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Abstract: The article describes the results of an investigation focused on the properties of the
Ti-TiN-(Ti,Cr,Mo,Al)N multilayered composite coating with a wear-resistant layer of nanolayer
structure. A transmission electron microscope was used to study the coating structure.
The examination of the phase composition using selected area diffraction electron pattern has
detected the presence of two phases, including c-(Ti,Cr,Mo,Al)N and h-AlN. The cutting properties
of the tool with the coating under consideration were studied during the turning of AISI 1045 steel
at vc = 300 m/min, f = 0.25 mm/rev, and ap = 1.0 mm. After 16 min of cutting, the wear rate for the
tool with the Ti-TiN-(Ti,Cr,Mo,Al)N coating was 1.9 times lower compared to the wear rate for the
tool with the (Ti,Al)N commercial monolithic coating. As a result of the investigation focused on the
fracture pattern on the coating during the cutting, the brittle nature of the fracture has been detected
with a noticeable effect of adhesive fatigue mechanisms.

Keywords: nanolayered coating; microparticles; crack formation; tool wear

1. Introduction

Modified coatings developed for various purposes, particularly coatings for metal-cutting tools,
are being actively implemented in various areas of manufacturing activity. At the same time, the trends
of modern manufacturing suggest toughening requirements for coatings. In particular, an increase in
the cutting speed leads to an increase in temperature in the cutting zone, and, accordingly, the crucial
feature of the coatings is heat resistance [1–5]. With an increase in temperature, oxidation and diffusion
processes become more active and intensify tool wear [6–10]. Accordingly, one of the significant factors
is the ability of a coated tool to resist the oxidation and diffusion wear. The coatings of traditional
composition, such as TiN, TiC, ZrN, CrN, or (Ti,Al)N, can no longer meet the requirements of the
modern manufacturing, and new coatings with enhanced properties are required. One of the ways to
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develop such coatings is to use a multicomponent composition and nanolayer architecture [11–15].
In particular, the introduction of such elements as Cr and Mo into the coating composition increases
its resistance to heat and oxidation and diffusion effects. The coatings based on the (Ti,Al)N system
are used rather widely, like nitride coatings containing Cr and Mo. However, fewer studies have
considered the coatings based on the multicomponent nitrides, including a complex of these elements.

Regent and Musil [16] investigated the (Ti,Mo)N and (Ti,Cr)N coatings. The hardness of the
(Ti,Mo)N coating was 38–40 GPa with the content of molybdenum (Mo) up to 10 at.%), and the δ-TiN
phase (111) with miscible Mo dominated in the coating structure. The study of the (Ti,Cr)N coating
detected the presence of the solid solution of (Ti,Cr)N (200) and Cr2N (111), while the phases of TiN
(111), (Ti,Mo)N (200), Mo2N (111), and pure Mo were detected in the (Ti,Mo)N coating [17]. Moreover,
the authors suggest that the phase of pure molybdenum in the (Ti,Mo)N coating can significantly reduce
the coefficient of friction (COF) in comparison with the (Ti,Cr)N and TiN coatings [17]. The study
focused on the properties of the (Ti,Cr)N coating also found that the introduction of chromium (Cr) into
the composition of the TiN coating is able to significantly increase the oxidation resistance due to the
formation of dense chromium oxide (Cr2O3) on the coating surface [18,19]. This oxide is characterised
by high heat resistance and does not transform into chromium trioxide (CrO3) until the temperature
reaches 1100 ◦C [20].

