Optical Transmittance for Strongly-Wedge-Shaped Semiconductor Films: Appearance of Envelope-Crossover Points in Amorphous As-Based Chalcogenide Materials
Abstract
:1. Introduction
2. Preliminary Theoretical Considerations
3. On the Transmittance for a Thin Semiconductor Film onto a Thick Transparent Substrate
3.1. Formulae of the Normal-Incidence Transmission for a Thin Film with Uniform Thickness
3.2. Effect of Non-Uniformity of the Thin-Film Thickness on the Transmission Spectrum
3.3. Effect of the Optical Phase Variation within the Semiconductor Thin Layer
3.4. Derivation of an Expression for the Upper Envelope of the Transmission Spectrum
3.5. Derivation of an Expression for the Lower Envelope of the Transmission Spectrum
4. Particular Case of a Film with Strong Thickness Non-Uniformity: Appearance of the Envelope-Crossover Points
5. Optical Properties of Amorphous Semiconductor Films: Using the Tauc–Lorentz–Urbach Parameterization
6. Practical Application to Real Amorphous As-Based Chalcogenide Materials
6.1. AJUSTET: Computer Program for the Optical Characterization of Semiconductor Films Based on Inverse Synthesis
6.2. Case Study of Thermally-Evaporated Reasonably-Uniform and Non-Uniform Amorphous Chalcogenide Films
6.2.1. Chalcogenide Sample Preparation Procedure and Optical Transmittance Measurements
6.2.2. Experimental Results Obtained Using AJUSTET
6.2.3. Alternative Independent Determination of the Tauc and Cody Optical Band Gaps
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Tanaka, K.; Shimakawa, K. Amorphous Chalcogenide Semiconductors and Related Materials, 1st ed.; Springer Science: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Morigaki, K.; Kugler, S.; Shimakawa, K. Amorphous Semiconductors: Structural, Optical, and Electronic Properties, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 978-1-118-75792-5. [Google Scholar]
- Atwood, G. Phase-change materials for electronic memories. Science 2008, 321, 210–211. [Google Scholar] [CrossRef]
- Cai, B.; Drabold, D.A.; Elliott, S.R. Structural fingerprints of electronic change in the phase change-material: Ge2Sb2Te5. Appl. Phys. Lett. 2010, 97, 191908. [Google Scholar] [CrossRef]
- Calvez, L.; Yang, Z.; Lucas, P. Composition dependence and reversibility of photo-induced refractive index changes in chalcogenide glass. J. Phys. D Appl. Phys. 2010, 43, 445401–445408. [Google Scholar] [CrossRef]
- Carlson, D.E.; Wronski, C.R. Amorphous silicon solar cells. Appl. Phys. Lett. 1976, 28, 671–673. [Google Scholar] [CrossRef]
- Chong, E.; Chun, Y.S.; Lee, S.Y. Amorphous silicon-indium-zinc oxide semiconductor thin film transistors processed below 150 °C. Appl. Phys. Lett. 2010, 97, 102102. [Google Scholar] [CrossRef]
- Eggleton, B.J.; Luther-Davies, B.; Richardson, K. Chalcogenide photonics. Nat. Photonics 2011, 5, 141–148. [Google Scholar] [CrossRef]
- Hisakuni, H.; Tanaka, K. Optical fabrication of microlenses in chalcogenide glasses. Opt. Lett. 1995, 20, 958–960. [Google Scholar] [CrossRef] [PubMed]
- Lainé, M.; Seddon, A.B. Chalcogenide glasses for acousto-optic devices. J. Non-Cryst. Solids 1995, 184, 30–35. [Google Scholar] [CrossRef]
