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Abstract: In this study, the average residual stresses were determined in hard PVD nACRo
(nc-AlCrN/a-SizNyg), nACo (nc-AlTiN/a-Si3Ny), AICrN, TiAIN, and TiCN commercial coatings through
the deflection of the plate substrates and the simultaneous measurement of length variation in
thin-walled tubular substrates. The length measuring unit was used for the measurement of any
length change in the tubular substrate. A change in tube length was reduced to the deflection of
the middle cross-section of the elastic element for which deformation was measured using four
strain gauges. The cross-sectional microstructure and thickness of the coatings were investigated
by means of scanning electron microscopy (SEM), and a determination was made of the chemical
composition of the coatings and substrate by means of energy dispersive X-ray spectroscopy (EDS).
The values of average compressive residual stresses, as determined by both methods, were very high
(with a variation of between 2.05 and 6.63 GPa), irrespective of coating thickness, but were dependent
upon the shape of the substrate and on its position in relation to the axis of the rotating cathode.
The thicknesses of the coatings that were deposited on the plates with two parallel fixings (such as the
nACRo coatings on the front surface at 6.8 pm and on the rear surface at 2.9 um) and on the tubular
substrates (10.0 pm) were significantly different. The higher average compressive residual stresses in
the coating correlate to the higher average relative wear resistance that was obtained during field
wear testing.

Keywords: PVD coatings: nACRo; nACo; AICrN; TiAIN; TiCN; residual stresses; tube length
variation; curvature method; indentational surface fatigue; industrial field wear tests

1. Introduction

Physical Vapor Deposition (PVD) coatings are used inter alia for blanking, punching, and cutting
applications [1] and can be deposited both on plain surfaces and more complex ones [2,3]. It is
well known that residual stresses that arise in coatings during the deposition process [1,4,5] have an
important effect on the service life of the coating by means of influencing its mechanical and tribological
properties and adhesion [6]. In general, residual macro- and microstresses in materials can be
distinguished. Macrostresses (average values), as Type I, vary within a bulk coating, and microstresses,
as Type 11, operate at the grain-sized level [7,8].

It should be noted that the (micro) residual stresses that have been measured by X-ray diffraction
are the arithmetic average stress results in the small irradiated area alone. To be able to gain residual

Coatings 2020, 10, 1054; doi:10.3390/coatings10111054 www.mdpi.com/journal/coatings


http://www.mdpi.com/journal/coatings
http://www.mdpi.com
https://orcid.org/0000-0002-6957-6564
http://dx.doi.org/10.3390/coatings10111054
http://www.mdpi.com/journal/coatings
http://www.mdpi.com/2079-6412/10/11/1054?type=check_update&version=4

Coatings 2020, 10, 1054 20of 11

stresses for the whole part, a number of measurements should be carried out at numerous points [7].
From an engineering point of view, average macroscopic residual stresses in thin PVD coatings are also
of interest. The origin of residual stresses in PVD coatings and suitable methods for their determination
are discussed in review papers [5,9]. In this study, the average residual stresses were measured by
means of the labor-intensive indirect deformation method, using a simple measurement technique,
and were compared to the microstresses that were obtained by means of X-ray diffraction.

The cutting tools have a complicated shape: plane surfaces with various inclinations, as well as
cylindrical surfaces and sharp edges. When the cutting tool is placed into the deposition chamber,
its surfaces have different positions and angles in relation to the cathode. This can affect the values for
residual stresses in PVD coatings.

The aim of the study was to determine macroscopic residual stresses in coatings that were
evaporated onto a vertically-fixed cylindrical surface in relation to the axis of the rotating cathode,
using the deformation method, through the measurement of the longitudinal length variation of the
thin-walled tube. In this way it is possible to estimate the values for residual stresses in coatings that
have been deposited on cylindrical surfaces [10], as well as to validate the results that were obtained
with the conventional curvature method, using quadrate steel plates with a unilateral coating as the
substrate, with different thicknesses and chemical components.

The length measuring unit used for measuring the longitudinal length change in the substrate
was improved based on the specifications of a previous measuring unit [11], where the tube length
variation was reduced to the deflection of the middle cross-section of the elastic element for which
deformation was measured by means of four strain gauges [12]. As an example of application, residual
stresses were measured in hard PVD nACRo (nc-AlCrN/a-SizNy) and nACo (nc-AlTiN/a-SizNy) novel
nanocomposite coatings and the results were compared with the benchmark AICrN, TiAIN, and TiCN
coatings, which are the most widely used for cutting tools [13]. The microstructure and thickness of the
coatings being studied were investigated and the chemical composition of the coatings and substrate
was measured.

