Zinc Complex Derived from ZnCl2-Urea Ionic Liquid for Improving Mildew Property of Bamboo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Nano–Zinc Complex Layer on the Bamboo Surface
2.3. Anti-Mildew Property Test
3. Characterization
4. Results and Discussion
4.1. Morphology of Zinc Complex Coatings on Bamboo Surface
4.2. Chemical Structure of the Bamboo Surface
4.3. Anti-Mildew Properties
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chang, F.-C.; Chen, K.-S.; Yang, P.-Y.; Ko, C.-H. Environmental benefit of utilizing bamboo material based on life cycle assessment. J. Clean. Prod. 2018, 204, 60–69. [Google Scholar] [CrossRef]
- Edwin, Z.-E.; Habert, G. Environmental impacts of bamboo-based construction materials representing global production diversity. J. Clean. Prod. 2014, 69, 117–127. [Google Scholar]
- Hung, K.-C.; Chen, Y.-L.; Wu, J.-H. Natural weathering properties of acetylated bamboo plastic composites. Polym. Degrad. Stab. 2012, 97, 1680–1685. [Google Scholar] [CrossRef]
- Wang, X.; Ren, H. Comparative study of the photo-discoloration of moso bamboo (Phyllostachys pubescens Mazel) and two wood species. Appl. Surf. Sci. 2008, 254, 7029–7034. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Ren, H.-Q. Surface deterioration of moso bamboo (Phyllostachys pubescens) induced by exposure to artificial sunlight. J. Wood Sci. 2009, 55, 47–52. [Google Scholar] [CrossRef]
- Dang, M.; Grillet, A.; Diep, T.; Do, T.; Chi, N.; Woloszyn, M. Hygric and thermal insulation properties of building materials based on bamboo fibers. In Proceedings of the 4th Congrès International de Géotechnique-Ouvrages-Structures, Ho Chi Minh City, Vietnam, 26–27 October 2017; pp. 508–522. [Google Scholar]
- Sun, F.; Bao, B.; Ma, L.; Chen, A.; Duan, X. Mould-resistance of bamboo treated with the compound of chitosan-copper complex and organic fungicides. J. Wood Sci. 2012, 58, 51–56. [Google Scholar] [CrossRef]
- Cheng, W.-Z.; Y, Y.-H. On the effects of microware power use in killing bamboo worm and preventing mould. J. Fuzhou Univ. 1999, 27, 28–30. [Google Scholar]
- Cheng, D.-L.; Jiang, S.-X.; Zhang, Q.-S. Mould resistance of Moso bamboo treated by two step heat treatment with different aqueous solutions. Eur. J. Wood Wood Prod. 2013, 71, 143–145. [Google Scholar] [CrossRef]
- Kang, F.-F.; Yu, C.; Huang, Q.-L. Advances in application of microwave technology to pest quarantine. J. Plant Prot. 2009, 35, 36–39. [Google Scholar]
- Sun, F.-B.; Jiang, Z.-H.; Fei, B.-H.; Yu, Z.-X.; Wang, H. Effect of g-ray application on bamboo mold resistance. China Wood Ind. 2011, 25, 23–25. [Google Scholar]
- Gastonguay, L.; Blais, J.-F.; Cooper, P.; Coudert, L.; Mercier, G. Design and performance of a pilot-scale equipment for CCA-treated wood remediation. Sep. Purif. Technol. 2012, 85, 90–95. [Google Scholar]
- Xu, G.-Q.; Wang, L.-H.; Liu, J.-L.; Hu, S.-H. Decay resistance and thermal stability of bamboo preservatives prepared using camphor leaf extract. Int. Biodeterior. Biodegrad. 2013, 78, 103–107. [Google Scholar] [CrossRef]
- Kartal, E.; Terzi, H.; Yılmaz, B.; Goodell, B. Bioremediation and decay of wood treated with ACQ, micronized ACQ, nano-CuO and CCA wood preservatives. Int. Biodeterior. Biodegrad. 2015, 99, 95–101. [Google Scholar] [CrossRef]
- Li, J.-P.; Yu, H.; Wu, Z.-X.; Wang, J.; He, S. Room temperature synthesis of crystalline anatase TiO2 on bamboo timber surface and their short-term antifungal capability under natural weather conditions. Colloids Surf. A Physicochem. Eng. Asp. 2016, 508, 117–123. [Google Scholar] [CrossRef]
- Filpo, G.-D.; Palermo, A.-M.; Rachiele, F.; Nicoletta, F.-P. Preventing fungal growth in wood by titanium dioxide nanoparticles. Int. Biodeterior. Biodegrad. 2013, 85, 217–222. [Google Scholar] [CrossRef]
- Song, J.-G.; Chen, Y.-X.; Wang, J.; He, W. Studies on the preparation of ZnO on bamboo surface at low temperature and its mildew resistance. J. Chin. J. Eng. 2017, 2, 19–23. [Google Scholar]
- Okyay, T.-O.; Bala, R.-K.; Nguyen, H.-N.; Atalay, R.; Bayam, Y.; Rodrigues, D.F. Antibacterial properties and mechanisms of toxicity of sonochemically grown ZnO nanorods. RSC Adv. 2015, 5, 2568–2575. [Google Scholar] [CrossRef]
