Impact of Velocity Second Slip and Inclined Magnetic Field on Peristaltic Flow Coating with Jeffrey Fluid in Tapered Channel
Abstract
:1. Introduction
2. Mathematical Formulation
3. Exact Solution of Problem
4. Different Wave Shapes
5. Special Cases
6. Results and Discussion
7. Conclusions
- The pressure rise decreases in retrograde, peristaltic and free pumping regions and increases in co-pumping regions, with an increase in relaxation to retardation times and non-uniform parameter .
- The pressure rise increases in all pumping regions with an increase in Reynolds number .
- The pressure gradient increases with an increase in and decreases with an increase in , Hartmann number , slip parameter and
- The temperature profile increases with an increase in values of Eckret number and decreases with an increase in relaxation to retardation times
- The concentration profile decreases with an increase in Soret number and Schmidt number
- The size of the trapping bolus decreases with an increase in values of relaxation to retardation times Hartmann number , slip parameter and
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
, | Velocities in X and Y directions in fixed frame | Froude Number | |
Pressure | Soret number | ||
and | amplitudes of waves | width of channel | |
() | non-uniform parameter | wavelength | |
ratio of relaxation to retardation times | retardation time | ||
amplitude of the wave | Schmidt number | ||
Reynolds number | Eckret number | ||
dimensionless wave number | Prandtl number | ||
Hartmann number | viscosity | ||
volume flow rate | Stream function | ||
kinematic viscosity | concentration of fluid in dimensionless form | ||
temperature of fluid in dimensionless form | C | Concentration of fluid | |
electrical conductivity | thermal diffusion ratio | ||
thermal conductivity | specific heat | ||
mean temperature | coefficient of mass diffusivity |
Appendix A
References
- Hayat, T.; Saleem, N.; Ali, N. Effect of induced magnetic field on peristaltic transport of a Carreau fluid. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2407–2423. [Google Scholar] [CrossRef]
- Ellahi, R.; Riaz, A.; Nadeem, S.; Ali, M. Peristaltic flow of Carreau fluid in a rectangular duct through a porous medium. Math. Probl. Eng. 2012, 2012, 329639. [Google Scholar] [CrossRef]
- Vajravelu, K.; Sreenadh, S.; Saravana, R. Combined influence of velocity slip, temperature and concentration jump conditions on MHD peristaltic transport of a Carreau fluid in a non-uniform channel. Appl. Math. Comput. 2013, 225, 656–676. [Google Scholar] [CrossRef]
- Vajravelu, K.; Sreenadh, S.; Babu, V.R. Peristaltic transport of a Hershel-Bulkley fluid in an inclined tube. Int. J. Non Linear Mech. 2005, 40, 83–90. [Google Scholar] [CrossRef]
- Sankar, D.S.; Hemalatha, K. Pulsatile flow of Herschel—Bulkley fluid through catheterized arteries—A mathematical model. Appl. Math. Model. 2007, 31, 1497–1517. [Google Scholar] [CrossRef]
- Tripathi, D. A mathematical model for the peristaltic flow of chyme movement in small intestine. Math. Biosci. 2011, 233, 90–97. [Google Scholar] [CrossRef]
- Khan, A.A.; Ellahi, R.; Gulzar, M.M.; Sheikholeslami, M. Effects of heat transfer on peristaltic motion of Oldroyd fluid in the presence of inclined magnetic field. J. Magn. Magn. Mater. 2014, 372, 97–106. [Google Scholar] [CrossRef]
- Nadeem, S.; Akram, S. Peristaltic flow of a Williamson fluid in ana symmetric channel. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1705–1716. [Google Scholar] [CrossRef]
- Hayat, T.; Wang, Y.; Siddiqui, A.M.; Hutter, K. Peristaltic motion of a Johnson—Segalman fluid in a plannar channel. Math. Probl. Eng. 2003, 1, 1–23. [Google Scholar] [CrossRef]
- Hayat, T.; Javed, M.; Asghar, S. MHD peristaltic motion of Johnson—Segalman fluid in a channel with compliant walls. Phys. Lett. 2008, 372, 5026–5036. [Google Scholar] [CrossRef]