- Lucovsky, G.; Phillips, J.C. Reversible chemical phase separation in on-state of art rewritable Ge2Sb2Te5 optical phase change memories. J. Non-Cryst. Solids 2008, 354, 2753–2756. [Google Scholar] [CrossRef]
- Song, K.B.; Sohn, S.W.; Kim, J.H.; Kim, K.A.; Cho, K. Chalcogenide thin-film transistors using oxygenated n-type and p-type phase change materials. Appl. Phys. Lett. 2008, 93, 043514. [Google Scholar] [CrossRef]
- Zakery, A.; Elliott, S.R. Optical properties and applications of chalcogenide glasses: A review. J. Non-Cryst. Solids 2003, 330, 1–12. [Google Scholar] [CrossRef]
- Márquez, E.; Blanco, E.; García-Vázquez, C.; Díaz, J.M.; Saugar, E. Spectroscopic ellipsometry study of non-hydrogenated fully amorphous silicon films deposited by room-temperature radio-frequency magnetron sputtering on glass: Influence of the argon pressure. J. Non-Cryst. Solids 2020, 547, 120305. [Google Scholar] [CrossRef]
- Adachi, S. Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles, 1st ed.; Springer Science: New York, NY, USA, 1999. [Google Scholar] [CrossRef]
- Stenzel, O. Optical Coatings Material Aspects in Theory and Practice, 1st ed.; Springer Science: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Stenzel, O.; Ohlídal, M. Optical Characterization of Thin Solid Films, 1st ed.; Springer International Publishing AG: Basel, Switzerland, 2018. [Google Scholar] [CrossRef]
- Capper, P.; Willoughby, A.; Kasap, S. Optical Properties of Materials and Their Applications, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2020; ISBN 978-1-119-50631-7. [Google Scholar]
- Arndt, D.P.; Azzam, R.M.A.; Bennett, J.M.; Borgogno, J.P.; Carniglia, C.K.; Case, W.E.; Dobrowolski, J.A.; Gibson, U.J.; Hart, T.T.; Ho, F.C.; et al. Multiple determination of the optical constants of thin film coating materials. Appl. Opt. 1984, 23, 3571. [Google Scholar] [CrossRef]
- Poelman, D.; Smet, P.F. Methods for the determination of the optical constants of thin films from single transmission measurements: A critical review. J. Phys. D Appl. Phys. 2003, 36, 1850–1857. [Google Scholar] [CrossRef]
- Stenzel, O. The Physics of Thin Film Optical Spectra: An Introduction, 2nd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Fox, M. Optical Properties of Solids, 2nd ed.; Oxford University Press: Oxford, UK, 2010; ISBN 9780199573370. [Google Scholar]
- Smith, D. Thin-Film Deposition: Principles and Practice, 1st ed.; McGraw-Hill: New York, NY, USA, 1995; ISBN 978-0-07-113913-7. [Google Scholar]
- Manifacier, J.C.; Gasiot, J.; Fillard, J.P. A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E Sci. Instrum. 1976, 9, 1002. [Google Scholar] [CrossRef]
- Swanepoel, R. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 1983, 16, 1214–1222. [Google Scholar] [CrossRef]
- Swanepoel, R. Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. J. Phys. E Sci. Instrum. 1984, 17, 896–903. [Google Scholar] [CrossRef]
- Márquez, E.; Ramirez-Malo, J.; Villares, P.; Jiménez-Garay, R.; Ewen, P.J.S.; Owen, A.E. Calculation of the thickness and optical constants of amorphous arsenic sulphide films from their transmission spectra. J. Phys. D 1992, 25, 535–541. [Google Scholar] [CrossRef]