During the studies of the (Cr,Mo)N coating, the phases of fcc-CrN (111) and (200) and
amorphous/nanocrystalline Mo2N were found, but no expected substitutional solid solution of
(Cr,Mo)N was detected [21]. Experiments carried out by Kim et al. [22] revealed the substitutional
solid solution (Cr,Mo)N with the Mo content of less than 30.4 at.%, and the maximum hardness of
the coating (34 GPa) was achieved with the Mo content of 21 at.%. The studies also note that the
phases formed in this coating depend on the nitrogen-to-argon ratio in a chamber. With an increase
in the nitrogen content, a single fcc solid solution (Cr,Mo)N phase forms instead of the mixture of
bcc hexagonal (Cr,Mo)N phases [23]. During the studies of the coating with alternating CrN/Mo2N
layers, the formation of MoO3 and Cr2O3 oxides was detected upon heating to 400–500 ◦C, and it
was molybdenum trioxide (MoO3) which had a crucial influence on the reduction of friction [24].
In [25–27], the investigation of the (Ti,Al,Mo)N coating revealed the presence of TiN and Mo phases
(studied by the X-ray diffraction (XRD) method). A study by the XRD method detected no phase of
γ-Mo2N which can be explained by the fact that in the X-ray diffraction patterns, the reflections of this
phase and the phase of MoN coincide with TiN. However, the phase of γ-Mo2N was detected by the
X-ray photoelectron spectroscopy (XPS) method. The hardness of the (Ti,Al,Mo)N coating reaches
40 GPa [28]. The introduction of nickel (Ni) in the composition of the (Ti,Al,Mo)N coating reduced the
grain sizes from 40–50 to 10–12 nm. Meanwhile, at temperatures exceeding 500 ◦C, the Ni-containing
coating wore out more intensively, and in [29], that fact was associated with the formation of the
TiNiO3 oxide.

In their previous articles, authors of this paper studied the properties of the coatings
with wear-resistant layers, including (Ti,Cr,Al)N [30–32], (Zr,Nb,Cr,Al)N [30,32], (Zr,Nb,Ti)N [32],
(Zr,Cr,Al)N [32], (Nb,Zr,Ti,Al)N [32], and (Ti,Cr,Al,Si)N [33]. These studies show that the coatings
with multi-element compositions often have better performance properties compared to binary and
ternary systems.

The studies were focused on the Ti-TiN-(Ti,Cr,Mo,Al)N coating with three-layer architectures
according to the recommendations described in in our past works [34,35]. It can be assumed that
coating Ti-TiN-(Ti,Cr,Mo,Al)N will have good tribological properties due to the formation of MoO3

and Cr2O3 oxides with high hardness and wear resistance [18–24,29].

2. Materials and Methods

The VIT-2 vacuum plasma unit (IDTI RAS—MSTU STANKIN, Moscow, Russia) [34,36] was used
to deposit coatings with the filtered cathodic vacuum arc deposition (FCVAD) technology [34–41].
The VIT-2 unit contained two arc evaporators with a pulsed magnetic field and one arc evaporator
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with filtering of the vapor-ion flow. Moreover, the complex contains a source of pulsed bias voltage
supply to a substrate, a dynamic gas mixing system for reaction gases, systems for automatic chamber
pressure control and for process temperature control, and a system for the stepless adjustment of
planetary gear rotation.

The VIT-2 unit has three cathode systems, in which cathodes of Al 99.1 at.%, Ti 99.9 at.% and also
of Cr-Mo (50–50 at.%) are installed. Cylindrical cathodes with the diameter of 80 mm were used. Three
cathodes of Ti-Al (80–20 at.%) were used to deposit the (Ti,Al)N commercial coating.

Coating deposition rate is 100 nm per minute.
The parameters for the process of coating deposition are presented in Table 1.

Table 1. Parameters of stages of the technological process of the deposition of coatings.

Process pN (Pa) U (V) ITi (A) IAl (A) ITi-Al (A) ICr-Mo
(A)

Pumping and heating of
vacuum chamber 0.06 +20 75 120 75 –

Heating and cleaning of
products with gaseous plasma 2.0 100DC/900 AC

f = 10 kHz, 2:1 85 80 85 –

Deposition of coating 0.42 −800 DC 75 160 75 120

Cooling of products 0.06 – – – – –

Note: ITi = current of titanium cathode, ITi-Al = current of Ti-Al cathode, IAl = current of aluminum cathode,
ICr-Mo = current of Cr-Mo cathode, pN = gas pressure in chamber, U = voltage on substrate.

The nanoindentation technique and an Instron Wilson Hardness Group Tukon tester at the load of
0.01 N were used to determine the coating microhardness.

