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Abstract: The manufacture of multiple parts on the same platform is a common procedure in the
Laser Powder Bed Fusion (L-PBF) process. The main advantage is that the entire working volume
of the machine is used and a greater number of parts are obtained, thus reducing inert gas volume,
raw powder consumption, and manufacturing time. However, one of the main disadvantages of this
method is the possible differences in quality and surface finish of the different parts manufactured
on the same platform depending on their orientation and location, even if they are manufactured
with the same process parameters and raw powder material. Throughout this study, these surface
quality differences were studied, focusing on the variation of the surface roughness with the angle
of incidence of the laser with respect to the platform. First, a characterization test was carried out
to understand the behavior of the laser in the different areas of the platform. Then, the surface
roughness, microstructure, and minimum thickness of vertical walls were analyzed in the different
areas of the platform. These results were related to the angle of incidence of the laser. As it was
observed, the laser is completely perpendicular only in the center of the platform, whilst at the border
of the platform, due to the incidence angle, it melts an elliptical area, which affects the roughness and
thickness of the manufactured part. The roughness increases from values of Sa = 5.489 µm in the
central part of the platform to 27.473 µm at the outer borders while the thickness of the manufactured
thin walls increases around 40 µm.
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1. Introduction

Laser technology has been widely used in different industrial processes for many years, due
to the characteristics of the laser source: high energy density, high efficiency, large temperature
gradients, high repeatability of the process, and formation of a narrow heat-affected zone (HAZ) [1].
Nowadays, it is possible to find various research works on laser technologies such as laser welding [2,3],
cutting [4,5], remelting [6,7], additive technologies [8,9] . . . thus demonstrating the importance of the
development of these technologies.

Due to the great development that the different technologies based on metal additive manufacturing
(AM) have had in recent years, it seems reasonable that one of the most researched and promising
metal AM process is the Laser Powder Bed Fusion (L-PBF) technology. This technology, also known by
commercial names as Selective Laser Melting (SLM) or Direct Metal Laser Sintering (DMLS), is being
applied for the direct manufacturing of functional components in different sectors [10,11].
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In the L-PBF process, the final part is manufactured directly using powder as raw material.
This powder is homogeneously distributed by a recoater in constant thickness layers of 20 to 60 µm.
Once the recoater has distributed a layer of powder, a laser beam melts the powder within an area,
which has been previously specified in the CAD (Computer-Aided Design) file. Once the complete
layer has been processed, the platform lowers the thickness of a layer and the process is repeated
layer-by-layer until the full part is obtained [12].

This technology presents many advantages compared to conventional machining technologies
such as the ability to manufacture geometrically complex parts [10,13,14]. In addition, L-PBF also
presents advantages above other AM technologies as Spierings [15] showed. One of these advantages
is the wide range of alloys with very different properties and characteristics that can be processed.
Thus, different applications and studies can be found with high toughness Ti-TiB composites [16,17],
high-density alloys such as Cu-10Sn bronze [18], high-resistant alloys such as Al85Nd8Ni5Co2 [19],
or high modulus of elasticity and mechanical strength CNTs/AlSi10Mg [20]. Therefore, L-PBF process
is of special interest in sectors such as health and aerospace due to the possibility of obtaining complex
parts in a wide range of available materials [10].

However, L-PBF technology has several limitations, particularly related to the poor surface finish
and the need for final post-processing of the manufactured parts [10]. The parts manufactured using
L-PBF show roughness values Ra between 3.2 and 12.5 µm [13], whereas conventional technologies
obtain roughness values between 1–2 µm [11].

Surface quality is a critical attribute in the aerospace and medical sectors since surface imperfections
caused by roughness could impact the performance of the part. Therefore, surface roughness is a
well-researched crack initiator [12], reducing the life-span of the end part due to lower tensile and
fatigue strength [10]. In the medical domain, rough surfaces can accumulate more micro-organisms
than a smooth surface, requiring a finishing operation in many applications in the health sector [21].
Furthermore, roughness has a significant effect on the tribological behavior of the surface in applications
where the friction between surfaces is present.