Residual stresses have an effect on the tribological properties of the coating [14,15]. The industrial
field tests provided estimated figures by studying fine-blanking punches (using a convex surface) with
three PVD coatings—TiCN, nACRo, and nACo—and the average coating relative wear values were
compared with residual stress values.

2. Materials and Methods

The tubular and plate substrates intended for coating deposition were prepared from steel.
The mean values of the specimen’s dimensions, the physical parameters, and the chemical composition
of the substrate material are presented in Table 1. The surfaces of the substrates were polished to
Ra =0.024-0.029 pm.

Table 1. The physical properties and chemical components of the substrate material, with mean values
of dimensions.

substrates’ Mean Applicable Modulus of Poisson’s Chemical Components’ %

Materials Thickness, Width, Elasticity, Ratio - -
Diameter, mm  Length, mm GPa € Ni Cr Mn Si
0.243 19.64 156.5 0.25 474  46.1 - 0.6 0.1

Steel 0.311 19.62 190.0 0.30 96.2 - 1.6 0.7 -

plate 0.484 19.85 190.0 0.30 96.2 - 1.6 0.7 -
0.394 19.78 193.0 0.28 66.7 7.3 16.2 1.7 0.2

d1 =3.0

Steel tube dy =2.7 }ggg; 193.0 0.25 64.2 8.6 17.3 14 0.4

dy =25
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The PVD coatings being studied were produced at the Material Engineering Research Centre,
Tallinn University of Technology. The PVD unit, a Platit 7-80 with Lateral Rotating ARC-Cathode
technology, and with two rotating cathodes embedded in the door of the vacuum chamber, was used
for deposition. The commercial coatings being used were deposited on specimens whose roughness
was similar to that of cutting tools. A schematic for the placement of specimens in the vacuum
chamber is presented in Figure 1. The tubes had two different wall thicknesses (outer diameter
dy x inner diameter d, X length), shown as Tube 1 (3.0 mm x 2.70 mm X 167.37 mm) and Tube 2
(3.0 mm X 2.50 mm X 167.57 mm), and these were affixed vertically within the rotary table (which had
a rotational speed of 12 rpm) inside the vacuum chamber. To prevent the coating being deposited on
the cross-section of the tube ends, they were closed off at the nozzle, so that the entire outer surface of
the tube could be coated [11]. At the same time, the tube was vertically fixed by the lower nozzle to the
rotary table in the deposition chamber, and it was simultaneously rotated around its axis (Figure 1).

Dynamic rotating ARC-cathodes
© S

Lour plate specimens -
90 degrees to
the cathode

__ Four plate specimens -
inclined 45 degrees

Four plate specimens -
front surface is coated
(180 degrees)

Four rotating —P 4 Four plate specimens -
tubular substrates back surface is coated
(0 degrees)

Rotary table — |

Figure 1. Schematic showing the placement of specimens in relation to the cathode in the
vacuum chamber.

As the cutting edge of the cutting tools in the deposition chamber are placed at different angles,
four placement angles were used with respect to the cathode during coating deposition. The plates are
only deposited on one side and should be placed so that they are gripped by a claw in the affixing unit,
which should be made of carbon steel (adapted from [10]). Note that a considerable amount of the
evaporated target material was also deposited on the holder. Four plates were mounted on the holder
so that one batch of the plates could be prepared by deposition on the front surface (directed to the
edge of the rotary table as plate 0°), and the other batch could be prepared by deposition on the rear
surface (directed to the center of the rotary table as plate 180°). In addition, the holder was affixed at
90° and 45° in relation to the cathode, as plate 90° and plate 45°, respectively.

Preparation of the specimens included cleaning in pulsed Ar glow discharge at 425 °C, with a bias
of —850 V at a pressure of 4 x 10~3 mbar (0.4 Pa) to reduce the volume of contaminants and oxides
on the deposited surface of the specimens. After that, a thin metallic pure Ti layer (Ti etching) was
deposited in an Ar environment to create a valuable adhesion layer on the surface of the substrate.
The top coating was deposited onto the adhesion (buffer) layer, with a thickness of about 300 nm,
which was deposited directly onto the substrate with the same parameters as those of the top layer.