During the turning of workpieces made of AISI 1045 steel, a CU 500 MRD lathe (ZMM Sliven,
Sliven, Bulgaria) with a ZMM CU500 MRD variable-speed drive (ZMM Bulgaria, Sofia, Bulgaria) was
applied. No coolants or lubricants were used during the process of cutting. SNUN ISO 1832:2012
carbide inserts played a role of substrates, with the parameters as follows: γ = –7◦, α = 7◦, λ = 0, r = 0.4
mm; cutting mode: f = 0.25 rpm, ap = 1.0 mm, and vc = 300 m/min. Four experiments were conducted
for each coating, and the obtained values of flank wear were processed to get the polynomial functions
exhibited on the curve. The limit wear criterion was assumed as flank wear rate VBmax = 0.4 mm. Five
tests of cutting properties were carried out, after which the information was statistically processed.
Average values were determined for five experiments, these average values were used to plot the
graph. Polynomial dependencies were obtained, on the basis of which graphs of the dependence of the
flank wear on the cutting time were plotted.

3. Results and Discussion

3.1. Study of the Chemical Composition and Nanostructure of the Ti-TiN-(Ti,Cr,Mo,Al)N Coating

According to the results of 20 conducted measurements, the average hardness of the coating was 42
± 1.3 GPa, which is fairly high for nitride coatings. The coating structure includes an adhesion layer of
Ti with the thickness of about 50 nm, a transition layer of TiN with the thickness of about 600 nm, and a
wear-resistant layer of (Ti,Cr,Mo,Al)N with the thickness of about 2700 nm (Figure 1). The thickness of
the functional layers of the coating was selected based on their optimal ratio [32,35]. The wear-resistant
layer of (Ti,Cr,Mo,Al)N is formed by a 22-nanolayer period with λ of about 120 nm [11,33].
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Figure 1. General structure of the Ti-TiN-(Ti,Cr,Mo,Al)N coating (TEM). 

The nanostructures of the studied coating Ti-TiN-(Ti,Cr,Mo,Al)N in comparison with the 
(Ti,Al)N monolayer coating are presented in Figure 2. 

Figure 2a illustrates that the nanostructure of Ti-TiN-(Ti,Cr,Mo,Al)N coating includes 
nanolayers with the high content of Al (lighter bands) and nanolayers with the high content of Cr-
Mo and Ti (darker bands). For Ti-TiN-(Ti,Cr,Mo,Al)N coating, the value of nanolayer period λ [11,33] 
is about 120 nm, and the thicknesses of nanolayers are within a range of 1–8 nm. The results of the 
studies of the coatings phase compositions using the Selected Area Electron Diffraction (SAED) 
method are presented in Figure 2c,d. 
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Figure 1. General structure of the Ti-TiN-(Ti,Cr,Mo,Al)N coating (TEM).

The nanostructures of the studied coating Ti-TiN-(Ti,Cr,Mo,Al)N in comparison with the (Ti,Al)N
monolayer coating are presented in Figure 2.

Figure 2a illustrates that the nanostructure of Ti-TiN-(Ti,Cr,Mo,Al)N coating includes nanolayers
with the high content of Al (lighter bands) and nanolayers with the high content of Cr-Mo and Ti
(darker bands). For Ti-TiN-(Ti,Cr,Mo,Al)N coating, the value of nanolayer period λ [11,33] is about
120 nm, and the thicknesses of nanolayers are within a range of 1–8 nm. The results of the studies
of the coatings phase compositions using the Selected Area Electron Diffraction (SAED) method are
presented in Figure 2c,d.

The analysis of the SAED patterns for coatings Ti-TiN-(Ti,Cr,Mo,Al)N (Figure 2c) detected the
presence of two phases. The analysis also found the main cubic phase (Ti,Nb,Zr,Al)N with Fm3m
space group. Weak reflections with P6.3mc space group belong to the h-AlN phase. Rings of the h-AlN
phase are barely noticeable, and that fact may indicate an extremely insignificant volume of the phase.
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content of Ti changes from 7 to 60 at.%, and the content of Al—from 3 to 27 at.%. The above ensures 
a smooth, gradient transition from harder and more wear-resistant layers with the high Al content to 
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Figure 3. Distribution of chemical elements over the thickness (a) and change in the content of 
different elements in nanolayers (b) of coating Ti-TiN-(Ti,Cr,Mo,Al)N. 

