Influence of Anti-Caking Agents on the Highly Effective Organic Coatings for Preventing the Caking of Ammonium Nitrate Fertilizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physical and Chemical Parameters of Anti-Caking Agents
2.3. GC–MS Analysis
2.4. Effectiveness of Anti-Caking Agents
3. Results and Discussion
3.1. Physical and Chemical Parameters of Anti-Caking Agents
3.2. GC–MS Analysis
3.3. Effectiveness of Anti-Caking Agents
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Fertilizer Trends and Outlook to 2022; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; Available online: http://www.fao.org/3/ca6746en/CA6746EN.pdf?eloutlink=imf2fao (accessed on 23 October 2020).
- Gezerman, A.O.; Corbacioglu, B.D. Effects of sodium silicate, calcium carbonate, and silicic acid on ammonium nitrate degradation, and analytical investigations of the degradation process on an industrial scale. Chem. Ind. Chem. Eng. Q. 2015, 21, 359–367. [Google Scholar] [CrossRef]
- Tyc, A.; Hoffmann, J.; Biskupski, A. Anti-caking agents for ammonium nitrate fertilizers. Part 1. Caking phenomenon. Przem. Chem. 2019, 98, 771–776. [Google Scholar] [CrossRef]
- Gezerman, A.O.; Corbacioglu, B.D.; Cevik, H. Improvement of surface features of nitrogenous fertilisers and influence of surfactant composition on fertiliser surface. Int. J. Chem. 2011, 3, 201–209. [Google Scholar] [CrossRef]
- Rutland, D.W. Fertilizer caking: Mechanisms, influential factors and method of prevention. Fertil. Res. 1991, 30, 99–114. [Google Scholar] [CrossRef]
- Diwani, G.E.; Hawash, S.; Ibiari, N.E.; Imam, I. Treatment of ammonium nitrate fertilizer for cake prevention. Ind. Eng. Chem. Res. 1994, 33, 1620–1622. [Google Scholar] [CrossRef]
- Chen, M.; Wu, S.; Xu, S.; Yu, B.; Shilbayeh, M.; Liu, Y.; Zhu, X.; Wang, J.; Gong, J. Caking of crystals: Characterization, mechanisms and prevention. Powder Technol. 2018, 337, 51–67. [Google Scholar] [CrossRef]
- Elzaki, B.I.; Zhang, Y.J. Coating Methods for Surface Modification of Ammonium Nitrate: A Mini-Review. Materials 2016, 9, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyc, A.; Hoffmann, J.; Biskupski, A. Anti-caking agents for ammonium nitrate fertilizers. Part 2. Commercial products. Przem. Chem. 2019, 98, 948–952. [Google Scholar] [CrossRef]
- Tomaszewska, M.; Jarosiewicz, A.; Karakulski, K. Physical and chemical characteristics of polymer coatings in CRF formulation. Desalination 2002, 146, 319–323. [Google Scholar] [CrossRef]
- Tomaszewska, M.; Jarosiewicz, A. Polysulfone coating with starch addition in CRF formulation. Desalination 2004, 163, 247–252. [Google Scholar] [CrossRef]
- Li, Y.; Jia, C.; Zhang, X.; Jiang, Y.; Zhang, M.; Lu, P.; Chen, H. Synthesis and performance of bio-based epoxy coated urea as controlled release fertilizer. Prog. Org. Coat. 2018, 119, 50–56. [Google Scholar] [CrossRef]
- Feng, G.; Ma, Y.; Zhang, M.; Jia, P.; Hu, L.; Liu, C.; Zhou, Y. Polyurethane-coated urea using fully vegetable oil-based polyols: Design, nutrient release and degradation. Prog. Org. Coat. 2019, 133, 267–275. [Google Scholar] [CrossRef]
- Martinez, J.A.R.; Fajardo, M.R. Anti-Caking Compositions for Fertilizers. U.S. Patent No. 8,932,490, 13 January 2015. [Google Scholar]
- Obrestad, T.; Terje, T. Conditioning Agent for a Particulate Fertilizer for Reducing Hygroscopicity and Dust Formation. U.S. Patent No. 10,294,170, 21 May 2019. [Google Scholar]
- Zurimendi, J. Anti-Caking Composition. U.S. Patent No. 4,772,308, 20 September 1988. [Google Scholar]
- Ogzewalla, M.B.; Archimedo, M.C.; Barnat, J.J. Dust and Anticaking Resistant Fertilizer. U.S. Patent Application No. 15/404,348, 20 July 2017. [Google Scholar]