After measuring the length variation in the coated tube and the deflection of the coated plate,
three pieces were cut from one tube (two from the ends and one from the middle) with a length of
10 mm, and two pieces were cut from the plates with differing depositing positions, with dimensions
of 10 mm X 10 mm, for SEM analysis.

By means of the use of Field Emission Gun Scanning Electron Microscopy (FEGSEM) in Zeiss
Ultra-55 HR (SEM- Zeiss, Obercohen, Germany), the microstructure of the coatings was investigated.
The coating thicknesses were measured from the SEM images and using the ball-cratering equipment,
Calotester kaloMax (BAQ GmbH, Braunschweig, Germany).

The mean values of residual stresses in the coatings were calculated from the length change in the
tubular substrate. The calculation formula was presented in our earlier papers [11,16]. As the coating
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was relatively thin, it was assumed that residual stresses were distributed uniformly throughout the

coating thickness:
2B, (di-d3\Al
2(1—wy)di| 41 b’

where E; and p; are the modulus of elasticity and Poisson’s ratio of the substrate, respectively, while d4
is the outer diameter of the tube, d, is the inner diameter of the tube, h; is the thickness of the coating,
lis the length of the tube, and Al is the measured length variation in the tube.

From the deflection of the plate, residual stresses were determined using an equation that was
based on Stoney’s formula [17], but appropriately modified for a plate substrate by introducing the
factor 1/(1 — pq) to account for the biaxial state of stress [12]:

)

2
E, K

0= ————K,
6(1—p)t

@

where « = (4/b%)w is the curvature of the free surface of the plate substrate as determined via the
measured deflection w in the middle of the coated convex plate; t; and ¢, are thicknesses of the substrate
and coating respectively; and b is the coated width.

The unit presented in Figure 2a was adapted from [11] and improved to enable the measurement
of the length of the thin walled tubular substrate before and after coating deposition. The measured
length variation Al can be used as an experimental parameter for calculating the average values of
residual stresses in coatings.

indicator light

strain gauges (SG) T screw\‘“._[®*T
sG1 sG2 \
i H 3 elastic || displacement

\ element gauge
. o ey -

tubular
substrate

frame

T 7 T 7
=
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Figure 2. The schematic: (a) for the length measuring unit of the tube; (b) for calibration.

The calibration of the length measuring unit is a separate task. The length change in the tubular
substrate was transformed to the deformation of the elastic element, which was measured by four strain
gauges (Figure 2a). The schematic for the calibration work is presented in Figure 2b. The displacement
of the middle cross-section of the elastic element, depending upon the units of the strain indicator in
the case of unloading, is presented in Figure 3. During the process of calibration, the readings were
taken at a point in time at which rotation of the screw turned off the indicator light.



Coatings 2020, 10, 1054 50f11

0.3

025 -
y =3.14 x 10x

02 R? = 0.9947

0.15

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Figure 3. The dependence of the strain indicator units on the deflection in the case of unloading.

The constant should be determined so that the relation is approximated in the best way possible
by minimizing the square of error; by using the software, MS Excel 2016, this was found by using the
regression analysis function. As a result, a constant of 3.14 x 107> mm per unit of the strain indicator
was obtained. A constant of 8.26 X 10~ mm per unit was also used before modifications were carried
out on the length measuring unit [11]. The modified unit has 2.63 times higher sensitivity levels.

The length of the tube was measured a total of ten times before and ten times after deposition,
and the mean value was used to calculate residual stresses in the coating. To guarantee the centering
of the tube in the length measuring unit, the inner circular line of the cross section of its ends remained
in contact with the spherical surface of the support [11].

3. Results

The chemical composition of the coatings was measured using energy dispersive X-ray
spectroscopy (EDS) in a Bruker Esprit 1.82 system, and the deposition parameters are presented
in Table 2.

Table 2. Chemical composition of the coatings (measured and norm) and the deposition parameters.