- Petkova, P.; Francesko, A.; Fernandes, M.-M.; Mendoza, E.; Perelshtein, I.; Gedanken, A.; Gedanken, T. Sonochemical coating of textiles with hybrid ZnO/chitosan antimicrobial nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 1164–1172. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Y.; Morikawa, H.; Chen, Y. Application of ZnO nanoparticles to enhance the antimicrobial activity and ultraviolet protective property of bamboo pulp fabric. Cellulose 2013, 20, 1877–1884. [Google Scholar] [CrossRef]
- Lu, Z.; Mao, C.; Meng, M.; Liu, S.; Tian, Y.; Yu, L.; Sun, B.; Li, C. Fabrication of CeO2 nanoparticle-modified silk for UV protection and antibacterial applications. J. Colloid Interface Sci. 2014, 435, 8–14. [Google Scholar] [CrossRef]
- Pandoli, O.; Martins, R.-D.; Romani, E.-C.; Paciornik, S.; Maurício, M.-H.; Alves, H.-D.; Pereira-Meirelles, F.-V.; Luz, E.-L.; Koller, S.-M.; Valiente, H.; et al. Colloidal silver nanoparticles: An effectivenano-filler material to prevent fungal proliferation in bamboo. RSC Adv. 2016, 6, 98325–98336. [Google Scholar] [CrossRef]
- Tam, K.-H.; Djurišić, A.-B.; Chan, C.-M.-N.; Xi, Y.-Y.; Tse, C.W.; Leung, Y.-H.; Chan, W.-K.; Leung, F.-C.-C.; Au, D.-W.-T. Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Film. 2008, 516, 6167–6174. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, L.; Wen, D.-Y.; Ding, Y. Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 1361–1366. [Google Scholar] [CrossRef]
- Li, M.-F.; Shen, Y.; Sun, J.-K.; Bian, J.; Chen, C.-Z.; Sun, R.-C. Wet torrefaction of bamboo in hydrochloric acid solution by microwave heating. ACS Sustain. Chem. Eng. 2015, 3, 2022–2029. [Google Scholar] [CrossRef]
- Scharber, M.-C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.-J.; Brabec, C.-J. Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Adv. Mater. 2006, 18, 789–794. [Google Scholar] [CrossRef]
- Wei, X.-Q.; Zhang, Z.; Yu, Y.-X.; Man, B.-Y. Comparative study on structural and optical properties of ZnO thin films prepared by PLD using ZnO powder target and ceramic target. Opt. Laser Technol. 2009, 41, 530–534. [Google Scholar] [CrossRef]
- China National Standardization Management Committee Test Methods of Evaluating the Properties of Wood-based Panels and Surface Decorated Woodbased Panels (2013). Test Method for the Control Effect of Fungicides on wood mold and Chromotropic Bacteria. GB/T 18261-2013. Available online: https://www.chinesestandard.net/PDF/English.aspx/GBT18261-2013 (accessed on 13 November 2020).
- Kazuo, N. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Zhao, D.-S.; Li, X.-G.; Liu, B.-Y.; Xu, Z.-C.; Wang, N. Preparation ZnCl2-properties of urea in ionic liquid system. Fine Chem. 2007, 7, 632–635. [Google Scholar]
IV | Area of Infection |
---|---|
0 | No hypha or mold |
1 | Surface infection area less than 1/4 |
2 | Surface infection area between 1/4 and 1/2 |
3 | Surface infection area between 1/2 and 3/4 |
4 | Surface infection area over 3/4 |
Element | OB | U2-t1 | U2-t2 | U2-t3 | ||||
---|---|---|---|---|---|---|---|---|
Wt.% | At.% | Wt.% | At.% | Wt.% | At.% | Wt.% | At.% | |
C | 58.00 | 65 | 53.71 | 62.91 | 39.98 | 56.63 | 40.71 | 51.68 |
O | 41.36 | 34.78 | 40.21 | 35.35 | 32.17 | 34.10 | 31.72 | 30.23 |
Cl | - | - | 2.02 | 0.80 | 8.98 | 4.31 | 7.63 | 3.28 |
K | 0.64 | 0.22 | 0.44 | 0.16 | 0.34 | 0.15 | 0.37 | 0.15 |
Zn | - | - | 3.62 | 0.78 | 18.53 | 4.82 | 7.76 | 1.81 |
N | - | - | - | - | - | - | 11.81 | 12.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Lin, H.; Wen, A.; Chen, J.; Yang, W.; Li, R. Zinc Complex Derived from ZnCl2-Urea Ionic Liquid for Improving Mildew Property of Bamboo. Coatings 2020, 10, 1233. https://doi.org/10.3390/coatings10121233
Gao J, Lin H, Wen A, Chen J, Yang W, Li R. Zinc Complex Derived from ZnCl2-Urea Ionic Liquid for Improving Mildew Property of Bamboo. Coatings. 2020; 10(12):1233. https://doi.org/10.3390/coatings10121233
Chicago/Turabian StyleGao, Jie, Huiping Lin, Aishi Wen, Jingbing Chen, Wenbin Yang, and Ran Li. 2020. "Zinc Complex Derived from ZnCl2-Urea Ionic Liquid for Improving Mildew Property of Bamboo" Coatings 10, no. 12: 1233. https://doi.org/10.3390/coatings10121233
APA StyleGao, J., Lin, H., Wen, A., Chen, J., Yang, W., & Li, R. (2020). Zinc Complex Derived from ZnCl2-Urea Ionic Liquid for Improving Mildew Property of Bamboo. Coatings, 10(12), 1233. https://doi.org/10.3390/coatings10121233