- Akbar, N.S.; Nadeem, S.; Hayat, T. Simulation of thermal and velocity slip on the peristaltic flow of a Johnson—Segalman fluid in an inclined asymmetric channel. Int. J. Heat Mass Transf. 2012, 55, 5495–5502. [Google Scholar] [CrossRef]
- Akbar, N.S. Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: Application in crude oil refinement. J. Magn. Magn. Mater. 2015, 378, 463–468. [Google Scholar] [CrossRef]
- Ellahi, R.; Wang, X.; Hameed, M. Effects of heat transfer and nonlinear slip on the steady flow of Couette fluid by means of chebyshev spectral method. Z. Fur Nat. A 2014, 69, 1–8. [Google Scholar] [CrossRef]
- Ellahi, R.; Zeeshan, A.; Hussain, F.; Asadollahi, A. Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy. Symmetry 2019, 11, 276. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.A.; Bai, Y.Q.; Bhatti, M.M.; Rashidi, M.M. Three dimensional peristaltic flow of hyperbolic tangent fluid in non-uniform channel having flexible walls. Alex. Eng. J. 2016, 55, 653–662. [Google Scholar] [CrossRef] [Green Version]
- Ellahi, R.; Hassan, M.; Zeeshan, A.; Khan, A.A. The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection. Appl. Nanosci. 2016, 6, 641–651. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.A.; Bai, Y.; Rashidi, M.M.; Bhatti, M.M. Analysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant walls. Entropy 2016, 18, 90. [Google Scholar] [CrossRef]
- Ellahi, R.; Hussain, F.; Ishtiaq, F.; Hussain, A. Peristaltic transport of Jeffrey fluid in a rectangular duct through a porous medium under the effect of partial slip: An application to upgrade industrial sieves/filters. Pramana 2019, 93, 34. [Google Scholar] [CrossRef]
- Mekheimer, K.S.; Abdelmaboud, Y. Peristaltic flow of a couple stress fluid in an annulus: Application of an endoscope. Phys. A Stat. Mech. Appl. 2008, 2403, 387. [Google Scholar] [CrossRef]
- Ellahi, R.; Rahman, S.U.; Nadeem, S.; Vafai, K. A Mathematical Study of Non-Newtonian Micropolar Fluid in Arterial Blood Flow through Composite Stenosis. J. Appl. Math. Inf. Sci. 2014, 8, 1–7. [Google Scholar] [CrossRef]
- Abd-Alla, A.M.; Abo-Dahab, S.M.; El-Shahrany, H.D. Effects of rotation and initial stress on peristaltic transport of fourth grade fluid with heat transfer and induced magnetic field. J. Magn. Magn. Mater. 2014, 49, 268–280. [Google Scholar] [CrossRef]
- Akram, S.; Nadeem, S. Influence of induced magnetic field and heat transfer on the peristaltic motion of a Jeffrey fluid in an asymmetric channel: Closed form solutions. J. Magn. Magn. Mater. 2013, 328, 11–20. [Google Scholar] [CrossRef]
- Hussain, Q.; Asghar, S.; Hayat, T.; Alsaedi, A. Heat transfer analysis in peristaltic flow of MHD Jeffrey fluid with variable thermal conductivity. Appl. Math. Mech. Engl. Ed. 2015, 36, 499–516. [Google Scholar] [CrossRef]
- Nadeem, S.; Akram, S. Influence of inclined magnetic field on peristaltic flow of a Jeffrey fluid with heat and mass transfer in an inclined symmetric or asymmetric channel. Asia Pac. J. Chem. Eng. 2012, 7, 33–44. [Google Scholar] [CrossRef]
- Akram, S.; Aly, E.H.; Nadeem, S. Effects of metachronal wave on biomagnetic Jeffery fluid with inclined magnetic field. Rev. Téc. Ing. Univ. Zulia. 2015, 38, 18–28. [Google Scholar]
- Kothandapani, M.; Srinivas, S. Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel. Int. J. Non Linear Mech. 2008, 43, 915. [Google Scholar] [CrossRef]
- Tripathi, D.; Ali, N.; Hayat, T.; Chaube, M.K.; Hendi, A.A. Peristaltic flow of MHD Jeffrey fluid through finite length cylindrical tube. Appl. Math. Mech. 2011, 32, 1231–1244. [Google Scholar] [CrossRef]
- Nadeem, S.; Riaz, A.; Ellahi, R.; Mushtaq, M. Series solutions of magnetohydrodynamic peristaltic flow of a Jeffrey fluid in eccentric cylinders. J. Appl. Math. Inf. Sci. 2013, 7, 1441–1449. [Google Scholar]
- Khan, A.A.; Ellahi, R.; Vafai, K. Peristaltic transport of a Jeffrey fluid with variable viscosity through a porous medium in an asymmetric channel. Adv. Math. Phys. 2012, 2012. [Google Scholar] [CrossRef]