Coating Ti Al N Cr Si C Fe TEI:IP Pressurep, NZ Csz Bias Volt.
% T, °C Pa sccm Up, V
nACRo 19.00 2730 4390 2.90 0.4 461 1.80 147 53
20.35 29.18 4690 3.12
AICrN 22.80 2810 44.60 461 3.80 155 41
23.84 2946 46.70
nACo 5540 13.60 31.30 1.30 240 0.5 476 1.32 110 76
53.02 13.06 29.96 1.24 2.28
TIAIN 4810 20.60 29.50 450 1.30 110 62
4899 2097 30.03
TiCN 70.80 28.90 2.80 450 0.49 45 5 61
69.10 28.20 2.70

From the results, it is obvious that the thicknesses of those coatings that were deposited on
the tubular substrates and the thicknesses of those coatings that were deposited on the plates are
significantly different, as they are located at different angles in relation to the cathode. This can be
manipulated with the energy of evaporated ions, and hence directly influence the dynamics of growth
for the coatings.

The microstructure of the coating on the tube and on the plate was investigated by means of SEM,
and the images of the coating’s cross-sections and thicknesses are presented in Figures 4 and 5.



Coatings 2020, 10, 1054 60f11

5y | 1um
(a) (b) ()

Figure 4. SEM of the cross-sections of nACRo coatings applied on the plate and placed: (a) at 180° to
the cathode; (b) on the plate placed at 0° to the cathode; and (c) on the tube.

5um | | tum 5um
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Figure 5. SEM of the cross-sections of nACRo coatings applied on the plate and placed: (a) at 180° to
the cathode; (b) on the plate placed at 0° to the cathode; and (c) on the tube.

The coating that was deposited on the tube is thicker (Figures 4c and 5c¢) than the one on the plate,
as some part of its surface is constantly forehead-bombarded with target plasma atoms and ions.

It can be seen that coatings on the plates which were directed towards the edge of the rotary table
(Figures 4a and 5a) are thicker when they are compared to plates that were directed to the center of
the rotary table (Figures 4a and 5a). This is due to the minimal potential distance between the target
and the substrate, as well as the larger parameters of kinetic energy during deposition. The coated
surface of the plate is directly orientated towards the cathode and is bombarded with atoms, ions,
and metal-rich microparticles.

In the case of the plates that were directed towards the center of the rotary table, the potential
distance between the target and the substrate is at its maximum and the parameters for kinetic energy
during deposition are smaller, and, consequently, the thickness of the coating is less (Figures 4b and 5b)
when compared to those plates that were directed towards the edge of the rotary table.

By using direct measurements of the layer’s thicknesses from SEM images and the ball-cratering
equipment, Kalotester KaloMax, the average values of residual stresses were calculated by means of
Equations (1) and (2), as presented in Table 3.
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Table 3. Coating type, substrate dimensions, and coating thickness, with average residual stresses in

the coatings.

Placement of Plates, Mean Average Residual Stresses, GPa
Coating Type Mean Values of Coating . Literat
Substrate Dimensions,  Thickness, Calculation Result ! ;_r:a;l re
mm Hm Equation (1)  Equation (2)  Technique
plate 0° t; =0.241 * 2.7 -2.05+0.20
plate 90° 0.243 * 1.6 -3.04 +£0.33
NACR Gradient tube 2 6.6 —-2.35+0.37 -5.2[18]
0 (nanocomposite) plate 0° 0.315 6.8 —4.37 + 0.68 ty =2.3 um
plate 180° 0.314 29 —4.30 + 0.60
tube 1 10.0 —3.53 £ 043
plate 0° 0.484 34 —4.30 +£ 0.79
plate 0° 0.395 * 2.8 —-3.54 +0.77
plate 45° 0.394 * 3.0 -3.49 + 0.61 —49[19]
AICEN Gradient plate 90° 0.393 * 2.8 -3.48 +0.73 _4'0 [18]
r multilayer tube 2 7.1 -2.90 +0.10 )
plate 0° 0.306 49 ~4.06 £ 0.30 < Hm
plate 180° 0.308 2.0 -3.72 £ 0.99
tube 1 7.6 —-2.25+0.18
Multilayer plate 0° 0.315 6.2 —6.01 + 0.66 _48[18]
nACo (nanocomposite) plate 180° 0.311 24 -3.51 +0.94 5 8
Hard grade ~ tube 1 9.5 ~3.92 +0.09 ©hm
plate 0° 0.395 59 —6.49 + 0.36
HAIN Multilaver Phea 7a agerors _'(56'7:;505])
i y plate 0° 0.244 44 ~3.18+0.19 o
plate 180° 0.244 1.7 —-2.66 + 0.37
tube 1 4.8 —2.66 + 0.26
plate 0° 0.397 5.3 —6.08 + 0.36
. . plate 45° 0.393 * 39 —6.63 + 0.36 —(4.6-5.0)
TiCN Gradient 4 1ate 90° 0.393 * 3.1 ~521+059 [22]
tube 2 8.8 -3.62 +0.10

* Test samples were coated in separate runs: Tube 1, 3.0 mm X 2.70 mm X 167.37 mm; Tube 2, 3.0 mm X 2.50 mm X

167.57 mm.