Nowadays, in order to minimize the roughness and to achieve functional parts with real
applicability, finishing operations are carried out. However, the finishing operation of parts
manufactured using L-PBF technology is frequently very complex due to the geometrical complexity of
the parts [22]. In addition, the finishing process increases considerably the manufacturing time and cost
of the part [12] since most of the finishing processes involve manual operations. Moreover, sometimes
it is not possible to finish some areas such as internal ducts or hollow cavities [23]. Therefore, it is
necessary to reduce the roughness as much as possible in the additive manufacturing process itself
before finishing the final part.

The resultant roughness can be originated by different factors. On the one hand, the process
parameters during manufacturing play an important role in the resulting roughness [22,24–26].
In this sense, it is necessary to adjust parameters such as laser power, exposure time, the distance
between points, and overlapping. Some previous studies state that the use of higher laser power
reduces roughness, since it increases the wettability of each layer [12], while other studies show that
excessive laser power can lead to spatters of excessively oxidized particles, which would also increase
roughness [23]. In addition, excessive laser power will lead to higher porosity. Thus, it is necessary
to find a balance between the laser power and scan speed to ensure acceptable roughness and other
properties such as porosity [11,12,23]. In addition, another process parameter that influences the
roughness is the thickness of the layer used [27].

In any case, even when the optimal parameters are being used, the surface roughness can be very
different depending on the position of the part in the machine [28], due to the direction of the inert gas
in the manufacturing chamber [29], or the angle of incidence [28] and the geometry being processed.
One of the most affected areas by roughness is the downskin area. Downskin areas are those that have
not had molten material in the lower layer and have been built over non-melted powder. In this case,
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some of these powder particles remain partially attached to the processed layer when the layer melts
and re-solidifies during manufacturing [30].

There may be other effects such as partial melting of powder particles due to heat transfer when
several parts are manufactured on the same platform. When different parts are manufactured very
close to each other, the accumulated heat of one part may affect the adjacent, causing its surface
temperature to rise, resulting in partially melt powder particles that will attach to the surface [21].
A similar effect can be observed in the case of large parts, where a high number of layers need to be
processed and the generated heat into the manufacturing chamber is also higher. It should also be
noted that this roughness due to the particles attached to the surface will depend on the characteristics
of the powder used [31,32].

Finally, a very relevant factor is the angle of incidence of the laser with respect to the powder layer.
Since the laser beam is radiated from the top part of the machine and depending on the location of the
processed area, the laser beam is focused on the powder bed at a certain incidence angle depending on
the area where the part is being manufactured.

The influence of this effect has not been so analyzed by the literature in comparison with other effects
such as powder distribution or process parameters. The study carried out by Kleszczynski et al. [28]
analyses the impact of increasing the radial distance with respect to the center of the platform, due to
the laser beam incidence angle. Since the laser beam is not completely perpendicular to the platform
as can be seen in Figure 1 (figure adapted from [33,34]), an increase in the roughness of the parts
is obtained.
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Figure 1. Effect of the incidence angle of the laser: (a) Diagram of the Laser Powder Bed Fusion (L-PBF)
process showing the scanner operation and the possible angle of incidence in the different areas of the
platform; (b) Detail of part 1 located in the central area of the platform and part 2 located at one side of
the platform.

Throughout this article, the effect of the angle of incidence of the laser beam on the surface
roughness is detailed, since, after an exhaustive bibliographic study, it seems to be a relevant but not
sufficiently studied factor to minimize the resulting surface roughness obtained in the L-PBF process.