- Srinivas, S.; Pushparaj, V. Non-linear peristaltic transport in an inclined asymmetric channel. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1782–1795. [Google Scholar] [CrossRef]
- Navier, C.L.M.H. Sur les lois du mouvement des fluids. Mem. Acad. R. Sci. Inst. Fr. 1827, 6, 389–440. [Google Scholar]
- Saleem, N.; Hayat, T.; Alsaedi, A. Effects of induced magnetic field and slip condition on peristaltic transport with heat and mass transfer in a non-uniform channel. Int. J. Phys. Sci. 2012, 7, 191–204. [Google Scholar]
- Ebaid, A.; Aly, E.H. Exact analytical solution of the peristaltic nanofluids flow in an asymmetric channel with flexible walls and slip condition: Application to the cancer treatment. Comput. Math. Meth. Med. 2013, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aly, E.H.; Ebaid, A. Exact analytical solution for the peristaltic flow of nanofluids in an asymmetric channel with slip effect of the velocity, temperature and concentration. J. Mech. 2014, 30, 411–422. [Google Scholar] [CrossRef]
- Srinivas, S.; Gayathri, R.; Kothandapani, M. The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport. Comput. Phys. Commun. 2009, 180, 2115–2122. [Google Scholar] [CrossRef]
- Hayat, T.; Hina, S.; Hendi, A.A. Peristaltic motion of power-law fluid with heat and mass transfer. Chin. Phys. Lett. 2011, 28, 084707. [Google Scholar] [CrossRef]
- Hayat, T.; Hina, S. The influence of wall properties on the MHD peristaltic flow of a Maxwell fluid with heat and mass transfer. Nonlinear Anal. Real World Appl. 2010, 11, 3155–3169. [Google Scholar] [CrossRef]
- Hayat, T.; Hina, S. Effects of heat and mass transfer on peristaltic flow of Williamson fluid in a non-uniform channel with slip conditions. Int. J. Numer. Methods Fluids 2011, 67, 1590–1604. [Google Scholar] [CrossRef]
- Nadeem, S.; Akram, S. Heat transfer in a peristaltic flow of MHD fluid with partial slip. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 312–321. [Google Scholar] [CrossRef]
- Hayat, T.; Noreen, S.; Hendi, A.A. Peristaltic motion of Phan-Thien-Tanner fluid in the presence of slip condition. J. Biorheol. 2011, 25, 8–17. [Google Scholar] [CrossRef]
- Hayat, T.; Khan, M.; Ayub, M. The effect of the slip condition on flows of an Oldroyd 6-constant fluid. J. Comput. Appl. Math. 2007, 202, 402–413. [Google Scholar] [CrossRef] [Green Version]
- Mishra, M.; Rao, A.R. Peristaltic transport of a Newtonian fluid in an asymmetric channel. ZAMP 2003, 54, 532–550. [Google Scholar] [CrossRef]
- Akram, S.; Nadeem, S. Significance of nanofluid and partial slip on the peristaltic transport of a non-Newtonian fluid with different waveforms. IEEE Trans. Nanotechnol. 2014, 13, 375–385. [Google Scholar] [CrossRef]
- Hina, S.; Mustafa, M.; Hayat, T.; Alotaibi, N. On peristaltic motion of pesudoplastic fluid in a curved channel with heat/mass transfer and wall properties. Appl. Math. Comput. 2015, 263, 378–391. [Google Scholar]
- Roşca, A.V.; Pop, I. Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip. Int. J. Heat Mass Transf. 2013, 60, 355–364. [Google Scholar] [CrossRef]
- Aly, E.H. Radiation and MHD boundary layer stagnation—point of nanofluid flow towards a stretching sheet embedded in a porous medium: Analysis of suction/injection and heat generation/absorption with effect of the slip model. Math. Probl. Eng. 2015, 2015. Available online: www.Hindawi.com/Journals/mpe/aip/563647 (accessed on 8 May 2015). [CrossRef]
- Aly, E.H. Effect of the velocity slip boundary condition on the flow and heat transfer of nanofluids over a stretching sheet. J. Comput. Theor. Nanosci. 2015, in press. [Google Scholar] [CrossRef]
- Aly, E.H.; Vajravelu, K. Exact and numerical solutions of MHD nano boundary-layer flows over stretching surfaces in porous medium. Appl. Math. Comput. 2014, 232, 191–204. [Google Scholar] [CrossRef]