To gain a better overview of the measured residual stresses for different types of coatings, a graph

is presented in Figure 6.

Figure 6.
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orientation of the substrates in relation to the cathode.

Average residual stresses depending on the type of coatings, and the form and affixing

The shape of the substrate’s surface and the orientation of the coated surface in relation to the
cathode have an effect on average residual stresses in the coatings. It can be noted that the content
of Si does not affect residual stresses. Residual stresses in Ti-containing coatings are higher than
those in Cr-containing coatings, and this trend is evident for coatings that have been deposited on the
plate’s front surface. In our experiments, the orientation of the coated surface towards the cathode did
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not have an effect on residual stresses in the TICN coatings. The average residual stresses that were
obtained fall within the range that is presented in the available literature, where the X-ray technique is
mainly used for the measurement of residual stresses. Such good agreement between residual stresses
that have been obtained by physically different methods can be explained by the microstructure of
the coatings that were investigated. It should also be noted that the proportions of the chemical
composition elements in the compared coatings may differ slightly.

4. Discussion

The authors of [14] stated that compression stresses in a coating usually lead to the formation of
delamination and longitudinal cracks. Cracks in coatings are a critical property in wear resistance. If a
failure of the coating occurs during the working state (residual compressive stresses are summarized
with contact stresses), the coating’s capabilities can be greatly reduced, which causes severe abrasion
that in turn can place wear on the friction system (pair of friction). Cracks were observed in two
nanocomposite nACRo and nACo coatings on the cylindrical substrate and at the deposition parameters
used in this study. Stress-induced cracks were found to be perpendicular to the direction of growth
(Figure 5c), and we assume that cracking leads to a relaxation of the stress that is accumulated in the
growing coating during deposition and a decline in overall residual stresses. The reason for cracking
can be related to the plain state of compressive stress, which induces stresses in the radial direction of
the coating. Radial stress in the interface of the substrate and coating can be calculated according to
Equation (3) that is presented in [23]:

Ghz
Ty ©

For example, as the nACo hard grade coating has hp = 9.5 pm, 0 = =3.92 GPa, and r; = 1.5 mm,
oy = 26.2 MPa, which is considerable (the ultimate tensile strength of the coating is unknown). When the
same coating is placed on a cylindrical surface with r; = 10 mm, o, = 3.72 MPa; when it is on a spherical
surface with r; = 2.5 mm, o, = 14.8 MPa [24]. It is evident that, when the radius of the substrate
increases, residual stresses decrease in a linear fashion.

There were no visible cracks in coatings that were deposited on the plate substrate and in those
coatings that were deposited on the tube substrate: AICrN with a thickness of 7.1 pm and TiCN with a
thickness of 8.8 um.

In industrial field wear tests with fine-blanking punches (using a convex surface), the three
PVD coatings TiCN, nACRo, and nACo were estimated to have average coating relative wear (w;)
values of 84.3%, 66.7%, and 69.9%, correspondingly [24]. TICN coating wear was 15-17% higher than
that of nACRo and nACo coatings, but it is difficult to find any differences between those two [24].
The average residual stresses obtained in coatings on different substrates (Table 3) were —5.39 MPa for
TiCN, —3.27 MPa for nACRo, and —4.48 MPa for nACo.

It can be concluded that the higher average residual compressive stress in the coating correlates

to the higher average relative wear resistance levels during industrial field wear testing. There is a
dependence of the elastic strain towards a failure parameter (the hardness to modulus of the elasticity
ratio or H/E) in terms of the measured coating average relative wear for industrial tests, meaning that
the same correlation stands for residual stresses that were measured in the same coatings systems.
The combination of the highest H/E ratio and lowest compressive residual stress leads to the lowest
relative wear (or higher wear resistance), as proven by the superior behavior of the nACo coating in
the industrial field wear testing process. However, the difference between the wear behavior in nACo
and nACRo coatings is quite insignificant, as the mechanical properties are quite similar.