Let us consider the influence of the nanolayer structure of the coating on its crystalline structure. 
Earlier, it has been found that the nanolayer structure affects the grain sizes by reducing them [11,33]. 
At the same time, the grain size of the coating is not always limited by the boundaries of a nanolayer 
or a nanolayer period [11]. The Ti-TiN-(Ti,Cr,Mo,Al)N coating under study demonstrates columnar 

Figure 2. (a,b) TEM micrograph of coating and (c,d) SAED patterns of the coatings: (a,c) Ti-TiN-
(Ti,Cr,Mo,Al)N and (b,d) (Ti,Al)N monolayer coating (TEM).

The studies of the chemical composition of the coatings (Figure 3a) found the average contents of
elements as follows in coating Ti-TiN-(Ti,Cr,Mo,Al)N:
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Figure 3. Distribution of chemical elements over the thickness (a) and change in the content of different
elements in nanolayers (b) of coating Ti-TiN-(Ti,Cr,Mo,Al)N.

Ti—22 at.%, Cr—38 at.%, Al—11 at.%, Mo—10 at.%.
The study of the nature of the distribution of elements in the nanolayer periods (Figure 3b)

finds that the content of each element changes significantly within a nanolayer period. In particular,
the content of Ti changes from 7 to 60 at.%, and the content of Al—from 3 to 27 at.%. The above ensures
a smooth, gradient transition from harder and more wear-resistant layers with the high Al content to
more ductile layers with the low Al content.

Let us consider the influence of the nanolayer structure of the coating on its crystalline structure.
Earlier, it has been found that the nanolayer structure affects the grain sizes by reducing them [11,33].
At the same time, the grain size of the coating is not always limited by the boundaries of a nanolayer or a
nanolayer period [11]. The Ti-TiN-(Ti,Cr,Mo,Al)N coating under study demonstrates columnar crystals
with sizes noticeably larger than the value of nanolayer period (Figure 4a), and the grain structure of
the coating can be seen more clearly in the reverse contrast image (Figure 4b). The nanolayer structure
of this coating does not stop the growth of crystals (Figure 4c). However, as noted earlier [11,33],
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the presence of the nanolayer structure allows the formation of crystals with significantly smaller
sizes than crystals in coatings with monolayer structures. A comparison of SAED patterns on the
Ti-TiN-(Ti,Cr,Mo,Al)N nanolayer coating (Figure 2c) and on the (Ti,Al)N monolithic coating (Figure 2d)
demonstrates the significantly smaller size of crystals in the Ti-TiN-(Ti,Cr,Mo,Al)N coating.
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Figure 4. TEM micrograph of Ti-TiN-(Ti,Cr,Mo,Al)N coating and study of the influence of the nanolayer
structure of the coating on its crystalline structure. (a) nanostructure (b) nanostructure in reverse
contrast image (c) individual grain in a nanostructure.

Figure 5 presents the high-resolution TEM images of coating Ti-TiN-(Ti,Cr,Mo,Al)N, with noticeable
crystals with sizes of 5–15 nm. The analysis of interplanar spacing revealed the presence of two phases
of h-AlN and c-(Cr,Ti,Mo,Al)N. The obtained results are in line with the SAED pattern presented in
Figure 2c.
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3.2. Study of the Cutting Properties and the Wear Pattern on Tools with the Ti-TiN-(Ti,Cr,Mo,Al)N Coating

The studies of the cutting properties of the carbide tools found that the use of Ti-TiN-(Ti,Cr,Mo,Al)N
coating can significantly reduce the flank wear compared to the tools with the (Ti,Al)N commercial
coating. Figure 6 illustrates that after 7 min of operation, the wear of the carbide inserts with the
(Ti,Al)N coating increases sharply, while the inserts with Ti-TiN-(Ti,Cr,Mo,Al)N coating demonstrate
much lower wear, and the wear rate decreases.
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Figure 6. Relation between cutting time and flank wear (VB) on coated carbide tools during the turning
of AISI 1045 steel: vc = 300 m/min, f = 0.25 mm/rev, ap = 1.0 mm.

The good wear resistance of the Ti-TiN-(Ti,Cr,Mo,Al)N coating can be explained by the formation of
tribological oxide films of MoO3 and Cr2O3, which favourably transform the cutting conditions [42–47].