2. Materials and Methods

Two different tests were designed to analyze the incidence angle and check its effect on the final
parts manufactured using L-PBF technology. All tests were carried out using the Renishaw AM400
manufacturing system (Renishaw, Stone, UK), which has a 400 W CW-M and a 3D scanner for laser
beam movements with a maximum scanning speed of 7000 mm/s. This gives a reduced laser beam
diameter of 70 µm in the focal point or working plane. The software used for programming the
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parameters of the manufacturing process was QuantAM (version V4). The tests designed for this
purpose are summarized below:

2.1. First Tests: Study of the Morphology of the Laser on the Platform

This study analyzed the effect of laser radiation on the different areas of the manufacturing platform.
To carry out this test, the laser beam was radiated directly to the platform, without pre-depositing
a powder layer. A grid of 25 × 25 uniformly distributed points was designed in order to test the
entire workspace of the platform. The parameters were adjusted to analyze the points marked on the
platform separately without any overlapping, as shown in Figure 2. In addition, the correct balance
between the power and exposure time parameters was set to optimize the mark on the platform.
Specifically, a power of 200 W, an exposure time of 200 µs, and a distance between points of 900 µm
were selected.
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Figure 2. Test design to analyze the influence of laser inclination angle on the platform: (a) Distribution
of the marks in the platform.; (b) Marks made on the platform in a star shape defining the laser
strategy used.

Once the points were marked in the different areas of the platform, the morphology and dimensions
of these points were studied using an infinite focus microscopy (Infinite Focus Microscope model
Control Server FP G1 Vf2, Alicona, Raaba/Graz, Austria), using 500×magnification.

The different marks were made in a star shape and distributed evenly throughout the platform.
With this star shape, it was intended to change the direction of the laser in order to be able to analyze
the distortion caused by the angle of incidence independently of this direction of the laser and the
possible delays related to the scanner.

From each of the stars marked on the platform, 10 of the points were analyzed and measured by
the software Alicona MeasureSuit of the Infinite Focus Microscope measurement system. Thanks to
this system, it was possible to estimate two radiuses from each of the elliptical or circular points,
and by dividing these two radiuses, the aspect ratio of the ellipse could be calculated, as can be seen in
Equation (1). In the case of circular marks, the value of this ratio was equal to one.

Ellipse aspect ratio =
Ellipse major axis
Ellipse minor axis

(1)

Thanks to this study, it was possible to analyze the circularity of the marks made by the laser on
the different parts of the platform.
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2.2. Second Test: Effect of the Angle of Incidence of the Laser on Parts Manufactured by L-PBF Technology

Inconel 718 powder specially designed for this technology was used to manufacture these test
parts. The powder shows high sphericity (over 80% of the particles showed 100% sphericity) and a
particle size between 15–45 µm. Because of these specifications, the powder can flow and distribute
correctly in each layer. In addition, powder meets the specific chemical composition of Inconel 718,
shown in Table 1.

Table 1. Chemical composition in weight percentage of Inconel 718.

Elements Ni Cr Co C Mo Al Ti Fe Nb Si and Mn P and S Cu B

%Weight 50–55 17–22 ≤1 ≤0.08 2.8–3.3 0.2–0.8 0.65–1.15 Bal 4.75–5.5 ≤0.35 ≤0.015 ≤0.3 ≤0.006

Three different geometries were designed and analyzed in order to study three different effects:
Surface roughness, internal microstructure, and thin walls thickness.

2.2.1. Test Part A: Roughness Measurement (Red Parts)

These parts were designed specifically for measuring surface roughness, using an infinite focus
3D measurement system with 500×magnification, according to ISO 25178 [35].

The geometry designed for this purpose had a study surface of 13 mm × 13 mm, where three
measurements of 1 mm × 13 mm on each of these surfaces were made, always analyzing the outside
surface of each part as can be seen in Figure 3. The arithmetical mean height of the surface (Sa)
and the maximum height of the surface (Sz) values were obtained and the standard deviation of
these measurements was calculated to determine the error bars. In addition, thanks to this optical
measurement system, surface topographies could be obtained and thus the particles partially adhered
to the surface could be also analyzed.
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microstructure analysis; (c) parts for measuring the thickness of thin walls.