The same tendencies can be seen in the indentational response of the coating systems being
studied, along with impact wear and indentation surface fatigue behavior [25-27]. The nACo and
nACRo coatings reveal lower coating failed area ratios (FR, %) when they are compared to TiCN, at a
level of 24-42% for 10% and 5 x 10° for the of impact figures, respectively [27]. The FR for TiCN for
the same impact figure range is 31-45%. This conclusion is valid for different forms of substrates [26].
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The nACo behavior is still superior to that of the TiCN, independent of the variation of the hard metal
or cermet substrate composition.

5. Conclusions

The average residual stresses in various PVD hard coatings on tube and plate substrates were
calculated using as an experimental parameter, along with the length variation of the tube, and the
deflection of the plate. The major conclusions are summarized as follows:

The length measuring unit was improved to make possible the measurement of the length of the
thin-walled tubular substrate before and after coating deposition.

The calculated average values of residual stresses were compressive and high, varying from 2.05
to 6.63 GPa, and were of the same range as the corresponding data shown in the available literature
that were obtained by the X-ray technique.

The coating deposited on the tube substrate was thicker, and average residual stresses in it were
lower than that of coatings on plate substrate. Residual stresses were at their highest in the coating that
were deposited on the front surface of the plate; the values for residual stresses on those plates that
were inclined (45°) and perpendicular (90°) with respect to the cathode were within the same range.

The microstructure of the coating on the tube and on the plate was investigated by means of SEM,
and the images of the coating’s cross-sections and thicknesses are presented. Observed cracks were
perpendicular to the direction of growth in the nanocomposite nACRo and nACo coatings which were
deposited on the tube substrate.

The combination of the highest levels of hardness to the modulus of the elasticity ratio (H/E or
elastic strain to failure) and the lowest average residual stress levels is proven to have a positive effect
on the wear resistance and indentational (cyclic impact loading) behavior of the coatings. The nACo
and nACRo coatings systems showed a tendency to be superior over other studied coatings, with a
wear resistance during industrial trials of 15-17% higher than that of TiCN and a lower coating failure
ratio (FR) of around 10% for cyclic loading of up to 5 x 10° cycles.

The presented analysis is limited to the data that were obtained from the
aforementioned experiments.

Author Contributions: Conceptualization, H.L.; methodology, H.L. and A.R.; software, V.M.; validation, H.L. and
ES.; formal analysis, PP; investigation, H.L., A.R., and L.L.; data curation, H.L., L.L., and ES.; writing—original
draft preparation, H.L.; writing—review and editing, A.R. and ES.; visualization, H.L. and A.R.; supervision, J.K,;
and funding acquisition, J.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the institutional research funding project, “Multi-scale structured
ceramic-based composites for extreme applications” (IUT 19-29), and by the grant, “Composites ‘ceramics-Fe
alloy’ for a wide range of application conditions” (PRG665), of the Estonian Research Council. The financial
support from the Tallinn University of Technology is highly appreciated (a targeted grant for the “Metals
Processing professorship”).

Acknowledgments: The authors are thankful to Eron Adoberg and Heinar Vagistrom from Tallinn University of
Technology for their technical support. The authors are also thankful to the European Union through the European
Regional Development Fund, Project TK141.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gonzalo, O.; Navas, V.G.; Coto, B.; Bengoetxea, I.; de Gopegi, U.R.; Etxaniz, M. Influence of the coating
residual stresses on the tool wear. Proc. Eng. 2011, 19, 106-111. [CrossRef]

2. Quinto, D.T. Twenty-five years of PVD coatings at the cutting edge. Fall Bull. 2007, 17-22. Available online:
https://www.svc.org/DigitalLibrary/documents/2007_Fall_DTQ.pdf (accessed on 28 October 2020).

3. Kumar, TS.; Prabu, S.B.; Manivasagam, G.; Padmanabhan, K.A. Comparison of TiAIN, AICrN and
AICrN/TiAIN coatings for cutting-tool applications. Int. J. Min. Met. Mater. 2014, 21, 796-805. [CrossRef]

4. Koch, R. Stress in Evaporated and Sputtered Thin Films—A Comparison. Surf. Coat. Technol. 2010, 204,
1973-1982. [CrossRef]


http://dx.doi.org/10.1016/j.proeng.2011.11.087
https://www.svc.org/DigitalLibrary/documents/2007_Fall_DTQ.pdf
http://dx.doi.org/10.1007/s12613-014-0973-y
http://dx.doi.org/10.1016/j.surfcoat.2009.09.047

Coatings 2020, 10, 1054 10 of 11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Soroka, O.B. Evaluation of residual stresses in PVD-coatings. Part 1. Review. Strength Mater. 2010, 42,
287-296. [CrossRef]

Soroka, O.B. Evaluation of residual stresses in PVD-coatings. Part 2. Strength Mater. 2010, 42, 450—-458.
[CrossRef]

Lu, J. Handbook of Measurement of Residual Stresses, 1st ed.; Fairmont Press: Upper Saddle River, NJ, USA,
1996; p. 253.