- Aly, E.H.; Ebaid, A. Effect of the velocity second slip boundary condition on the peristaltic flow of nanofluids in an asymmetric channel: Exact solution. Abstr. Appl. Anal. 2014, 2014. [Google Scholar] [CrossRef]
- Kothandapani, M.; Prakash, J. Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluids in a tapered asymmetric channel. Int. J. Heat Mass Transf. 2015, 81, 234–245. [Google Scholar] [CrossRef]
- Kothandapani, M.; Prakash, J. Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel. J. Magn. Magn. Mater. 2015, 378, 152–163. [Google Scholar] [CrossRef]
- Kothandapani, M.; Prakash, J.; Srinivas, S. Peristaltic transport of a MHD Carreau fluid in a tapered asymmetric channel with permeable walls. Int. J. Biomath. 2015, 8. [Google Scholar] [CrossRef]
y | Present Work | Nadeem andAkram [24] | Kothandapani and Srinivas [26] | Srinivas and Pushparaj [30] | Mishra and Rao [42] |
---|---|---|---|---|---|
−1.109 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 |
−1.009 | −0.932753 | −0.714278 | −0.678228 | −0.757937 | −0.862651 |
−0.909 | −0.8743 | −0.505606 | −0.459713 | −0.565103 | −0.736612 |
−0.809 | −0.825682 | −0.352378 | −0.310456 | −0.410812 | −0.621188 |
−0.709 | −0.785355 | −0.239918 | −0.208522 | −0.287568 | −0.516378 |
−0.609 | −0.752035 | −0.157452 | −0.138929 | −0.189381 | −0.422183 |
−0.509 | −0.724664 | −0.097082 | −0.0914497 | −0.11148, | −0.338602 |
−0.409 | −0.702372 | −0.0530242 | −0.0591067 | −0.0500785 | −0.265636 |
−0.309 | −0.684449 | −0.0210585 | −0.0371466, | −0.00219338 | −0.203285 |
−0.209 | −0.670326 | 0.00187701 | −0.0223419 | 0.0345026 | −0.151548 |
−0.109 | −0.659554 | 0.0179793 | −0.0125168 | 0.0617927 | −0.110426 |
−0.009 | −0.65179 | 0.0287909 | −0.00622739 | 0.081003 | −0.0799192 |
0.091 | −0.646787 | 0.0353474 | −0.00254937 | 0.0930671 | −0.0600266 |
0.191 | −0.644387 | 0.0382767 | −0.000942165 | 0.0985713 | −0.0507487 |
0.291 | −0.644513 | 0.0378597 | −0.00116958 | 0.0977831 | −0.0520854 |
0.391 | −0.647169 | 0.0340561 | −0.00326504 | 0.0906641 | −0.0640367 |
0.491 | −0.65244 | 0.0265019 | −0.00753651 | 0.0768684 | −0.0866028 |
0.591 | −0.660492 | 0.0144732 | −0.0146117 | 0.0557255 | −0.119783 |
0.691 | −0.671583, | −0.00318205 | −0.0255305 | 0.0262081 | −0.163579 |
0.791 | −0.686065 | −0.0281551 | −0.0418976 | −0.0131183 | −0.217989 |
0.891 | −0.704397 | −0.0628381 | −0.0661183 | −0.0641648 | −0.283014 |
0.991 | −0.727164 | −0.110553 | −0.101752 | −0.129412 | −0.358653 |
1.091 | −0.755089 | −0.175871 | −0.154037 | −0.212031 | −0.444907 |
1.191 | −0.789059 | −0.265049 | −0.230655 | −0.316035 | −0.541775 |
1.291 | −0.830155 | −0.386629 | −0.342868 | −0.446481 | −0.649259 |
1.391 | −0.879684 | −0.552257 | −0.507167 | −0.609706 | −0.767357 |
1.491 | −0.939219 | −0.777798 | −0.747697 | −0.813642 | −0.896069 |
1.591 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, N.; Akram, S.; Afzal, F.; H. Aly, E.; Hussain, A. Impact of Velocity Second Slip and Inclined Magnetic Field on Peristaltic Flow Coating with Jeffrey Fluid in Tapered Channel. Coatings 2020, 10, 30. https://doi.org/10.3390/coatings10010030
Saleem N, Akram S, Afzal F, H. Aly E, Hussain A. Impact of Velocity Second Slip and Inclined Magnetic Field on Peristaltic Flow Coating with Jeffrey Fluid in Tapered Channel. Coatings. 2020; 10(1):30. https://doi.org/10.3390/coatings10010030
Chicago/Turabian StyleSaleem, Najma, Safia Akram, Farkhanda Afzal, Emad H. Aly, and Anwar Hussain. 2020. "Impact of Velocity Second Slip and Inclined Magnetic Field on Peristaltic Flow Coating with Jeffrey Fluid in Tapered Channel" Coatings 10, no. 1: 30. https://doi.org/10.3390/coatings10010030
APA StyleSaleem, N., Akram, S., Afzal, F., H. Aly, E., & Hussain, A. (2020). Impact of Velocity Second Slip and Inclined Magnetic Field on Peristaltic Flow Coating with Jeffrey Fluid in Tapered Channel. Coatings, 10(1), 30. https://doi.org/10.3390/coatings10010030