The process parameters were the usual set for the manufacture of Inconel 718 parts using L-PBF
technology using a layer thickness of 60 µm. Specifically, the volume parameters were a laser power of
200 W, exposure time of 70 µs, a distance point and hatch distance of 80 µm, a strategy angle variation
of 67◦, and the border parameters were a laser power of 125 W, exposure time of 75 µs, a point distance
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of 20 µm, and a layer thickness of 60 µm. These parts were distributed on a platform with a radial
distance of 0, 40, 75, 105, and 150 mm from the center.

2.2.2. Test Part B: Microstructure Analysis (Blue Parts)

These parts were specially designed to analyze their internal microstructure. The geometry used
was the same as for Parts A but the parameters were changed in order to study the desired effect.
Specifically, these parts were manufactured without borders and using a 0◦ variation of the strategy
angle so that the Gaussian-shape melted areas were aligned in order to analyze them. These parts
were distributed on a platform with a radial distance of 20, 75, 105, and 145 mm from the center.

To analyze these parts, a section was cut and encapsulated. To analyze always the same surface,
all parts were cut in the same direction (as shown in Figure 3b) and these samples were encapsulated
using phenolic resin.

Then, the planar grinding step was made using Silicon carbide and corundum sandpaper of lower
grain size of FEPA (Federation of European Producers of Abrasives) 400, to achieve a surface ready to
be polished, four steps were made (using FEPA 400, FEPA 600, FEPA 800, and FEPA 1200 grain size).
Once the surface was ready, it was polished using a diamond polycrystalline of 1 and 3 µm.

Once the mirror-finished surface was achieved, this surface was chemically attacked using the
25 Marble etchant using the swabbing method, as specified in the ASTM E 407 standard [36] and with
a composition of 4 g CuSO4, 20 cc HCl, and 20 cc H2O. Finally, surface images were taken using the
infinite focus 3D measurement system with 200×magnification.

2.2.3. Test Part C: Thin Walls Thickness Measurements (Green Parts)

Finally, thin walls of 13 mm height were designed and placed in different areas of the platform
to measure their thickness. These test parts were built with a single laser track, and the same border
parameters used in the “A Test Parts”.

Once these parts were manufactured, the thickness of each test part was measured using the
infinite focus 3D measurement system with 200× magnification. Figure 4 shows the methodology
used for the analysis of thin walls. The Image J image analysis software (version ImageJ 1.x [37]) was
used for extracting the contour of the images of the infinite focus microscope. This contour was then
approximated to ellipses to define the thickness of the part, which would be equivalent to the average
value of the vertical radius of the ellipses.
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Figure 4. The methodology used for the analysis of thin walls: (a) image obtained through the infinite
focus microscope; (b) extraction of the thin wall contour; (c) approximation of the ellipses to the
generated contour; (d) checking this approximation in the obtained image.

Twenty-five measurements were made on each of the thin walls and the average value and
standard deviation between them were calculated; therefore, and taking into account that eight thin
walls were manufactured for each radial distance, 200 measurements were obtained in each of the
radial distances (these radial distances being 20, 70, 100, and 145 mm).



Coatings 2020, 10, 1024 7 of 12

3. Results

3.1. First Tests: Study of the Morphology of the Laser on the Platform

Analyzing the laser marks on the platform surface, it could be seen that these marks in the central
part of the platform present a circular shape while marks located far from the center acquire an elliptical
appearance. In addition, all the ellipses showed its largest radius in the radial direction towards the
center of the platform.

Figure 5a shows this effect on the images obtained when analyzing the center point of stars with
different positioning on the platform. As can be seen, the central area of the platform shows circular
marks, with a diameter of around 200 µm, while in the case of the marks located away from the centre,
elliptical marks up to 240 µm are observed. Therefore, a considerable difference between the different
laser marks on the platform is observed depending on the location of the laser mark.
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In addition, the ellipse aspect ratio was calculated. It is observed in Figure 5b that this ratio was
closer to unity in the tests near the center of the platform, while in the marks located on the sides of the
platform, this ratio increase, and the circularity of the marks decrease.