Kandil, EA; Lord, J.D.; Fry, A.T,; Grant, P.V. A Review of Residual Stress Measurement Methods—A Guide
to Technique Selection. NPL Report MATC (A) 2001, 04. Available online: https://eprintspublications.npl.co.
uk/1873/1/matc4.pdf (accessed on 28 October 2020).

Abadias, G.; Chason, E.; Keckes, ].; Sebastiani, M.; Thompson, G.; Barthel, E.; Doll, G.; Murray, C.; Stoessel, C.;
Martinu, L. Review Article: Stress in thin films and coatings: Current status, challenges, and prospects.
J. Vac. Sci. Technol. 2018, 36, 020801. [CrossRef]

Lille, H.; Koo, J.; Gregor, A.; Ryabchikov, A.; Sergejev, F.; Traksmaa, R.; Kulu, P. Comparison of Curvature
and X-Ray Methods for Measuring of Residual Stresses in Hard PVD Coatings. Mater. Sci. Forum 2011, 681,
455-460. [CrossRef]

Lille, H.; Ryabchikov, A.; Kdo, J.; Adoberg, E.; Mikli, V.; Kiibarsepp, J.; Peetsalu, P. Evaluation of Residual
Stresses in PVD Coatings by means of Tubular Substrate Length Variation. Mater. Res. Proc. 2018, 6, 131-136.
[CrossRef]

Lille, H.; Ryabchikov, A.; Koo, J.; Adoberg, E.; Lind, L.; Kurissoo, L.; Peetsalu, P. Evaluation of Residual
Stresses in PVD Coatings by Means of Strip Substrate Length Variation and Curvature Method of Plate
Substrate. Solid State Phenom. 2017, 267, 212-218. [CrossRef]

The Advantages of PVD Coating for Cutting Tools. Available online: http://www.pvdtarget.com/info/the-
advantages-of-pvd-coating-for-cutting-tool-23249873.html (accessed on 28 October 2020).

Vereschaka, A.; Volosova, M.; Chigarev, A.; Sitnikov, N.; Ashmarin, A.; Sotova, C.; Bublikov, J.; Lytkin, D.
Influence of the Thickness of a Nanolayer Composite Coating on Values of Residual Stress and the Nature of
Coating Wear. Coatings 2020, 10, 63. [CrossRef]

Sprute, T.; Tillmann, W.; Grisales, D.; Selvadurai, U.; Fischer, G. Influence of substrate pre-treatments on
residual stresses and tribo-mechanical properties of TiAIN-based PVD coatings. Surf. Coat. Technol. 2014,
260, 369-379. [CrossRef]

Koo, J.; Ryabchikov, A. On the determination of residual stresses in coatings from measured longitudinal
deformation of a wire substrate. In Proceedings of the 19th Symposium on Experimental Mechanics of Solids,
Jachranka, Poland, 1820 October 2000; Stupinicki, J., Ed.; Warsaw University of Technology: Jachranka,
Poland, 2000; pp. 319-324. Available online: http://hdl.handle.net/10492/3803 (accessed on 28 October 2020).
Koo, J.; Valgur, J. Residual stress measurement in coated plates using layer growing/removing methods: 100th
anniversary of the publication of Stoney’s paper “The tension of metallic films deposited by electrolysis”.
Mater. Sci. Forum 2011, 681, 165-170. [CrossRef]

Paiva, ].M.; Fox-Rabinovich, G.; Locks, E., Jr.; Stolf, P.; Seid Ahmed, Y.; Matos Martins, M.; Veldhuis, S.
Tribological and Wear Perfotmance of Nanocomposite PVD Hard Coatings Deposited on Aluminium
Die Casting Tool. Materials 2018, 11, 358. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5872937/ (accessed on 28 October 2020).