The investigation of wear areas on the rake face of the carbide inserts after 16 min of
operation (Figure 7) found that the tool with coating (Ti,Al)N demonstrated the higher rake wear,
which manifested itself in the formation of a crater and a notch wear compared to the tool with
Ti-TiN-(Ti,Cr,Mo,Al)N coating.
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Figure 8. Fracture patterns for Ti-TiN-(Ti,Cr,Mo,Al)N coating (a,b) on the flank faces of the tools (90◦

counterclockwise, top left (SEM).

The study of the fracture pattern finds that, given the noticeable microdeformations in the structure
of the carbide substrate, Ti-TiN-(Ti,Cr,Mo,Al)N coatings are characterised by sufficient ductility and
resistance to brittle fracture.

The study of the fracture patterns on the Ti-TiN-(Ti,Cr,Mo,Al)N coatings on the rake faces of the tools
(Figure 9) finds that the fracture process is accompanied by active cracking. The Ti-TiN-(Ti,Cr,Mo,Al)N
coating exhibits both inclined and transverse cracks (Figure 9). On the Ti-TiN-(Ti,Cr,Mo,Al)N coating,
the brittle fracture accompanied by chipping of some fragments is typical (Figure 9b–e). Figure 9a
illustrates that the wear surface of the coating on the boundary of its fracture is quite smooth and there
are signs of local chipping of coating fragments.
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Figure 9. Fracture pattern for coating Ti-TiN-(Ti,Cr,Mo,Al)N on the rake face of the carbide tool (SEM),
(a) the nature of destruction of the coating at the boundary of the crater of wear, (b–e) the nature of
cracking in the structure of the coating.

After cutting, delaminations and longitudinal cracks also occur in the structure of the coating on
the cutting tool, and the study of them on the rake face of the tool is depicted in Figure 10. The upper
part of the image demonstrates a delamination between nanolayers (see Box A for a larger scale).
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The delamination occurs not only along the border of two nanolayer periods, but also along the border
of individual nanolayers. At the same time, the delamination does not transform into a longitudinal
crack, that it, does not cut the nanolayers. As noted earlier [8,30,31,35], such delaminations can reduce
the level of internal stresses and can thus play some positive role by slowing down the process of
coating fracture. The lower part of the image depicts a delamination transforming into a transverse
crack (see Box B for details). The formation of such cracks may be associated with the effect of residual
longitudinal compressive stresses. Another reason for the formation of delaminations and longitudinal
cracks can be transverse cyclic tensile stresses formed under the influence of adhesive fatigue wear
processes arising during cutting [8,30,31,35,48].
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Figure 10. Pattern of the formation of longitudinal cracks and delaminations in the Ti-TiN-
(Ti,Cr,Mo,Al)N coating on the rake face of the tool (TEM). (A) inter nanolayer delamination (B)
nanolayer cut by a crack.

4. Conclusions

The properties of the Ti-TiN-(Ti,Cr,Mo,Al)N multilayered composite coating with a wear-resistant
layer of nanolayer structure were studied. The conducted studies have found the following:

(1) The average coating hardness was 42 ± 1.3 GPa.
(2) The value of nanolayer period λ is about 120 nm, and the thicknesses of nanolayers are within the

range of 1–8 nm.
(3) The studies of the phase composition of the coating have revealed the presence of a main cubic

phase of (Ti,Nb,Zr,Al)N with Fm3m space group. Weak reflections with P6.3mc space group
belong to the h-AlN phase.

(4) It is found that the grain sizes in the coating under study can significantly exceed the thicknesses
of its nanolayers and the value of nanolayer period λ. While nano-sized grains (5–15 nm) are
detected, there are also columnar crystals 1–2 µm long.

(5) After 16 min of cutting, the wear rate for the tool with the Ti-TiN-(Ti,Cr,Mo,Al)N coating
was 1.9 times lower compared to the wear rate for a tool with the (Ti,Al)N commercial
monolithic coating.

(6) The cracking patterns in the coating on the rake and flank faces of the tool demonstrate a
considerably brittle nature of fracture, accompanied by the chipping of separate fragments of the
coating. At the same time, delaminations between nanolayers of the coating were also detected.
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