ornithobacterium rhinotracheale strains from Belgian broiler chickens. Avian Pathol. 2001, 30, 197–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabo, R.; Wehmann, E.; Magyar, T. Antimicrobial susceptibility of Bordetella avium and Ornithobacterium rhinotracheale strains from wild and domesticated birds in Hungary. Acta Vet. Hung. 2015, 63, 413–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezadi, F.; Ardebili, A.; Mirnejad, R. Antimicrobial susceptibility testing for polymyxins: Challenges, issues, and recommendations. J. Clin. Microbiol. 2019, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phu, D.H.; Giao, V.T.Q.; Truong, D.B.; Cuong, N.V.; Kiet, B.T.; Hien, V.B.; Thwaites, G.; Rushton, J.; Carrique-Mas, J. Veterinary Drug Shops as Main Sources of Supply and Advice on Antimicrobials for Animal Use in the Mekong Delta of Vietnam. Antibiotics (Basel) 2019, 8, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, E.V.; Cardoso, C.V.; Silva, R.C.F.; Cerqueira, A.M.F.; Liberal, M.H.T.; Castro, H.C. Ornithobacterium rhinotracheale: An update review about an emerging poultry pathogen. Vet. Sci. 2020, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Adawy, H.; Bocklish, H.; Neubauer, H.; Hafez, M.; Hotzel, H. Identification, differentiation and antibiotic susceptibility of Gallibacterium isolates from diseased poultry. Ir. Vet. J. 2018, 71, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.V.; Singh, B.R.; Sinha, D.K.; Kumar, V.; Vadhana, P.A.; Bhardwaj, M.; Dubey, S. Gallibacterium anatis: An emerging pathogen of poultry birds and domiciled birds. J. Vet. Sci. Technol. 2016, 7, 3. [Google Scholar]
- Moller, B.H.; Bisgaard, M.; Pors, S.E.J. Pathology and localization of Avibacterium endocarditidis in experimentally infected broiler breeders. Comp. Path. 2014, 150, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Cuong, N.V.; Phu, D.H.; Van, N.T.B.; Dinh Truong, B.; Kiet, B.T.; Hien, B.V.; Thu, H.T.V.; Choisy, M.; Padungtod, P.; Thwaites, G. High-resolution monitoring of antimicrobial consumption in Vietnamese small-scale chicken farms highlights discrepancies between study Metrics. Front. Vet. Sci. 2019, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. VET01S: Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 3rd ed.; CLSI: Wayne, NJ, USA, 2015. [Google Scholar]
- Clinical and Laboratory Standards Institute. M100: Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; CLSI: Wayne, PA, USA, 2019. [Google Scholar]
- National Committee for Clinical Laboratory Standards. M31-A2, Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 2nd ed.; NCCLS: Wayne, PA, USA, 2002; Volume 22. [Google Scholar]
Mic Rang (µg) | Type of Distribution | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | ≥256 | |||
Ornithobacterium rhinotracheale (N = 22) | COL | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 86 | - | - | Unimodal |
ENR | - | - | 14 | 14 | 0 | 0 | 9 | 9 | 23 | 18 | 9 | 5 | - | - | Bimodal | |
TYL | - | 0 | 14 | 5 | 18 | 32 | 9 | 0 | 18 | 5 | 0 | 0 | 0 | 0 | Multimodal | |
GEN | - | - | - | - | 0 | 0 | 0 | 9 | 9 | 55 | 27 | 0 | 0 | 0 | Unimodal | |
NEO | - | - | - | - | 5 | 0 | 0 | 18 | 5 | 36 | 32 | 5 | 0 | 0 | Bimodal | |
STR | - | - | - | - | 0 | 0 | 0 | 9 | 32 | 41 | 18 | 0 | 0 | 0 | Unimodal | |
AMX | - | - | - | - | 14 | 0 | 5 | 27 | 23 | 14 | 18 | 0 | 0 | 0 | Multimodal | |
FFN | - | - | 0 | 32 | 64 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Unimodal | |
THA | - | - | - | 0 | 9 | 32 | 23 | 14 | 0 | 0 | 0 | 0 | 23 | 0 | Bimodal | |
OXY | - | - | - | 0 | 9 | 14 | 27 | 18 | 14 | 5 | 0 | 0 | 14 | 0 | Bimodal | |
DOX | - | - | - | 0 | 5 | 18 | 23 | 18 | 32 | 5 | 0 | 0 | 0 | 0 | Bimodal | |