- Márquez, E.; Ramirez-Malo, J.; Villares, P.; Jiménez-Garay, R.; Swanepoel, R. Optical characterization of wedge-shaped thin films of amorphous arsenic trisulphide based only on their shrunk transmission spectra. Thin Solid Films 1995, 254. [Google Scholar] [CrossRef]
- Márquez, E.; Díaz, J.; García-Vázquez, C.; Blanco, E.; Ruiz-Pérez, J.J.; Minkov, D.; Angelov, G.; Gavrilov, G. Optical characterization of amine-solution-processed amorphous AsS2 chalcogenide thin films by the use of transmission spectroscopy. J. Alloy. Compd. 2017, 721, 363–373. [Google Scholar] [CrossRef]
- Márquez, E.; Saugar, E.; Díaz, J.; García-Vázquez, C.; Fernández-Ruano, S.; Blanco, E.; Ruiz-Pérez, J.J.; Minkov, D. The influence of Ar pressure on the structure and optical properties of non-hydrogenated A-SI thin films grown by RF magnetron sputtering onto room-temperature glass substrates. J. Non-Cryst. Solids 2019, 517, 32–43. [Google Scholar] [CrossRef]
- Pisarkiewicz, T. Reflection spectrum for a thin film with non-uniform thickness. J. Phys. D Appl. Phys. 1994, 27, 160. [Google Scholar] [CrossRef]
- Ruiz-Pérez, J.J. Nuevos Métodos de Caracterización Óptica de Semiconductores Basados en Medidas Espectroscópicas de Reflexión. Ph.D. Thesis, Cádiz University, Cádiz, Spain, 1997. [Google Scholar]
- Ruíz-Pérez, J.J.; González-Leal, J.M.; Minkov, D.A.; Márquez, E. Method for determining the optical constants of thin dielectric films with variable thickness using only their shrunk reflection spectra. J. Phys. D Appl. Phys. 2001, 34, 2489–2496. [Google Scholar] [CrossRef]
- Dobrowolski, J.A.; Ho, F.C.; Waldorf, A. Determination of optical constants of thin film coating materials based on inverse synthesis. Appl. Opt. 1983, 22, 3191–3200. [Google Scholar] [CrossRef]
- Nowak, M. Determination of optical constants and average thickness of inhomogeneous-rough thin films using spectral dependence of optical transmittance. Thin Solid Films 1995, 254, 200–210. [Google Scholar] [CrossRef]
- Necas, D. Optical Characterization of Non-Uniform thin Films. Ph.D. Thesis, Masaryk University, Brno, Czech Republic, 2013. [Google Scholar]
- Foldyna, M.; Postava, K.; Bouchala, J.; Pistora, J.; Yamaguchi, T. Model dielectric functional of amorphous materials including Urbach tail. SPIE Proc. 2004, 5445, 301–305. [Google Scholar] [CrossRef]
- Jellison, G.E.; Modine, F.A. Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 1996, 69, 371–373. [Google Scholar] [CrossRef]
- Jellison, G.E.; Modine, F.A. Erratum: “Parameterization of the optical functions of amorphous materials in the interband region”. Appl. Phys. Lett. 1996, 69, 2137. [Google Scholar] [CrossRef]
- Wemple, S.H.; DiDomenico, M., Jr. Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials. Phys. Rev. B 1971, 3, 1338. [Google Scholar] [CrossRef]
- Wemple, S.H. Refractive-Index Behavior of Amorphous Semiconductors and Glasses. Phys. Rev. B 1973, 7, 3767. [Google Scholar] [CrossRef]
- Solomon, I. Band-structure determination by subgap spectroscopy in thin films of semiconductors. Philos. Mag. B 1997, 76, 273–280. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 1996, 15, 627–637. [Google Scholar] [CrossRef]