3.2. Second Test: Effect of the Angle of Incidence on Parts Manufactured by L-PBF Technology

3.2.1. Test Part A: Roughness Measurement

The results obtained with the roughness measurement are shown in Figure 6.
Despite manufacturing the same part with the same parameters and the same raw powder,
surface roughness is influenced by the position of the part on the platform. As it can be observed,
higher surface roughness is measured for parts located away from the center of the platform. Results
show that the roughness is dependent on the position of the part on the platform because of the angle
of incidence of the laser.
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Figure 6. Roughness results obtained: (a) image and topographies of maximum and minimum
roughness values: maximum roughness (225◦ and radial distance of 150 mm) and minimum roughness
(center 0◦); (b) mean value of the roughness for different radial distance from the center of the platform;
(c) roughness mean value results obtained each test part.

As it is observed in Figure 6, the relatively high roughness and poor surface finish of the
parts located at the borders of the platform can be seen with the naked eye. Analyzing the surface
topographies, it could see how in the parts manufactured in the central part of the platform the layers
of the part and some particles partially adhered to the surface can be differentiated; however, in the
parts located in the outer border of the platform, neither the layers nor the particles partially adhered
to the surface can be differentiated so clearly, but the surface quality has considerably worsened due to
the melting of the powder.

It has also been determined that the roughness does not increase linearly, but increases significantly
at the borders of the platform while the roughness remains at similar values in the center.

3.2.2. Test Part B: Microstructure Analysis

The microstructure has been also studied to analyze the possible influence of the incident angle
on part integrity. Figure 7 shows the microstructure of two sections corresponding to the central area
and the peripheral border of the platform. While the section corresponding to the part in the central
area shows a uniform pattern of laser tracks, with the melted areas oriented in a vertical direction,
the part in the border shows a less uniform pattern with the melted areas distorted due to the effect of
the laser orientation. This effect is shown schematically in Figure 7.

Coatings 2020, 10, x FOR PEER REVIEW 8 of 12 

 

Figure 6. Roughness results obtained: (a) image and topographies of maximum and minimum 
roughness values: maximum roughness (225° and radial distance of 150 mm) and minimum 
roughness (center 0°); (b) mean value of the roughness for different radial distance from the center of 
the platform; (c) roughness mean value results obtained each test part. 

As it is observed in Figure 6, the relatively high roughness and poor surface finish of the parts 
located at the borders of the platform can be seen with the naked eye. Analyzing the surface 
topographies, it could see how in the parts manufactured in the central part of the platform the layers 
of the part and some particles partially adhered to the surface can be differentiated; however, in the 
parts located in the outer border of the platform, neither the layers nor the particles partially adhered 
to the surface can be differentiated so clearly, but the surface quality has considerably worsened due 
to the melting of the powder. 

It has also been determined that the roughness does not increase linearly, but increases 
significantly at the borders of the platform while the roughness remains at similar values in the center. 

3.2.2. Test Part B: Microstructure Analysis 

The microstructure has been also studied to analyze the possible influence of the incident angle 
on part integrity. Figure 7 shows the microstructure of two sections corresponding to the central area 
and the peripheral border of the platform. While the section corresponding to the part in the central 
area shows a uniform pattern of laser tracks, with the melted areas oriented in a vertical direction, 
the part in the border shows a less uniform pattern with the melted areas distorted due to the effect 
of the laser orientation. This effect is shown schematically in Figure 7. 

 
Figure 7. Analysis of the microstructure in the different parts located at 45°: (a) central part (radial 
distance from the center 20 mm); (b) Part located at the edge of the platform (radial distance from the 
center 145 mm). 

Nevertheless, although the laser pattern creates a different microstructure due to the angle of 
the laser beam, it is observed that both components are free of porosity and defects and the 
mechanical properties of both specimens meet the required requirements. 