SXT | - | - | - | 0 | 5 | 27 | 32 | 5 | 18 | 14 | - | - | - | - | Bimodal | |
Gallibacterium anatis (N = 19) | COL | - | - | 0 | 0 | 5 | 79 | 11 | 0 | 0 | 0 | 5 | 0 | - | - | Unimodal |
ENR | - | - | 0 | 5 | 5 | 5 | 5 | 0 | 11 | 16 | 21 | 32 | - | - | Bimodal | |
TYL | - | - | - | - | 0 | 0 | 0 | 0 | 0 | 5 | 32 | 11 | 16 | 37 | Bimodal | |
GEN | - | - | 0 | 5 | 37 | 16 | 5 | 5 | 0 | 16 | 16 | 0 | - | - | Bimodal | |
NEO | - | - | - | - | 0 | 32 | 5 | 0 | 11 | 11 | 0 | 11 | 5 | 26 | Multimodal | |
STR | - | - | - | - | 0 | 0 | 11 | 16 | 0 | 0 | 0 | 5 | 21 | 47 | Bimodal | |
AMX | - | - | - | 0 | 5 | 0 | 0 | 5 | 32 | 5 | 0 | 11 | 0 | 42 | Multimodal | |
FFN | 0 | 47 | 0 | 0 | 0 | 0 | 5 | 26 | 16 | 5 | 0 | Bimodal | ||||
THA | - | - | - | 0 | 11 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 58 | Bimodal | |
OXY | - | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 16 | 26 | 53 | Unimodal | |
DOX | - | - | - | - | 0 | 0 | 0 | 32 | 42 | 21 | 0 | 0 | 0 | 5 | Bimodal | |
SXT | 11 | 0 | 11 | 5 | 0 | 11 | 0 | 0 | 11 | 63 | - | - | - | - | Multimodal | |
Avibacterium endocarditidis (N = 17) | COL | - | - | 0 | 0 | 18 | 29 | 41 | 6 | 6 | 0 | 0 | 0 | - | - | Unimodal |
ENR | - | 12 | 6 | 0 | 24 | 0 | 12 | 6 | 18 | 12 | 12 | - | - | Multimodal | ||
TYL | - | - | - | - | 0 | 0 | 6 | 0 | 12 | 29 | 6 | 18 | 12 | 18 | Multimodal | |
GEN | - | - | - | 0 | 12 | 18 | 29 | 18 | 0 | 0 | 6 | 18 | 0 | 0 | Bimodal | |
NEO | - | - | - | - | 0 | 0 | 24 | 24 | 6 | 12 | 29 | 6 | 0 | 0 | Bimodal | |
STR | - | - | - | - | 0 | 0 | 0 | 18 | 29 | 6 | 0 | 6 | 6 | 35 | Bimodal | |
AMX | - | - | - | - | 12 | 18 | 12 | 24 | 12 | 12 | 6 | 0 | 0 | 6 | Multimodal | |
FFN | - | - | - | - | 76 | 6 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | Bimodal | |
THA | - | - | - | - | 6 | 12 | 6 | 0 | 0 | 0 | 0 | 0 | 6 | 71 | Bimodal | |
OXY | - | - | - | - | 0 | 0 | 6 | 0 | 0 | 6 | 41 | 41 | 0 | 6 | Multimodal | |
DOX | - | - | - | 0 | 12 | 0 | 41 | 35 | 0 | 6 | 0 | 6 | 0 | 0 | Multimodal | |
SXT | 0 | 12 | 6 | 0 | 0 | 29 | 18 | 0 | 12 | 24 | - | - | - | - | Multimodal |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, N.T.P.; Nhung, N.T.; Van, N.T.B.; Cuong, N.V.; Kiet, B.T.; Phu, D.H.; Hien, V.B.; Campbell, J.; Chansiripornchai, N.; E. Thwaites, G.; et al. Characterizing Antimicrobial Resistance in Chicken Pathogens: A Step towards Improved Antimicrobial Stewardship in Poultry Production in Vietnam. Antibiotics 2020, 9, 499. https://doi.org/10.3390/antibiotics9080499
Yen NTP, Nhung NT, Van NTB, Cuong NV, Kiet BT, Phu DH, Hien VB, Campbell J, Chansiripornchai N, E. Thwaites G, et al. Characterizing Antimicrobial Resistance in Chicken Pathogens: A Step towards Improved Antimicrobial Stewardship in Poultry Production in Vietnam. Antibiotics. 2020; 9(8):499. https://doi.org/10.3390/antibiotics9080499
Chicago/Turabian StyleYen, Nguyen Thi Phuong, Nguyen Thi Nhung, Nguyen Thi Bich Van, Nguyen Van Cuong, Bach Tuan Kiet, Doan Hoang Phu, Vo Be Hien, James Campbell, Niwat Chansiripornchai, Guy E. Thwaites, and et al. 2020. "Characterizing Antimicrobial Resistance in Chicken Pathogens: A Step towards Improved Antimicrobial Stewardship in Poultry Production in Vietnam" Antibiotics 9, no. 8: 499. https://doi.org/10.3390/antibiotics9080499
APA StyleYen, N. T. P., Nhung, N. T., Van, N. T. B., Cuong, N. V., Kiet, B. T., Phu, D. H., Hien, V. B., Campbell, J., Chansiripornchai, N., E. Thwaites, G., & Carrique-Mas, J. J. (2020). Characterizing Antimicrobial Resistance in Chicken Pathogens: A Step towards Improved Antimicrobial Stewardship in Poultry Production in Vietnam. Antibiotics, 9(8), 499. https://doi.org/10.3390/antibiotics9080499