Hargani, M.; Ghafoor, N.; Calamba, K.; Zackova, P; Sahul, M.; Vopat, T.; Satrapinskyy, L.; Caplovicova, M.;
Caplovi¢, L. Adhesive-deformation relationships and mechanical properties of nc-AlCrN/a-SiNx hard
coatings deposited at different bias voltages. Thin Solid Film. 2018, 650, 11-19. [CrossRef]

Skordaris, G.; Bouzakis, K.; Kotsanis, T.; Charalampous, P.; Bouzakis, E.; Breidenstein, B.; Bergmann, B.;
Denkena, B. Effect of PVD film’s residual stresses on their mechanical properties, brittleness, adhesion and
cutting performance of coated tools. CIRP J. Manuf. Sci. Technol. 2017, 18, 145-151. [CrossRef]

Chang, Y.-Y.; Wang, D.-Y. Characterization of nanocrystalline AITiN coatings synthesized by a cathodic-arc
deposition process. Surf. Coat. Technol. 2007, 201, 6699—-6701. Available online: https://www.sciencedirect.
com/science/article/pii/S0257897206010437 (accessed on 28 October 2020).

Murotani, T.; Hirose, H.; Sasaki, T.; Okazaki, K. Study on stress measurement of PVD-coatings layer. Thin Solid
Film. 2000, 377-378, 617-620. [CrossRef]

Ryabchikov, A. Development of Some Mechanical Methods for Measurement of Residual Stresses in Coatings.
Ph.D. Thesis, Estonian University Life of Sciences, Tartu, Estonia, 2005.


http://dx.doi.org/10.1007/s11223-010-9217-1
http://dx.doi.org/10.1007/s11223-010-9236-y
https://eprintspublications.npl.co.uk/1873/1/matc4.pdf
https://eprintspublications.npl.co.uk/1873/1/matc4.pdf
http://dx.doi.org/10.1116/1.5011790
http://dx.doi.org/10.4028/www.scientific.net/MSF.681.455
http://dx.doi.org/10.21741/9781945291890-21
http://dx.doi.org/10.4028/www.scientific.net/ssp.267.212
http://www.pvdtarget.com/info/the-advantages-of-pvd-coating-for-cutting-tool-23249873.html
http://www.pvdtarget.com/info/the-advantages-of-pvd-coating-for-cutting-tool-23249873.html
http://dx.doi.org/10.3390/coatings10010063
http://dx.doi.org/10.1016/j.surfcoat.2014.08.075
http://hdl.handle.net/10492/3803
http://dx.doi.org/10.4028/www.scientific.net/MSF.681.165
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872937/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872937/
http://dx.doi.org/10.1016/j.tsf.2018.02.006
http://dx.doi.org/10.1016/j.cirpj.2016.11.003
https://www.sciencedirect.com/science/article/pii/S0257897206010437
https://www.sciencedirect.com/science/article/pii/S0257897206010437
http://dx.doi.org/10.1016/S0040-6090(00)01280-3

Coatings 2020, 10, 1054 11 of 11

24. Lind, L. Peetsalu, P; Sergejev, F. Wear of Different PVD Coatings at Industrial Fine-blanking Field Tests.
Mater. Sci. (MedZiagotyra) 2015, 21, 343-348. [CrossRef]

25. Sivitski, A.; Gregor, A.; Saarna, M.; Kulu, P; Sergejev, F. Properties and performance of hard coatings
on tool steels under cyclic indentation. Acta Mech. Slovaca 2009, 13, 84-95. Available online: https:
/[www.actamechanica.sk/pdfs/ams/2009/03/10.pdf (accessed on 28 October 2020).

26. Veinthal, R.; Sergejev, E; Yaldiz, C.E.; Mikli, V. Impact Wear Performance of Thin Hard Coatings on TiC
Cermets. J. ASTM Int. 2011, 8, 103272. [CrossRef]

27.  Antonov, M.; Hussainova, I.; Kulu, P; Sergejev, F.; Gregor, A. Assessment of gradient and nanogradient PVD
coatings behaviour under erosive, abrasive and impact wear conditions. Wear 2009, 267, 898-906. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.5755/j01.ms.21.3.7249
https://www.actamechanica.sk/pdfs/ams/2009/03/10.pdf
https://www.actamechanica.sk/pdfs/ams/2009/03/10.pdf
http://dx.doi.org/10.1520/JAI103272
http://dx.doi.org/10.1016/j.wear.2008.12.045
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