3.2.3. Test Part C: Thin Walls Thickness Measurements 

To conclude this study, thin walls corresponding to Test Part C and manufactured using single 
laser tracks were analyzed. The results of these tests are shown in Figure 8. Figure 8a shows the effect 
of the angle of incidence on the thickness for the different test parts manufactured in one of the 
diagonals of the platform (at 45°, according to Figure 3). 

 

Figure 7. Analysis of the microstructure in the different parts located at 45◦: (a) central part
(radial distance from the center 20 mm); (b) Part located at the edge of the platform (radial distance
from the center 145 mm).



Coatings 2020, 10, 1024 9 of 12

Nevertheless, although the laser pattern creates a different microstructure due to the angle of the
laser beam, it is observed that both components are free of porosity and defects and the mechanical
properties of both specimens meet the required requirements.

3.2.3. Test Part C: Thin Walls Thickness Measurements

To conclude this study, thin walls corresponding to Test Part C and manufactured using single
laser tracks were analyzed. The results of these tests are shown in Figure 8. Figure 8a shows the
effect of the angle of incidence on the thickness for the different test parts manufactured in one of the
diagonals of the platform (at 45◦, according to Figure 3).
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The influence of the radial distance from the center of the platform in the thickness is observed in
Figure 8b) where the results show a gradual increase of the thickness as the radial distance increases.
In particular, the thickness of these walls increased more than 40 µm in the parts located at the borders
of the platform. Moreover, this result is consistent with the analysis of the previous tests.

4. Discussion and Conclusions

On the one hand, the measurement of the geometry of the laser spot at the platform surface
demonstrated that this spot is not circular at the borders of the platform and takes an elliptical shape,
which causes position-dependent laser radiation and a distortion in the melt pool. This effect is due to
the technology itself, the lens used in the scanner, and the physics of the process. In this technology,
and in general, in all laser technologies that require a flat working field, F-theta lenses are used,
which ensure that all the main beams on the image side are parallel to the optical axis, resulting in the
perpendicularity of the beam with respect to the platform.

On the other hand, results show that this angle of incidence influence the surface quality,
microstructure, and thickness of the manufactured parts. As a consequence of the elliptical shape of
the laser spot on the areas further away from the center, the area of powder bed heated is different
from the central area and the melting of this powder does not occur in the same way. This effect is
observed in Test Part A.

Furthermore, after the analysis of Test Part C corresponding to the thin walls, the effect of the angle
of incidence could also be seen, as the distortion of the laser spot has resulted in a larger melted area,
which has increased the thickness of the walls of the parts located in the outer borders of the platform.

Finally, after this exhaustive study, it has been possible to see how this angle of incidence has a
relevant effect on the roughness of the part (Test Part B).

It should also be noted that this effect can have a considerable effect, as the increase in the
diameter of the laser spot on the platform can reach up to 40 µm and different effects can occur in the
manufactured part:
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• Increase of the thickness of the thin walls: These walls were manufactured with a single laser
track and the thickness increase was very similar to the laser spot size enlargement at the borders
of the platform.

• Roughness increase: Similarly, the results of the roughness measurements are also coherent with
the results of the other tests. Thus, an increase in roughness is observed as the test parts are
manufactured away from the center of the platform. The high roughness, in this case, is due to
the poor surface quality caused by the non-circular shape of the melt pool.

• Regarding microstructure, although a different pattern is observed due to the inclination angle
and the distortion of the melt pool, similar mechanical properties are obtained, and no porosity or
cracks have been observed.

Due to the great effect of the angle of incidence on the different parts manufactured and on the
surface quality of the parts, it has been decided to continue with this study in future investigations.
For this purpose, it is expected to characterize the laser spot on the platform, in order to determine
this angle of incidence with high precision. Next, based on the shape and characteristics of the spot,
the melt pool generated will be analyzed to try to obtain a direct relationship between the angle of
incidence and the roughness of the parts.
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