- Gezerman, A.O. A novel industrial-scale strategy to prevent degradation and caking of ammonium nitrate. Heliyon 2020, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gandini, A.; Lacerda, T.M.; Carvalho, A.J.F.; Trovatti, E. Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chem. Rev. 2016, 116, 1637–1669. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Yu, L.; Xie, F.; Bao, X.; Liu, H.; Ji, Z.; Chen, L. One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer. Chem. Eng. J. 2017, 309, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Tyc, A.; Penkala, S.; Biegun, M.; Nieweś, D.; Huculak-Mączka, M.; Hoffmann, K. The Effectiveness of Commercial Anticaking Agents for Ammonium Nitrate Fertilizers. Ecol. Chem. Eng. A 2019, 26, 127–135. [Google Scholar] [CrossRef]
Parameter | Unit | AN | CAN |
---|---|---|---|
Total nitrogen | % (w/w) | 32.0 | 27.0 |
Nitric nitrogen | % (w/w) | 16.0 | 13.5 |
Ammoniacal nitrogen | % (w/w) | 16.0 | 13.5 |
Total magnesium (MgO) | % (w/w) | - | 4.0 |
Water-soluble calcium (CaO) | % (w/w) | - | 3.0 |
Bulk density | g∙cm−3 | 0.96 | 1.0 |
Granule diameter | mm | 2–5 | 2–5 |
Grain class: content of 2–5 mm granules | % (w/w) | 95 | 95 |
Parameters | Unit | Anti-Caking Agent | ||
---|---|---|---|---|
A1 | A2 | A3 | ||
Density (70 °C) | g/cm3 | 0.816 ± 0.001 | 0.813 ± 0.001 | 0.867 ± 0.001 |
Viscosity (70 °C) | mPa·s | 10.3 ± 0.1 | 8.0 ± 0.1 | 17.0 ± 0.2 |
Water content | % m/m | 0.08 ± 0.01 | 0.04 ± 0.01 | 0.10 ± 0.01 |
Melting point | °C | 70.3 ± 0.3 | 69.2 ± 0.4 | 64.6 ± 0.2 |
BN | mg KOH/g | 22.8 ± 0.4 | 22.2 ± 0.3 | 18.8 ± 0.3 |
Identified Compounds | Time [Min] | ||
---|---|---|---|
A1 | A2 | A3 | |
Octadecylamine | 13.69 | 13.68 | 13.69 |
Hexadecylamine | 11.46 | 11.46 | 11.46 |
Stearic acid | 15.07 | 15.10 | 15.09 |
Parameter [wt %] | A1 | A2 | A3 |
---|---|---|---|
Octadecylamine | 6.95 | 5.91 | 5.81 |
Hexadecylamine | 3.56 | 3.36 | 2.80 |
Stearic acid | 2.11 | 0.79 | 0.32 |
Slack wax | 74.52 | 86.87 | 86.20 |
Other | 12.86 | 3.07 | 4.87 |
Storage Period | Effectiveness of Anti-Caking Agent [%] | |||||
---|---|---|---|---|---|---|
CAN | AN | |||||
A1 | A2 | A3 | A1 | A2 | A3 | |
– | 76.4 ± 1.2 | 77.0 ± 0.8 | 62.3 ± 0.9 | 95.9 ± 0.7 | 100 ± 0 | 95.1 ± 0.7 |
10 days | 63.2 ± 1.4 | 68.1 ± 1.0 | 60.0 ± 1.5 | 94.8 ± 1.1 | 97.9 ± 0.3 | 93.9 ± 0.6 |
30 days | 93.4 ± 1.1 | 94.3 ± 0.6 | 91.2 ± 1.3 | 100 ± 0 | 100 ± 0 | 100 ± 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyc, A.; Nieweś, D.; Penkala, S.; Grzesik, R.; Hoffmann, K.; Hoffmann, J. Influence of Anti-Caking Agents on the Highly Effective Organic Coatings for Preventing the Caking of Ammonium Nitrate Fertilizers. Coatings 2020, 10, 1093. https://doi.org/10.3390/coatings10111093
Tyc A, Nieweś D, Penkala S, Grzesik R, Hoffmann K, Hoffmann J. Influence of Anti-Caking Agents on the Highly Effective Organic Coatings for Preventing the Caking of Ammonium Nitrate Fertilizers. Coatings. 2020; 10(11):1093. https://doi.org/10.3390/coatings10111093
Chicago/Turabian StyleTyc, Aleksandra, Dominik Nieweś, Szymon Penkala, Ryszard Grzesik, Krystyna Hoffmann, and Józef Hoffmann. 2020. "Influence of Anti-Caking Agents on the Highly Effective Organic Coatings for Preventing the Caking of Ammonium Nitrate Fertilizers" Coatings 10, no. 11: 1093. https://doi.org/10.3390/coatings10111093
APA StyleTyc, A., Nieweś, D., Penkala, S., Grzesik, R., Hoffmann, K., & Hoffmann, J. (2020). Influence of Anti-Caking Agents on the Highly Effective Organic Coatings for Preventing the Caking of Ammonium Nitrate Fertilizers. Coatings, 10(11), 1093. https://doi.org/10.3390/coatings10111093