- Cody, G.D. Hydrogenated Amorphous Silicon, Part B, Optical Properties. Semicond. Semimet. 1984, 21B, 11–79. [Google Scholar]
- Chen, H.; Shen, W.Z. Perspectives in the characteristics and applications of Tauc-Lorentz dielectric function model. Eur. Phys. J. B 2005, 43, 503–507. [Google Scholar] [CrossRef]
Material | Spectrum | N | ||||
---|---|---|---|---|---|---|
Simulated | 2 | 0.60 | 660 | 3.465 | 95 | |
Simulated | 1 | 0.70 | 1130 | 2.791 | 101 | |
a-As33S67 | Experimental | 3 | 0.78 | 615 | 2.499 | 185 |
a-As33S67 | Experimental | 2 | 0.77 | 880 | 2.388 | 184 |
a-As33S67 | Experimental | 1 | 0.75 | 1730 | 2.333 | 185 |
Amorphous Material | As33S67 S1 | As33S67 S2 | As33S67 S3 | As33S67 S4 | As33S67 | As40S60 |
---|---|---|---|---|---|---|
Data reference | Present work | Present work | Present work | Present work | [29] | [38,39] |
Deposition method | Thermal evaporation | Thermal evaporation | Thermal evaporation | Thermal evaporation | Spin coating | Bulk glass sample |
Wavelength range (nm) | 400–2200 | 400–2200 | 400–2600 | 400–2600 | 250–2500 | 220–1000 |
Figure-of-merit | RMSD: 0.684 | RMSD: 0.672 | RMSD: 1.701 | RMSD: 0.951 | MSE: 0.4 | = 0.9 |
Eg (eV) | 2.42 | 2.42 | 2.40 | 2.40 | 2.33 | 2.37 |
Offset, | 1.49 | 1.49 | 1.24 | 1.24 | 2.46 | 2.50 |
A (eV) | 133.9 | 133.2 | 137.3 | 137.3 | 57 | 161 |
E0 (eV) | 4.29 | 4.33 | 4.66 | 4.66 | 3.74 | 3.75 |
C (eV) | 3.65 | 3.67 | 4.55 | 4.55 | 1.84 | 4.60 |
EC (eV) | 2.58 | 2.56 | 2.56 | 2.56 | N/A | N/A |
Eu (meV) | 75 | 68 | 78 | 78 | N/A | N/A |
(nm) | 1605 | 1598 | 4908 | 4897 | 734 | N/A |
8 | 34 | 37 | 187 | N/A | N/A | |
2.48 | 2.48 | 2.46 | 2.46 | N/A | N/A | |
872 | 880 | 799 | 800 | N/A | N/A | |
2.45 | 2.45 | 2.44 | 2.44 | N/A | N/A | |
281 | 283 | 272 | 271 | N/A | N/A | |
n (1 eV) | 2.335 | 2.350 | 2.353 | 2.353 | N/A | N/A |
E03 (eV) | 2.47 | 2.48 | 2.46 | 2.46 | N/A | N/A |
E04 (eV) | 2.66 | 2.66 | 2.66 | 2.66 | N/A | N/A |
E05 (eV) | 3.18 | 3.19 | 3.23 | 3.23 | N/A | N/A |
Dispersion model | TLU | TLU | TLU | TLU | TL | TL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Pérez, J.J.; Navarro, E.M. Optical Transmittance for Strongly-Wedge-Shaped Semiconductor Films: Appearance of Envelope-Crossover Points in Amorphous As-Based Chalcogenide Materials. Coatings 2020, 10, 1063. https://doi.org/10.3390/coatings10111063
Ruiz-Pérez JJ, Navarro EM. Optical Transmittance for Strongly-Wedge-Shaped Semiconductor Films: Appearance of Envelope-Crossover Points in Amorphous As-Based Chalcogenide Materials. Coatings. 2020; 10(11):1063. https://doi.org/10.3390/coatings10111063
Chicago/Turabian StyleRuiz-Pérez, Juan José, and Emilio Márquez Navarro. 2020. "Optical Transmittance for Strongly-Wedge-Shaped Semiconductor Films: Appearance of Envelope-Crossover Points in Amorphous As-Based Chalcogenide Materials" Coatings 10, no. 11: 1063. https://doi.org/10.3390/coatings10111063
APA StyleRuiz-Pérez, J. J., & Navarro, E. M. (2020). Optical Transmittance for Strongly-Wedge-Shaped Semiconductor Films: Appearance of Envelope-Crossover Points in Amorphous As-Based Chalcogenide Materials. Coatings, 10(11), 1063. https://doi.org/10.3390/coatings10111063